Vol.4.Issue.4.2016 (October -December)

http://www.bomsr.com Email:editorbomsr@gmail.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

CELLULAR FOLDING OF SOME NEW CW-COMPLEXES

E. El-Kholy, A. El-Esawy & M. A. Kouka

Department of Mathematics, Faculty of Science, Tanta University,

Tanta, Egypt

ABSTRACT

In this paper we obtained the conditions satisfied by a cellular folding of a given *CW*-complex to be able to cellular fold some new *CW*-complexes generated by some known operations like quotient, suspension of a regular *CW*-complex, Cartesian product, join product, and wedge sum of two *CW*-complexes.

Keywords: Cellular folding, quotient, suspension, join product, and wedge sum

©KY PUBLICATIONS

1. INTRODUCTION

A cellular folding is a folding defined on regular *CW*-complexes first defined by, E. El-Kholy and H. Al-Khurasani, [1] and various properties of this type of folding are also studied by them.

Let K and L be complexes, a continuous map $f : K \to L$ is called cellular if $f(K^n) \subset L^n$

for n = 0, 1, 2, ..., n, where K^n and L^n denote the *n*-skeletons of *K* and *L* respectively.

Now, let K and L be regular CW-complexes of the same dimension n, a cellular map $f : K \to L$ is a cellular folding if and only if f satisfies the following:

(i) For each *i*-cells $e^i \in K$, $f(e^i)$ is an *i*-cell in *L*, i.e., *f* maps *i*-cells to *i*-cells;

(ii) If \overline{e} contains *n* vertices, then $\overline{f(e)}$ must contains *n* distinct vertices, [1]. The set of regular *CW*-complexes together with cellular folding form a category denoted by C(K, L). If $f \in C(K, L)$, then $x \in K$ is said to be a singularity of f iff f is not a local homeomorphism at x. The set of all singularities of f is denoted by $\sum f$. This set corresponds to the "folds" of the map. It is noticed that for a cellular folding f, the set $\sum f$ of singularities of f is a proper subset of the union of cells of dimension $\leq n-1$. Thus, when we consider any $f \in C(K, L)$, where K and L are connected regular *CW*-complexes of dimension 2, the set $\sum f$ will consist of 0-cells, and 1-cells, each of 0-cells (vertices) has

even valences [2]. Of course $\sum f$ need not be connected. Thus in this case $\sum f$ has the structure of a locally finite graph Γ_f embedded in *K*, for which every vertex has an even valency.

From now on by a complex we mean regular *CW*-complexes.

2. Cellular folding of the Cartesian product of complexes:

If X and Y are cell complexes, then $X \times Y$ has the structure of a cell complex with cell

products $e^{m}_{\alpha} \times e^{n}_{\beta}$ where e^{m}_{α} ranges over the cells of X and e^{n}_{β} ranges over the cells of Y [3].

2.1. Theorem

Let *K* and *X* be complexes of the same dimension *n*, *L* and *Y* be complexes of the same dimension m. Let $f: K \to X$ and $g: L \to Y$ be cellular maps. Then $f \times g \in C$ ($K \times L$, $X \times Y$) if and only if *f* and *g* are cellular foldings.

Proof:

If f and g are cellular foldings, then each will maps cells to cells of the same dimension hence do $f \times g$. Also \overline{e} and $\overline{f \times g(e)}$ contains the same number of vertices because each of fand g are cellular foldings.

Suppose now $f \times g$ is a cellular folding, then $f \times g$ maps p-cells to p-cells, i.e., if (e, e') is a p-cell in $K \times L$, then $(f \times g)(e, e') = (f (e), g (e'))$ is a p-cell in $X \times Y$. Let e be an *i*-cell in K and e' be a (p-i)-cell in L. The cellular map must maps *i*-cells to *j*-cells such that $j \leq i$. If j = i nothing to prove, so let i > j. In this case g will maps (p-i)-cells to (p-j)-cells and hence is not a cellular map. This is a contradiction and hence i = j is the only possibility. The second condition of cellular folding certainly satisfied in this case.

