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ABSTRACT 

In this paper we obtained the conditions satisfied by a cellular folding of a 

given CW-complex to be able to cellular fold some new CW-complexes 

generated by some known operations like quotient, suspension of a regular 

CW-complex, Cartesian product, join product, and wedge sum of two CW-

complexes. 
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1.  INTRODUCTION 

A cellular folding is a folding defined on regular CW-complexes first defined by, E. El-Kholy 

and H. Al-Khurasani, [1] and various properties of this type of folding are also studied by them. 

             Let K and L be complexes, a continuous map :f K L  is called cellular if ( )n nf K L  

for 0, 1, 2, ...,n n , where nK  and nL  denote the n-skeletons of K and L respectively. 

Now, let K and L be regular CW-complexes of the same dimension 𝒏, a cellular map 

:f K L  is a cellular folding if and only if  f  satisfies the following: 

(i) For each i-cells , ( )i ie K f e is an i-cell in L, i.e. ,  f  maps i-cells to i-cells ; 

(ii) If e  contains n vertices, then ( )f e   must contains n distinct vertices, [1].The set of regular 

CW-complexes together with cellular folding form a category denoted by ( , )C K L . If 

( , )f C K L , then x K  is said to be a singularity of f  iff f is not a local 

homeomorphism at x. The set of all singularities of f  is denoted by f . This set 

corresponds to the "folds" of the map. It is noticed that for a cellular folding f, the set f  

of singularities of f  is a proper subset of the union of cells of dimension 1n  . Thus, when 

we consider any ( , )f C K L , where K and L are connected regular CW-complexes of 

dimension 2, the set f  will consist of 0-cells, and 1-cells, each of 0-cells (vertices) has 
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even valences [2]. Of course f  need not be connected. Thus in this case f  has the 

structure of a locally finite graph f  embedded in K, for which every vertex has an even 

valency.  

   From now on by a complex we mean regular CW-complexes.  

2.  Cellular folding of the Cartesian product of complexes: 

If X and Y are cell complexes, then X Y  has the structure of a cell complex with cell 

products m ne e   where me  ranges over the cells of X and ne  ranges over the cells of Y [3]. 

2.1.  Theorem 

             Let K and X be complexes of the same dimension n, L and Y be complexes of the same 

dimension m. Let :f K X  and :g L Y  be cellular maps. Then 

( , )f g C K L X Y     if and only if f and g are cellular foldings. 

Proof: 

   If  f and g  are cellular foldings, then each will maps cells to cells of the same dimension 

hence do f g . Also e  and ( )f g e  contains the same number of vertices because each of f 

and g  are cellular foldings. 

Suppose now f g  is a cellular folding, then f g  maps p-cells to p-cells, i.e., if ( , )e e   is 

a p-cell in K L , then ( )( , ) ( ( ), ( ))f g e e f e g e    is a p-cell in X Y . Let e be an i-cell in 

K and e   be a ( )p i -cell in L. The cellular map must maps i-cells to j-cells such that j i . If 

j i  nothing to prove, so let i j . In this case g will maps ( )p i -cells to (𝑝 − 𝑗)-cells and 

hence is not a cellular map. This is a contradiction and hence i j  is the only possibility. The 

second condition of cellular folding certainly satisfied in this case. 

2.2. Example: 

                Suppose that K and L are complexes such that  𝐾 = 𝑆1,  𝐿 = 𝐼 with cell decomposition 

shown in Fig. (1-a). Let :f K K  be a cellular folding defined by 0 0
3 1( )f e e , 1 1

3 4( , )f e e   

1 1
2 1( , )e e , where the omitted cells through the paper are mapped into themselves. The image of f is 

a complex consisting of three vertices and two 1-cells. Let :g L L  be a cellular folding defined 

by 0 0 1 1
5 7 5 6( ) , ( )e e g e e  . Then :f g K L K L     is a cellular folding. The cell 

decomposition of K L  and ( )( )f g K L   are shown in Fig.(1-b). 

