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1.

INTRODUCTION
A cellular folding is a folding defined on regular CW-complexes first defined by, E. El-Kholy

and H. Al-Khurasani, [1] and various properties of this type of folding are also studied by them.

Let K and L be complexes, a continuous map f : K — L is called cellularif f (K" )< L"

forn=0,1 2, ..., n,where K" and L" denote the n-skeletons of K and L respectively.

Now, let K and L be regular CW-complexes of the same dimensionn, a cellular map

f : K — L isacellular folding if and only if f satisfies the following:

(i)
(i)

Foreachi-cells €' €K, f (€' )isani-cellinL, i.e., f maps i-cells to i-cells ;

If & contains n vertices, then f (€) must contains n distinct vertices, [1].The set of regular
CW-complexes together with cellular folding form a category denoted by C (K, L). If
f eC(K, L), then x eK is said to be a singularity of f iff f is not a local

homeomorphism at x. The set of all singularities of f is denoted by Zf . This set

corresponds to the "folds" of the map. It is noticed that for a cellular folding f, the set Z f

of singularities of f is a proper subset of the union of cells of dimension <n —1. Thus, when
we consider any f €C (K, L), where K and L are connected regular CW-complexes of

dimension 2, the set Z f  will consist of 0-cells, and 1-cells, each of 0-cells (vertices) has
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even valences [2]. Of course Z f need not be connected. Thus in this case z f hasthe

structure of a locally finite graph I'y embedded in K, for which every vertex has an even

valency.
From now on by a complex we mean regular CW-complexes.
2. Cellular folding of the Cartesian product of complexes:
If X and Y are cell complexes, then X xY has the structure of a cell complex with cell

products e(r; xeg where e(rxn ranges over the cells of X and eg ranges over the cells of Y [3].

2.1. Theorem
Let K and X be complexes of the same dimension n, L and Y be complexes of the same
dimension m. Let f K —>X and g:L->Y be cellular maps. Then

f xg eC (K xL, X xY ) ifand only if fand g are cellular foldings.

Proof:
If fand g are cellular foldings, then each will maps cells to cells of the same dimension

hence do f xg . Also & and f xg (e) contains the same number of vertices because each of f
and g are cellular foldings.
Suppose now f x g is a cellular folding, then f x g maps p-cells to p-cells, i.e., if (e,e") is

ap-cellin K xL, then (f xg)(e,e’)=(f (e), g(e’)) isap-cellin X xY .Lete be an i-cell in
K and €’ be a (p —i)-cell in L. The cellular map must maps i-cells to j-cells such that j <i . If
J =1 nothing to prove, so let i > | . In this case g will maps (p —i)-cells to (p — j)-cells and
hence is not a cellular map. This is a contradiction and hence i =] is the only possibility. The

second condition of cellular folding certainly satisfied in this case.
2.2. Example:
Suppose that K and L are complexes such that |K| = S, |L| = I with cell decomposition

shown in Fig. (1-a). Let f : K — K be a cellular folding defined by f (eg) :elo, f (e%, eéll) =
(e%, ell), where the omitted cells through the paper are mapped into themselves. The image of f is
a complex consisting of three vertices and two 1-cells. Let g : L — L be a cellular folding defined

by (eg):eg, g (e%)zeé. Then f xg:KxL —>KxL is a cellular folding. The cell
decomposition of K xL and (f xg)(K xL) are shown in Fig.(1-b).

L 8
m
r
—_— " N
= €
FlE)=X
0 of o E 0 0
€3 I . €7 — Ef ———= &7
€ €5 €5
L|=1 g(Ll)=¥

(a)
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Fig. (1)
3. Cellular folding of the quotient of a complex:

If (X, A) is a pair consisting of a cell complex X and a subcomplex A, then the quotient
space X /A inherits a natural cell complex structure from X. The cells of X /A are the cells of

X —A plus one new O-cell, the image of Ain X /A, [3].
3.1. Example:

If X =D? ={(x,y)e E?:x? +y2 <1} is a disc with the cell structure consisting of

two O-cells, two 1-cells and one 2-cell, and let A =S1=0D?. Then D?/A isa sphere S 2 with

one 2-cell and one 0-cell, see Fig. (2).

LT

5 m

Fig. (2)
Generally, if we give S n-1 any cell structure and build D" from S n-1 by attaching an n-cell, then

the quotient D" /S N—1is SM with its usual cell structure [3].