2.2. Example:

Suppose that K and L are complexes such that $|K| = S^1, |L| = I$ with cell decomposition shown in Fig. (1-a). Let $f : K \to K$ be a cellular folding defined by $f(e_3^0) = e_1^0$, $f(e_3^1, e_4^1) = (e_2^1, e_1^1)$, where the omitted cells through the paper are mapped into themselves. The image of f is a complex consisting of three vertices and two 1-cells. Let $g : L \to L$ be a cellular folding defined by $(e_5^0) = e_7^0$, $g(e_5^1) = e_6^1$. Then $f \times g : K \times L \to K \times L$ is a cellular folding. The cell decomposition of $K \times L$ and $(f \times g)(K \times L)$ are shown in Fig.(1-b).

3. Cellular folding of the quotient of a complex:

If (X, A) is a pair consisting of a cell complex X and a subcomplex A, then the quotient space X/A inherits a natural cell complex structure from X. The cells of X/A are the cells of X - A plus one new 0-cell, the image of A in X/A, [3].

3.1. Example:

If $X = D^2 = \{(x, y) \in E^2 : x^2 + y^2 \le 1\}$ is a disc with the cell structure consisting of two 0-cells, two 1-cells and one 2-cell, and let $A = S^1 = \partial D^2$. Then D^2/A is a sphere S^2 with one 2-cell and one 0-cell, see Fig. (2).

Fig. (2)

Generally, if we give S^{n-1} any cell structure and build D^n from S^{n-1} by attaching an n-cell, then the quotient D^n/S^{n-1} is S^n with its usual cell structure [3].

3.2. Theorem

Let X be a complex, $A \subset X$ a subcomplex, $f : X \to X$ a cellular map. Let $g : X / A \to X / A$ be defined by, for each *i*-cell e in X - A, g(e) = f(e), $g(e^0) = e^0$, where e^0 is the new 0-cell of X / A. Then g is a cellular folding if and only if both f and f | A is a cellular folding. In this case g(X / A) = f(X) / f(A).

Proof:

Let $f : X \to X$ be a cellular folding, e an *i*-cell in X / A such that \overline{e} has *n* distinct vertices g(e) = f(e) is an *i*-cell such that $\overline{g(e)} = \overline{f(e)}$ has *n* distinct vertices, $g(e^0) = e^0$. Thus $g: X / A \to X / A$ is a cellular folding.

Now suppose $g: X / A \to X / A$ is a cellular folding and $f: X \to X$ is a cellular map, if e is an *i*-cell in X - A, then f(e) = g(e) is an *i*-cell in X, but if e is an *i*-cell in A, then f(e) might be a *j*-cell in X, j < i while if $f | A : A \to A$ is a cellular folding, then for any *i*-cell in X, f(e) is an *i*-cell in X and consequently f is a cellular folding.

3.3. Example

Let $X = D^2$ be a disc with cellular subdivision consisting of two 0-cells, three 1-cells and two 2-cells, and I et $A = S^1 = \partial D^2$, $f : D^2 \to D^2$ be a cellular folding defined as follows : $f (e_1^0, e_2^0) = (e_1^0, e_2^0)$, $f (e_2^1) = (e_1^1)$, $f (e_2^2) = f (e_1^2)$.

The map f IA is the cellular folding shown in Fig.(3). Now $g: X / A \to X / A$ is a cellular folding defined by, $g(e^0) = e^0$, $g(e_3^1) = e_3^1$, $g(e_2^2) = e_1^2$, see Fig. (3).

Fig. (3)

3.4. Example

Let X be a complex, such that |X| = T is a torus, with cellular subdivision consisting of two 0-cells, four 1-cells, and two 2-cells, $A \subset X$ be the subcomplex shown in Fig. 4. Let $f: X \to X$ be a cellular folding defined as follows: $f(e_i^0) = e_i^0$, i = 1, 2; $f(e_1^1) = (e_2^1)$, $f(e_1^2) = (e_2^2)$. The map $f \mid A$ is the cellular folding shown in Fig. (3).

Now $g: X / A \to X / A$ is a cellular folding defined by, $g(e^0) = e^0$, $g(e_3^1) = e_3^1$, $g(e_1^2) = e_2^2$, see Fig.(4).