 
(a) 
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(b) 

Fig. (1) 

3.  Cellular folding of the quotient of a complex: 

If ( , )X A  is a pair consisting of a cell complex X and a subcomplex A, then the quotient 

space /X A  inherits a natural cell complex structure from X. The cells of /X A  are the cells of 

X A  plus one new 0-cell, the image of A in /X A , [3]. 

3.1.  Example: 

If 2 2 2 2{( , ) : 1}X D x y E x y      is a disc with the cell structure consisting of 

two 0-cells, two 1-cells and one 2-cell, and let 1 2A S D   . Then 2 /D A  is a sphere 2S  with 

one 2-cell and one 0-cell, see Fig. (2). 

 
Fig. (2) 

Generally, if we give 1nS   any cell structure and build nD  from 1nS   by attaching an n-cell, then 

the quotient  1/n nD S   is nS  with its usual cell structure [3]. 

3.2.  Theorem 

Let X be a complex, A X  a subcomplex,  :f X X  a cellular map. Let 

: / /g X A X A  be defined by, for each i-cell e in , ( ) ( ),X A g e f e   0 0( )g e e , 

where 0e  is the new 0-cell of /X A . Then g is a cellular folding if and only if both f and |f A  is a 

cellular folding. In this case ( / ) ( ) / ( )g X A f X f A . 

Proof: 

          Let :f X X  be a cellular folding, e an i-cell in /X A  such that e  has n distinct vertices

( ) ( )g e f e  is an i-cell such that ( ) ( )g e f e  has n distinct vertices, 0 0( )g e e . Thus 

: / /g X A X A  is a cellular folding. 
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Now suppose : / /g X A X A  is a cellular folding and :f X X  is a cellular 

map, if e is an i-cell in X A , then ( ) ( )f e g e is  an i-cell in X, but if e is an i-cell in A, then 

( )f e  might be a j-cell in X, j i  while if | :f A A A  is a cellular folding, then for any i-cell in 

X, ( )f e  is an i-cell in X and consequently f is a cellular folding. 

3.3. Example 

Let 2X D  be a disc with cellular subdivision consisting of two 0-cells, three 1-cells and 

two 2-cells, and l et 1 2 2 2, :A S D f D D     be a cellular folding defined as follows :

0 0 0 0 1 1 2 2
1 2 1 2 2 1 2 1( , ) ( , ) , ( ) ( ), ( ) ( )f e e e e f e e f e f e   .  

The map 𝑓 IA is the cellular folding shown in Fig.(3). Now : / /g X A X A  is a cellular folding 

defined by, 0 0 1 1 2 2
3 3 2 1( ) , ( ) , ( )g e e g e e g e e   , see Fig. (3). 
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3.4.  Example 

Let X  be a complex, such that | |X T  is a torus, with cellular subdivision consisting of 

two 0-cells, four 1-cells, and two 2-cells, A X  be the subcomplex shown in Fig. 4. Let 

:f X X  be a cellular folding defined as follows: 0 0 1 1
1 2( ) , 1, 2; ( ) ( ),i if e e i f e e    

2 2
1 2( ) ( )f e e . The map |f A  is the cellular folding shown in Fig. (3).  

Now : / /g X A X A  is a cellular folding defined by, 0 0( ) ,g e e  1 1
3 3( )g e e , 

2 2
1 2( )g e e ,  see Fig.(4). 

 

Fig.(4) 

4. Cellular folding of the  suspension       

 For a space X, the suspension S X is the quotient of X I  obtained by collapsing 

{0}X   to one point and {1}X   to another point. If X is a complex, so is S X  as quotient of 

X I  with its product cell structure, I being given the standard cell structure of two 0-cells joined 

0
1e

 

1
2e

 

0
2e

 

1
3e  

1
4e

 

1
1e  

1
4e

 

2
2e

 

2
1e

 

A 

( )f A  

0
1e

 

1
2e

 

0
2e

 

1
1e  0

1e

 

1
2e

 

0
2e

 

1
3e  

1
4e

 

2
2e

 

0
1e

 

1
2e

 

0
2e

 

f
  

0
1e

 

0
1e

 