3.2. Theorem
let X be a complex, AcX a subcomplex, f :X — X a cellular map. Let

g:X /A —>X /A be defined by, for each i-cell e in X —A, g(e)=f (e), g(e°)=e?,

where €9 is the new 0-cell of X /A . Then g is a cellular folding if and only if both fand f |A isa
cellular folding. In thiscase g (X /A)=f (X )/f (A).

Proof:
Let f : X — X bea cellular folding, e ani-cellin X /A such that & has n distinct vertices

g(e)=f (e) is an icell such that g(e)=f (e) has n distinct vertices, g (€°)=e°. Thus
g : X /A —>X /A isacellular folding.

E. El-Kholy, A. El-Esawy & M. A. Kouka
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Now suppose g : X /A — X /A is a cellular folding and f : X — X

is a cellular

map, if e is an i-cell in X —A , then f (e)=g (e)is an i-cell in X, but if e is an i-cell in A, then
f (e) mightbe aj-cellinX, j <i whileif f | A: A — A is a cellular folding, then for any i-cell in

X, f (e) isani-cell in X and consequently fis a cellular folding.

3.3. Example

Let X = D2 be a disc with cellular subdivision consisting of two O-cells, three 1-cells and

two 2-cells, and |

et A =51 =6D2, f :D?>D%bea cellular folding defined as follows :

f(ef e3)=(ef e3), f (e3)=(e]), f (e)=F (ef).
The map f IA is the cellular folding shown in Fig.(3). Now g : X /A — X /A s a cellular folding

defined by, g(eo)zeo, g(e%):e%, g(e22)=e12,see Fig. (3).

el er
1
€3 s
i o2 | el o = el
€1
—>
es e
D? f(X)
e. e
es e AA e
es e
A=0D? f (A)
gl gl
e,
2
D°/A f (D?)/f (A)
Fig. (3)
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3.4. Example
Let X be a complex, such that | X | =T s a torus, with cellular subdivision consisting of

two O-cells, four 1-cells, and two 2-cells, A —X be the subcomplex shown in Fig. 4. Let
f :X — X be a cellular folding defined as follows: f (eio):eio, =12 f (e%):(e%),
f (ef) = (822).The map f | A is the cellular folding shown in Fig. (3).

Now g :X /A —>X /A is a cellular folding defined by, g (eo)zeo, g (e%)ze%,

g (elz) :ezz, see Fig.(4).

0 1 0 1 A 0 1 0
€ € €2 €2 €2 €2 €
f (A)
1 2 1
est B ek es yer —f 5 el ez res
0 1 0 1 0
€1 €1 €2 €2 €1 e; ez ey
X f(X)
0 0 1 0 0 1 0
est fes A es yes
0 1 0 1 0 0 1 0
€1 €1 €2 €2 € €2 €2 €1
A f(A)
e! e?
f /A
X [A f(X)/f (A)
Fig.(4)
4. Cellular folding of the suspension

For a space X, the suspension S X is the quotient of X x| obtained by collapsing
X x{0} to one point and X x{1} to another point. If X is a complex, so is S X as quotient of

X x| with its product cell structure, / being given the standard cell structure of two 0-cells joined

E. El-Kholy, A. El-Esawy & M. A. Kouka
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by a 1-cell [3]. Thus we can define the suspension S X as the union of all line segments joining
points of X to two external vertices called "suspension points".

Useful property of suspension is that not only spaces but also maps can be suspended, a
map f : X —Y suspendsto Sf :SX —SY , the quotient map of f x| : X x| =Y xI,
(3].
4.1. Example

If X =Sl, circle, then S (Sl) =S 2, see Fig.(5)

u=(0,01)
v =(0,0,-1)
st sixl s(sty=s?

Fig. (5)
Generally S (S")=5"",

4.2. Theorem
Let X and Y be complexes of the same dimension n, let f : X —Y be a cellular map. Then

g=Sf :SX —>SY mapping suspension points (vertices) u, v into itself, and for each i-cell
(e,e')eS X, g(e,e’)=(f (e),e"), where &' is a zero or a one-cell of /, is a cellular folding if

and only if fis a cellular folding.
Proof:
If fis a cellular folding, then it will maps cells to cells of the same dimension, and hence does

g. Also (e,e') and g(e,e’)=(f (e),e’) contains the same number of vertices because f is a

cellular folding.
Suppose now g is a cellular folding, then g maps i-cell to i-cell, i.e., if (e,€e") is an i-cell in