Fig.(4)

4. Cellular folding of the suspension

For a space X, the suspension S X is the quotient of $X \times I$ obtained by collapsing $X \times \{0\}$ to one point and $X \times \{1\}$ to another point. If X is a complex, so is S X as quotient of $X \times I$ with its product cell structure, I being given the standard cell structure of two 0-cells joined

by a 1-cell [3]. Thus we can define the suspension S X as the union of all line segments joining points of X to two external vertices called "suspension points".

Useful property of suspension is that not only spaces but also maps can be suspended, a map $f : X \to Y$ suspends to $Sf : SX \to SY$, the quotient map of $f \times I : X \times I \to Y \times I$, [3].

4.1. Example

Fig. (5)

Generally $S(S^n) = S^{n+1}$.

4.2. Theorem

Let X and Y be complexes of the same dimension n, let $f : X \to Y$ be a cellular map. Then $g = Sf : SX \to SY$ mapping suspension points (vertices) u, v into itself, and for each *i*-cell $(e, e') \in SX$, g(e, e') = (f(e), e'), where e' is a zero or a one-cell of *I*, is a cellular folding if and only if *f* is a cellular folding.

Proof:

If *f* is a cellular folding, then it will maps cells to cells of the same dimension, and hence does *g*. Also $\overline{(e, e')}$ and $\overline{g(e, e')} = \overline{(f(e), e')}$ contains the same number of vertices because *f* is a cellular folding.

Suppose now g is a cellular folding, then g maps *i*-cell to *i*-cell, i.e., if (e, e') is an *i*-cell in SX, then g(e, e') = (f(e), e') is an *i*-cell in SY. Let e be a *j*-cell in *X*, and e' be an (i - j)-cell in *I*. The cellular map must maps *j*-cells to *k*-cells such that $k \leq j$. If k = j nothing to prove, so let k < j. In this case g will maps (i - j)-cells to (i - k)-cells and hence is not a cellular map. This is a contradiction, and hence k = j is only possibility. The second condition of cellular folding certainly satisfied in this case.

4.3. Example:

Let $X = S^1$ be a complex with cellular subdivision shown in Fig.(6-a), and $f : X \to X$ be a cellular folding defined by: $f(e_3^0) = (e_1^0), f(e_2^1, e_3^1) = (e_1^1, e_4^1).$

Fig. (6) $g(u,v) = (u,v), g(e,e') = (f(e),e'), e \in X, e' \in I$ Then $g=Sf: SX \to SY$ is a cellular folding defined by $g(u,v)=(u,v), (e,\acute{e}) = (f(e),\acute{e}), e \in X, \acute{e} \in I$.

5. Cellular folding of the join of complexes

The join X * Y of the two spaces X and Y is the quotient space $X \times Y \times I$ under the identification $(x, y_1, 0) \sim (x, y_2, 0)$ and $(x_1, y, 0) \sim (x_2, y, 0)$. Thus we are collapsing the subcomplex $X \times Y \times \{0\}$ to X and $X \times Y \times \{1\}$ to Y, [3]. One can define this space as the space of all line segments joining points in X to points in Y.

Note that if X and Y are complexes, then there is a natural CW structure on X * Y having the subspaces X and Y as a subcomplexes, with the remaining cells being the produce cells of $X \times Y \times (0, 1)$.

5.1. Example

If X and Y are both closed intervals, then we are collapsing two opposite faces of a cube onto line segments so that the cube becomes a tetrahedron, see Fig.(7).

Fig. (7)

5.2. Theorem

Let X and Y be complexes of the same dimension n, let $f : X \to X$, $g : Y \to Y$ be cellular maps. Then $h = f * g : X * Y \to X * Y$ defined as the quotient map of $f \times g \times I : X \times Y \times I \to X \times Y \times I$ under the identifications $(x, y_1, 0) \sim (x, y_2, 0)$ and $(x_1, y, 0) \sim (x_2, y, 0)$ is a cellular folding if and only if f and g are both cellular foldings. **Proof**

Suppose that f and g are cellular foldings. Let e be an *i*-cell in X and σ be a *j*-cell in Y. Then (e, σ) is an (i + j + 1)-cell in X * Y. Now $(f * g)(e, \sigma) = (f (e), g (\sigma))$, but since each of f and g are cellular foldings, then f (e) is an *i*-cell in f (X) and $g (\sigma)$ is a *j*-cell in g (Y). Thus $(f * g)(e, \sigma)$ is an (i + j + 1)-cell in f (X) * g (Y), i.e., f * g sends cells to cells of the same dimension. Also $\overline{(e, \sigma)}$ and $\overline{f * g (e, \sigma)}$ contains the same number of vertices because each of f and g is a cellular folding.