1
2e

 

0
2e

 

1
4e

 

1
1e  

1
4e

 

0
1e

 

0
1e

 

1
2e

 

0
2e

 

1
1e  0

1e

 

1
2e

 

0
2e

 

1
4e

 

2
2e

 

0
1e

 

1
2e

 

0
2e

 

/f A
  

0
1e

 

X ( )f X  

/f A
  

A ( )f A  

0e
 

2
1e

 

1
3e  

2
2e

 

0e
 

1
3e  

2
2e

 

/X A  ( ) / ( )f X f A  



Bull .Math.&Stat.Res ( ISSN:2348 -0580)  

   6 

Vol.4.Issue.4.2016 (Oct-Dec.) 

E. El-Kholy, A. El-Esawy & M. A. Kouka 

by a 1-cell [3]. Thus we can define the suspension S X  as the union of all line segments joining 

points of X to two external vertices called "suspension points". 

Useful property of suspension is that not only spaces but also maps can be suspended, a 

map :f X Y  suspends to :S f S X SY , the quotient map of :f I X I Y I    , 

[3]. 

4.1. Example 

  If  1X S , circle, then 1 2( )S S S , see Fig.(5) 

 

 

 

 

 

 

 

 

 

 

Fig. (5) 

Generally 1( )n nS S S  . 

4.2. Theorem 

 Let X and Y be complexes of the same dimension n, let :f X Y  be a cellular map. Then 

:g S f S X SY   mapping suspension points (vertices) u, v into itself, and for each i-cell 

( , ) , ( , ) ( ( ), )e e S X g e e f e e    , where e   is a zero or a one-cell of I, is a cellular folding if 

and only if f is a cellular folding. 

Proof: 

 If f is a cellular folding, then it will maps cells to cells of the same dimension, and hence does 

g. Also ( , )e e   and ( , ) ( ( ), )g e e f e e   contains the same number of vertices because f is a 

cellular folding. 

Suppose now g is a cellular folding, then g maps i-cell to i-cell, i.e., if ( , )e e   is an i-cell in 

S X , then ( , ) ( ( ), )g e e f e e   is an i-cell in SY . Let e be a j-cell in X, and e   be an ( )i j -

cell in I. The cellular map must maps j-cells to k-cells such that k j . If k j  nothing to prove, so 

let k j . In this case g will maps ( )i j -cells to ( )i k -cells and hence is not a cellular map. 

This is a contradiction, and hence k j  is only possibility. The second condition of cellular folding 

certainly satisfied in this case. 

4.3. Example: 

Let 1X S  be a complex with cellular subdivision shown in Fig.(6-a), and :f X X  be 

a cellular folding defined by:         0 0 1 1 1 1
3 1 2 3 1 4( ) ( ), ( , ) ( , )f e e f e e e e  . 
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                                                                                   Fig. (6)  

( , ) ( , ), ( , ) ( ( ), ), ,g u v u v g e e f e e e X e I       

Then 𝒈=𝑺𝒇: 𝑺𝑿 → 𝑺𝒀 is a cellular folding defined by 𝒈(𝒖, 𝒗)=(𝒖, 𝒗),  𝒆, 𝒆  =  𝒇 𝒆 , 𝒆  , 𝒆 ∈ 𝑿 , 𝒆 ∈

𝑰 . 

5.  Cellular folding of the join of  complexes 

The join X Y  of the two spaces X and Y is the quotient space X Y I   under the 

identification 1 2( , , 0) ~ ( , , 0)x y x y  and 1 2( , , 0) ~ ( , , 0)x y x y . Thus we are collapsing the 

subcomplex {0}X Y   to X and {1}X Y   to Y, [3]. One can define this space as the space of 

all line segments joining points in X to points in Y. 

Note that if X and Y are complexes, then there is a natural CW structure on X Y  having the 

subspaces X and Y as a subcomplexes, with the remaining cells being the produce cells of 

(0, 1)X Y  . 

5.1.  Example 

If X and Y are both closed intervals, then we are collapsing two opposite faces of a cube onto 

line segments so that the cube becomes a tetrahedron, see Fig.(7). 