S X ,then g(e,e’)=(f (e),e') isani-cellin SY .Lletebeaj-cellinX,and e’ bean (i —j)-
cell in I. The cellular map must maps j-cells to k-cells such that kK < j . If kK = j nothing to prove, so
let K < j . In this case g will maps (i — ] )-cells to (i —Kk )-cells and hence is not a cellular map.
This is a contradiction, and hence k = | is only possibility. The second condition of cellular folding

certainly satisfied in this case.
4.3. Example:

Let X =S! be a complex with cellular subdivision shown in Fig.(6-a), and f : X — X be

a cellular folding defined by: f (eg) = (el0 ), f (e%, e%) = (ell, eéll) )

E. El-Kholy, A. EI-Esawy & M. A. Kouka 6
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Fig. (6)
g(u,v)=(u,v) g(ee)=(f (e)e'),eeX,e'el
Then g=Sf:SX — SY is a cellular folding defined by g(u, v)=(u,v), (e,é) = (f(e),é),e€ X ,é €
I.
5. Cellular folding of the join of complexes
The join X *Y of the two spaces X and Y is the quotient space X xY x| under the

identification (X, yq, 0) ~(X, Y5, 0) and (X4, Y, 0)~ (X5, Y, 0). Thus we are collapsing the
subcomplex X xY x{0} to Xand X xY x{1} to Y, [3]. One can define this space as the space of

all line segments joining points in X to points in Y.

Note that if X and Y are complexes, then there is a natural CW structure on X *Y having the
subspaces X and Y as a subcomplexes, with the remaining cells being the produce cells of
X xY x(0,1).

5.1. Example

If X and Y are both closed intervals, then we are collapsing two opposite faces of a cube onto
line segments so that the cube becomes a tetrahedron, see Fig.(7).

X xY x{0} | X xY x{1}
|y
) . 17 &
X ™
Y X X %Y
I
Fig. (7)
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5.2. Theorem
Let X and Y be complexes of the same dimension n, let f : X — X, g:¥Y Y be

cellular maps. Then h=f*g:X *Y X *Y  defined as the quotient map of
f xgxl :X xY xI 5>X xY x| under the identifications (X, Yy;,0)~(X,Yy,,0) and
(X1, Y,0)~ (x5, Yy, 0) isacellular folding if and only if fand gare both cellular foldings.

Proof

Suppose that f and g are cellular foldings. Let e be an i-cell in X and o be a j-cell in Y. Then
(e,o)isan (i +]j+1)-cellin X *Y .Now (f *xg)(e, o)= (f (e), g (o)), but since each
of fand g are cellular foldings, then f (e) is ani-cellin f (X ) and g (o) isaj-cellin g(Y ).
Thus (f *g)(e, o) isan (i +j +1)-cellin f (X )*g (Y ),i.e, f *g sends cells to cells of the

same dimension. Also m and m contains the same number of vertices because
each of fand g is a cellular folding.

To prove the converse, suppose f *( is a cellular folding, then f *g maps cells of X *Y
to cells of the same dimension, so if (e,o) is a p-cell in X *Y , then
(f *xg)(e,o)=(f (e),g (o)) isap-cellinf (X )*g (Y ).Now lete be ani-cellin X, then o

isa (p—1i—1)-cell in Y. But any cellular map maps i-cells to j-cells where j <i.If i =], then
nothing to prove, so let i > j . In this case g will maps a (p—i —1)-cell to (p—i —1)-cell and
hence it is not a cellular folding, which is a contradiction and hence i = j is the only possibility. The

second condition of cellular folding is certainly satisfied in this case ,then f, g are cellular foldings.
5.3. Example
Let X and Y be complexes such that | X |=|Y |=1 with cellular divisions shown in Fig. (8),

and f :X =X, g:Y —Y be cellular foldings defined as follows: f (e))=eJ, f (ef)=e}

and g (e9)=¢€J, g (e3)=¢j

el X €4 .
1 &1 1 ¢
n ! " 1 ] g =4 1
£ e €] =5 — €5
& " & 0
& &5
=1 €5
X Fix) ) g(x)
el
i i
i i pd
¥ | R S, e Jmged [
S S 7/’ g (2 }l b -
r I rl
- ’ fx)
J S— f
,,‘* ““““““ 'y
!
¥ wuw¥ =T

(a)
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fx)
FX)*g(l)
(b)
Fig. (8)
Thenthemap f *g : X *Y — X *Y isa cellular folding, see Fig.(8-b).
6. Cellular folding of the wedge sum of two complexes

Given two complexes X and Y with chosen zero cells U € X and V €Y , then the wedge
sum X VY s the quotient of the disjoint union X JY obtained by identifying u and v to a single
0-cell, [3].We will call this 0-cell, the identifying 0-cell.