To prove the converse, suppose f * g is a cellular folding, then f * g maps cells of X * Y to cells of the same dimension, so if (e, σ) is a *p*-cell in X * Y, then $(f * g)(e, \sigma) = (f (e), g (\sigma))$ is a *p*-cell in f (X) * g (Y). Now let e be an *i*-cell in *X*, then σ is a (p-i-1)-cell in *Y*. But any cellular map maps *i*-cells to *j*-cells where $j \le i$. If i = j, then nothing to prove, so let i > j. In this case g will maps a (p-i-1)-cell to (p-i-1)-cell and hence it is not a cellular folding, which is a contradiction and hence i = j is the only possibility. The second condition of cellular folding is certainly satisfied in this case , then f, g are cellular foldings. **5.3. Example**

Let X and Y be complexes such that |X| = |Y| = I with cellular divisions shown in Fig. (8), and $f : X \to X$, $g : Y \to Y$ be cellular foldings defined as follows: $f(e_1^0) = e_3^0$, $f(e_1^1) = e_2^1$ and $g(e_4^0) = e_6^0$, $g(e_3^1) = e_4^1$

Fig. (8)

Then the map $f * g : X * Y \rightarrow X * Y$ is a cellular folding, see Fig.(8-b).

6. Cellular folding of the wedge sum of two complexes

Given two complexes X and Y with chosen zero cells $u \in X$ and $v \in Y$, then the wedge sum $X \lor Y$ is the quotient of the disjoint union $X \bigcup Y$ obtained by identifying u and v to a single 0-cell, [3].We will call this 0-cell, the identifying 0-cell.

Note that for any cell complex X, the quotient X^{n}/X^{n-1} is a wedge sum of *n*-spheres $V_{\alpha}S_{\alpha}^{n}$, with one sphere for each n-cell of X.

6.1. Example

Let X, Y be two complexes such that $|X| = |Y| = S^1$. Then $X \lor Y = S^1 \lor S^1$ is the figure eight (8), see Fig. (9).

Fig. (9)

More generally one could form the wedge sum $V_{\alpha} X_{\alpha}$ of an arbitrary collection of spaces X_{α} by starting with the disjoint $\bigcup_{\alpha} X_{\alpha}$ and identifying points $x_{\alpha} \in X_{\alpha}$ to a single point. In case the spaces X_{α} are cell complexes and the points x_{α} are 0-cells, then $V_{\alpha} X_{\alpha}$ is a cell complex since it is obtained from the cell complex $\bigcup_{\alpha} X_{\alpha}$ by collapsing a subcomplex to a point.

6.2. Theorem

Let X and Y be complexes of the same dimension n, let $f : X \to X$ and $g : Y \to Y$ be cellular maps. Let $h = f \lor g : X \lor Y \to X \lor Y$ be defined as follows: for each *i*-cell *e*,

$$h(e) = \begin{cases} f(e), e \in X \\ g(e), e \in Y \end{cases},$$

$$f(e^{0}) = g(e^{0}) = e^{0}, e^{0} \text{ is the identifying 0-cell. Then } h \text{ is a cellular folding if and only if}$$

f and g are cellular foldings.

Proof

Suppose f and g are cellular foldings. Let e be an *i*-cell of $X \lor Y$ such that \overline{e} has r distinct vertices, then we have:

- (i) If $e \in X$, then h(e) = f(e) is an *i*-cell in *Y*, $\overline{f(e)}$ has *r* distinct vertices, since *f* is a cellular folding.
- (ii) If $e \in X$, then h(e) = g(e) is an *i*-cell in X, $\overline{g(e)}$ has *r* distinct vertices, since *g* is a cellular folding. Thus $h = f \lor g$ is a cellular folding.