 

 

 

 

 

 

 

Fig. (7) 
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5.2.  Theorem 

Let X and Y be complexes of the same dimension n, let : , :f X X g Y Y   be 

cellular maps. Then :h f g X Y X Y      defined as the quotient map of 

:f g I X Y I X Y I        under the identifications 1 2( , , 0) ~ ( , , 0)x y x y  and 

1 2( , , 0) ~ ( , , 0)x y x y  is a cellular folding if and only if  f and g are both cellular foldings. 

Proof 

Suppose that f and g are cellular foldings. Let e be an i-cell in X and   be a j-cell in Y. Then 

( , )e   is an  ( 1)i j  -cell in X Y . Now ( )( , )f g e    ( ( ), ( ))f e g  , but since each 

of f and g are cellular foldings, then ( )f e  is an i-cell in ( )f X  and ( )g   is a j-cell in ( )g Y . 

Thus ( )( , )f g e   is an ( 1)i j  -cell in ( ) ( )f X g Y , i.e., f g  sends cells to cells of the 

same dimension. Also ( , )e   and ( , )f g e   contains the same number of vertices because 

each of f and g  is a cellular folding. 

To prove the converse, suppose f g  is a cellular folding, then f g  maps cells of X Y  

to cells of the same dimension, so if ( , )e   is a p-cell in X Y , then 

( )( , ) ( ( ), ( ))f g e f e g    is a p-cell in ( ) ( )f X g Y . Now let e be an i-cell in X, then   

is a ( 1)p i  -cell in Y. But any cellular map maps i-cells to j-cells where j i . If i j , then 

nothing to prove, so let i j . In this case g will maps a ( 1)p i  -cell to ( 1)p i  -cell and 

hence it is not a cellular folding, which is a contradiction and hence i j  is the only possibility. The 

second condition of cellular folding is certainly satisfied in this case ,then  f , g are cellular foldings. 

5.3.  Example 

Let X and Y be complexes such that | | | |X Y I   with cellular divisions shown in Fig. (8), 

and : , :f X X g Y Y   be cellular foldings defined as follows: 0 0 1 1
1 3 1 2( ) , ( )f e e f e e   

and 0 0 1 1
4 6 3 4( ) , ( )g e e g e e   

 
(a) 
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(b) 

Fig. (8) 

Then the map :f g X Y X Y     is a cellular folding, see Fig.(8-b). 

6.  Cellular folding of the wedge sum of two complexes 

Given two complexes X and Y with chosen zero cells u X  and v Y , then the wedge 

sum X Y  is the quotient of the disjoint union X Y  obtained by identifying u and v to a single 

0-cell, [3].We will call this 0-cell, the identifying 0-cell. 

Note that for any cell complex X, the quotient 1/n nX X   is a wedge sum of n-spheres 

nV S  , with one sphere for each n-cell of X . 

6.1.  Example 

Let X, Y be two complexes such that 1| | | |X Y S  . Then 1 1X Y S S    is the figure 

eight (8), see Fig. (9). 

 

 

  

  

 

 

 

 

 

Fig. (9) 

More generally one could form the wedge sum V X   of an arbitrary collection of spaces 

X   by starting with the disjoint X   and identifying points x X   to a single point. In case 

the spaces X   are cell complexes and the points x  are 0-cells, then V X   is a cell complex 

since it is obtained from the cell complex X   by collapsing a subcomplex to a point. 

6.2.  Theorem 

Let X and Y be complexes of the same dimension n, let :f X X  and :g Y Y  be 

cellular maps. Let :h f g X Y X Y      be defined as follows: for each i-cell e,  
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g e e Y


 


  

 0 0 0 0( ) ( ) ,f e g e e e   is the identifying 0-cell. Then h is a cellular folding if and only if  

f and g are cellular foldings. 
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Proof 

Suppose f and g are cellular foldings. Let e be an i-cell of X Y  such that  e  has r distinct 

vertices, then we have:  

(i) If e X , then ( ) ( )h e f e  is an i-cell in Y, ( )f e  has r distinct vertices, since f is a 

cellular folding.  