Note that for any cell complex X, the quotient X /X" Lis a wedge sum of n-spheres
Va SS , with one sphere for each n-cell of X..

6.1. Example

Let X, Y be two complexes suchthat | X |=|Y |=S 1 Then X vY =S1vStisthe figure
eight (8), see Fig. (9).

X =gt y =st stvst
Fig. (9)
More generally one could form the wedge sum V , X, of an arbitrary collection of spaces
X, by starting with the disjoint U, X , and identifying points X , € X , to a single point. In case
the spaces X , are cell complexes and the points X , are O-cells, then V , X , is a cell complex

since it is obtained from the cell complex Ua X o by collapsing a subcomplex to a point.

6.2. Theorem
Let X and Y be complexes of the same dimension n, let f : X —-X and g :Y —Y be

cellular maps. Let h=f vg:X vY —>X vY be defined as follows: for each i-cell e,

h(e):{f (e), eeX
g(e)eey,

f (%) =g (e?)=e? e is the identifying 0-cell. Then h is a cellular folding if and only if

fand g are cellular foldings.

E. EI-Kholy, A. El-Esawy & M. A. Kouka 9
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Proof
Suppose f and g are cellular foldings. Let e be an i-cell of X vY suchthat € has rdistinct

vertices, then we have:

(i) If eeX ,then h(e)=f (e) isani-celliny, f (&) has r distinct vertices, since fis a
cellular folding.

(i)IfeeX ,then h(e)=g (e) isani-cellin X, g (e) has r distinct vertices, since g is a

cellular folding. Thus h =f v g is a cellular folding.

Conversely, let h =f v g be a cellular folding, then f v g maps p-cells to p-cells. Let e be
an i-cell in X and f a cellular map, then it will maps i-cells to j-cells such that, j <i.If j =i nothing
to prove, so let j <i.Inthiscase h =f v g will maps i-cells to j-cells and hence it is not a cellular
folding. Which is a contradiction and hence j =i is the only possibility. The second condition of
cellular foldings is certainly satisfied in this case, then f, g are cellular foldings.

6.3. Examples

(1) Let X and Y be two complexes such that | X |=]Y |=S%,and f :X =X, g:Y —Y
be cellular foldings defined as follows:
f(e)=(e1), 1=12;f (5)=(e1), g(es. eg)=(e5, €q), gle!) =3, i =345. See
Fig. (10)
Thenthemap f vg : X vY — X vY isdefined by:

(f vg)(ed, ed)=(e,ed), (f vag)(es, el ei,et)=(el, e3, e3, el) isa cellular folding,
see Fig. (10)

€]
o
& a I ol
0
€4
ejj -
FX)
o
_£ 93\9%
e
Fir)

Fig. (10)
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(2) Let X and Y be two complexes such that | X |=T 2, |Y |=S? with the cellular subdivision

shown in Fig. (11-a). Let f : X — X, g :Y —Y be cellular foldings defined as follows:
0,0 ,0 ,0y_(,0 ,0 ,0 ,0ye,o1 o1 ,1 o1 o1 ,1\_(pl 51 o1 o1 .1 1
f(61,€2,63,€4)—( 1,ez,63,84),f(€1,62,63,84,65,86)—(81,82,33,33,35,86)

o_,o0_,0_,0_,0 ,0y_~,0_,0_0_,0_,0 _0 1,1 .1 _1yv_(,1 ,1 1
g(es.€6,€7.68,99.310)-8(35;66,65,69;39'36),8(6’7;38,6’9----618)-(6’7;68,6’12)

(b)
Fig. (11)
Thenthemap f vg: : X vY =X vY definedbyfVvg(el el ed)=(el el ed), e) = e
fvg(ed ef.ed.ed efn)=(eq e ed e, e),
fVvglet el el ..elg)=(el, el el el el el el el e, ) fVvyg (ei2 ) = e?,i=1,..8 isacellular
folding, see Fig.(11-b).

E. El-Kholy, A. El-Esawy & M. A. Kouka 11
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