Conversely, let $h = f \lor g$ be a cellular folding, then $f \lor g$ maps *p*-cells to *p*-cells. Let *e* be an *i*-cell in *X* and *f* a cellular map, then it will maps *i*-cells to *j*-cells such that, $j \le i$. If j = i nothing to prove, so let j < i. In this case $h = f \lor g$ will maps *i*-cells to *j*-cells and hence it is not a cellular folding. Which is a contradiction and hence j = i is the only possibility. The second condition of cellular foldings is certainly satisfied in this case, then *f*, *g* are cellular foldings.

6.3. Examples

(1) Let X and Y be two complexes such that $|X| = |Y| = S^1$, and $f : X \to X$, $g : Y \to Y$ be cellular foldings defined as follows:

 $f(e_i^0) = (e_i^0), i = 1, 2; f(e_2^1) = (e_1^1), g(e_5^0, e_6^0) = (e_3^0, e_4^0), g(e_i^1) = e_3^1, i = 3, 4, 5.$ See Fig. (10)

Then the map $f \lor g : X \lor Y \to X \lor Y$ is defined by:

 $(f \lor g)(e_5^0, e_6^0) = (e_3^0, e_4^0), (f \lor g)(e_2^1, e_4^1, e_5^1, e_6^1) = (e_1^1, e_3^1, e_3^1, e_3^1)$ is a cellular folding, see Fig. (10)

(2) Let X and Y be two complexes such that $|X| = T^2$, $|Y| = S^2$ with the cellular subdivision shown in Fig. (11-a). Let $f : X \to X$, $g : Y \to Y$ be cellular foldings defined as follows: $f(e_1^0, e_2^0, e_3^0, e_4^0) = (e_1^0, e_2^0, e_3^0, e_4^0), f(e_1^1, e_2^1, e_3^1, e_4^1, e_5^1, e_6^1) = (e_1^1, e_2^1, e_3^1, e_3^1, e_5^1, e_6^1)$ $g(e_5^0, e_6^0, e_7^0, e_8^0, e_9^0, e_{10}^0) = g(e_5^0, e_6^0, e_5^0, e_9^0, e_9^0), g(e_7^1, e_8^1, e_9^1, \dots e_{18}^1) = (e_7^1, e_8^1, e_{12}^1)$

(a)

(b) Fig. (11)

Then the map $f \lor g : : X \lor Y \to X \lor Y$ defined by $f \lor g (e_1^0, e_2^0, e_3^0) = (e_1^0, e_2^0, e_3^0), e_4^0 = e_5^0$ $f \lor g(e_6^0, e_7^0, e_8^0, e_9^0, e_{10}^0) = (e_6^0, e_9^0, e_6^0, e_9^0, e_6^0),$ $f \lor g(e_1^1, e_2^1, e_3^1, \dots, e_{18}^1) = (e_1^1, e_2^1, e_3^1, e_5^1, e_6^1, e_7^1, e_8^1, e_{12}^1) f \lor g(e_i^2) = e_1^2, i = 1, ..8$ is a cellular folding, see Fig.(11-b).

References

- [1]. E. El-Kholy, A. El-Esawy.Operation on graphs and graph foldings. Bull.Math.&Stat.Res Vol.3.Issue.4.2015,190-201.
- [2]. El-kholy E, El-Esawy A. Graph folding of some special graphs. J Math Stat 2005;1(1):66–70.
- [3]. H. R. Farran, E. El-Kholy & S. A. Robertson, Folding a surface to a polygon, Geometric Dedicatiae, 63, (1996), 255-266.
- [4]. H. R. Farran, E. El-Kholy & S. A. Robertson, Folding of star manifolds, Proc. Roy. Soc. Edinburgh Sect. A 123, No. 6, (1993), 1011-1016.
- [5]. El-Kholy, E. M. and Al-Kurasani, H. A., Folding of *CW*-complexes, J. Inst. Math & Comp. Sci. (Math. Ser.), India Vol. 4 No. 1, pp. 41-48, (1991).
- [6]. H. R. Farran & S. A. Robertson. Isometric foldings of discs and spheres. Bull. Acad. Roy. Belgique (1) 73 (1987), 360- 366.
- [7]. S. A. Robertson & E. El-Kholy, Topological folding, Commun. Fac. Univ. Ank. Ser. Vol. 35, No. 1, (1986)