(ii) If e X , then ( ) ( )h e g e  is an i-cell in X, ( )g e  has r distinct vertices, since g is a 

cellular folding. Thus h f g   is a cellular folding. 

Conversely, let h f g   be a cellular folding, then f g  maps p-cells to p-cells. Let e be 

an i-cell in X and f a cellular map, then it will maps i-cells to j-cells such that, j i . If j i  nothing 

to prove, so let j i . In this case h f g   will maps i-cells to j-cells and hence it is not a cellular 

folding. Which is a contradiction and hence j i  is the only possibility. The second condition of 

cellular foldings is certainly satisfied in this case, then  f, g are cellular foldings. 

6.3.  Examples 

(1)  Let X and Y be two complexes such that 1| | | |X Y S  , and : , :f X X g Y Y   

be cellular foldings defined as follows:  

0 0 1 1 0 0 0 0
2 1 5 6 3 4( ) ( ), 1, 2; ( ) ( ), ( , ) ( , ) ,i if e e i f e e g e e e e     𝑔 𝑒𝑖

1 = 𝑒3
1 , 𝑖 = 3,4,5. See 

Fig. (10) 

Then the map :f g X Y X Y     is defined by:  

0 0 0 0 1 1 1 1 1 1 1 1
5 6 3 4 2 4 5 6 1 3 3 3( ) ( , ) ( , ) , ( ) ( , , , ) ( , , , )f g e e e e f g e e e e e e e e     is a cellular folding, 

 see Fig.  (10) 

 
Fig. (10) 
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(2) Let X and Y be two complexes such that 2 2| | , | |X T Y S   with the cellular subdivision 

shown in Fig. (11-a). Let : , :f X X g Y Y   be cellular foldings defined as follows: 

f(𝑒1
0 , 𝑒2

0 , 𝑒3
0 , 𝑒4

0)=(𝑒1
0 , 𝑒2

0 , 𝑒3
0 , 𝑒4

0),f(𝑒1
1 , 𝑒2

1,𝑒3
1 , 𝑒4

1 , 𝑒5
1 , 𝑒6

1)=(𝑒1
1 , 𝑒2

1 , 𝑒3
1 , 𝑒3

1 , 𝑒5
1 , 𝑒6

1) 

 g(𝑒5
0, 𝑒6

0 , 𝑒7
0 , 𝑒8

0 , 𝑒9
0 , 𝑒10

0 )=g(𝑒5
0 , 𝑒6

0 , 𝑒5
0, 𝑒9

0 , 𝑒9
0 , 𝑒6

0), g(𝑒7
1 , 𝑒8

1 , 𝑒9
1….𝑒18

1 )=(𝑒7
1 , 𝑒8

1 , 𝑒12
1 ) 

 
(a) 

 
(b) 

Fig. (11) 

Then the map : :f g X Y X Y     defined by 𝑓 ∨ 𝑔 ( 𝑒1
0 , 𝑒2

0 , 𝑒3
0)=(𝑒1

0 , 𝑒2
0 , 𝑒3

0),  𝑒4
0 =  𝑒5

0 

  𝑓 ∨ 𝑔(𝑒6
0 , 𝑒7

0 , 𝑒8
0 , 𝑒9

0 , 𝑒10
0 ) = ( 𝑒6

0 , 𝑒9
0 , 𝑒6

0 , 𝑒9
0 , 𝑒6

0 ) , 

𝑓 ∨ 𝑔(𝑒1
1 , 𝑒2

1 , 𝑒3
1 , … 𝑒18

1 )=(𝑒1
1 , 𝑒2

1 , 𝑒3
1 , 𝑒3

1 , 𝑒5
1 , 𝑒6

1 , 𝑒7
1 , 𝑒8

1, 𝑒12
1  ) 𝑓 ∨ 𝑔  𝑒𝑖

2  =  𝑒1
2 , 𝑖 = 1, . .8   is a cellular 

folding, see Fig.(11-b). 
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