#### Vol.4.Issue.4.2016 (October -December)



http://www.bomsr.com Email:editorbomsr@gmail.com

**RESEARCH ARTICLE** 

# BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal



## WEAK CONTRACTION IN CONE METRIC SPACES

GANESH KUMAR SONI, ANIMESH GUPTA

Department of Mathematics Swami Vivekanand Govt. P.G. College, Narsinghpur (M.P.) soni.ganesh159@gmail.com, dranimeshgupta10@gmail.com



### ABSTRACT

The purpose of this article is to introduced the concept of weak contraction in cone metric space and also establish a coincidence and common fixed point result for weak contractions in cone metric spaces. Our result proper generalizes previous known results in this direction.

Keywords :- Cone metric spaces, weak contraction, weak contraction, coincidence point, common fixed point.

2000 AMS Subject Classification :- 47H10, 47H09.

## **©KY PUBLICATIONS**

#### INTRODUCTION

It is quite natural to consider generalization of the notion of metric  $d : X \times X \rightarrow [0, \infty)$ . The question was, what must  $[0, \infty)$  be raplace by E. In 1980 Bogdan Rzepecki [6]in 1987 Shy- Der Lin [5]and in 2007 Huang and Zhang [4] gave the same answer; Replace the real numbers with a Banach ordered by a cone, resulting in the so called cone metric.

Cone metric space are generalizations of metric space, in which each pair of points of domain is assigned to a member of real Banach space with a cone. This cone naturally induces a partial order in a Banach space.

Recently , Choudhary and Metiya [3] established a fixed point result for a weak contractions in cone metric spaces. Sintunavarat and Kumam [7] give the notion of f- contractions and establish a coincidence and common fixed point result for f –weak contraction in cone metric space.

In this paper, we introduce the notion of (C - f) – weak contraction condition on cone metric space and prove common fixed point theorem for (C - f) – weak contraction mapping. Our results are proper generalizations of [7].

In next section we give some previous and known results which are used to prove of our main theorem.

2.1

## Priliminaries

In 1972, the concept of C – contraction was introduced by Chatterjea [1] as follows,

**Definition1:-** Let (X, d) be a metric space. A mapping  $T : X \to X$  is called a Chatterjea type contraction if there exists  $k \in \left(0, \frac{1}{2}\right)$  such that for all  $x, y \in X$  the following inequality holds:

$$d(Tx, Ty) \le k [max{d(x, y), d(x, Ty), d(y, Tx)}]$$

Later, Chouddhury [2] introduced the generalization of Chatterjea type construction as follows, **Definition 2:-** A self mapping  $T : X \rightarrow X$  is said to be weak C- contraction if for all  $x, y \in X$ ,

$$d(Tx, Ty) \le \frac{1}{2} [d(x, Ty) + d(y, Tx)] - \psi (d(x, Ty), d(y, Tx))$$
2.2

where  $\psi: [0,\infty)^2 \to [0,\infty)$  is a continuous mapping such that  $\psi(x,y) = 0$  if and only if x = y = 0.

Now we introduced the following definition of (C - f) – weak contraction which is proper generalization of Definition 2

**Definition 3:-** Let (X,d) be a metric space and  $f: X \to X$ . A mapping  $T: X \to X$  is said to be (C - f) – weak contraction if

$$d(Tx, Ty) \le \frac{1}{2} [d(fx, Ty) + d(fy, Tx)] - \psi (d(fx, Ty), d(fy, Tx))$$
2.3

for  $x, y \in X$  where  $\psi : [0, \infty)^2 \to [0, \infty)$  is a continuous mapping such that  $\psi (x, y) = 0$  if and only if x = y = 0.

**Remark 4:-** If we take  $\psi(x, y) = k(x + y)$  where  $0 < k < \frac{1}{2}$  then 2.2 reduces to 2.1, that is weak C – contraction are generalization of C- contraction.

**Remark 5:-** If we take f = I (identity mapping) then 2.3 reduced to 2.2, that is C - f) – weak contraction are generalization of weak C- contraction.

**Remark 6:-** If we take f = I (identity mapping) and  $\psi(x, y) = k(x + y)$  where  $0 < k < \frac{1}{2}$  then 2.3 reduced to 2.1, that is (C - f) – weak contraction are generalization of C- contraction.

Definition 7:- Let E be a real Banach space and P a subset of E. P is called a cone if and only if

i. P is closed non empty and  $P \neq \{0\}$ ,

- ii.  $a, b \in R, a, b \ge 0, x, y \in P \rightarrow ax + by \in P$ ,
- iii.  $x \in P \text{ and } -x \in P \rightarrow x = 0.$

Given a cone  $P \subset E$ , define a partial ordering  $\leq$  with respect to P by  $x \leq y$  if and only if  $y - x \in P$ . We shall write  $x \leq y$  to indicate that  $x \leq y$ , but  $x \neq y$ , while  $x \ll y$  will stand for  $y - x \in I$  int P, with int P denoting the interior of P.

The cone P is called normal if there is a number k > 0 such that for all  $x, y \in E$ ,

$$0 \le \mathbf{x} \le \mathbf{y} \to \| \mathbf{x} \| \le \mathbf{K} \| \mathbf{y} \|.$$

The least positive number satisfying the above inequality is called the normal constant of P. The cone P is called regular if every increasing sequence bounded form above is convergent. That is, if  $\{x_n\}$  is a sequence such that

 $x_1 \, \leq \, x_2 \, \leq \ldots \ldots \leq \, x_n \, \leq \ldots \ldots \leq \, y$ 

for some  $y \in E$ , then there is  $x \in E$  such that  $||x_n - x|| \to 0$  as  $n \to \infty$ . Equivalently, the cone P is regular if and only if every decreasing sequence bounded from below is convergent. It is well known that a regular cone is a normal cone.

In the following we always suppose E is a Banach space, P is a cone in E with  $intP \neq \phi$  and  $\leq$  is a partial ordering with respect to P.

**Definition 8:-** Let X be a non empty set. Suppose that the mapping d:  $X \times X \rightarrow E$  satisfies

i.  $0 \le d(x, y)$ , for all  $x, y \in X$ , and d(x, y) = 0 if and only if x = y,

ii. d(x, y) = d(y, x), for all  $x, y \in X$ ,

iii.  $d(x,y) \le d(x,z) + d(z,y)$ , for all  $x, y, z \in X$ .

Then, d is called a cone metric on X, and (X, d) is called a cone metric space.

**Definition 9 :-** Let (X,d) be a cone metric space. Let  $\{x_n\}$  be a sequence in X and  $x \in X$ . If for every  $c \in E$  with  $0 \ll c$  there exists n > N,  $d(x_n, x) \ll c$ , then  $\{x_n\}$  is said to be convergent and  $\{x_n\}$  converges to x, and x is the limit of  $\{x_n\}$ . We denote this by  $\lim_{n \to \infty} x_n = x$  or  $x_n \to x$ , as  $n \to \infty$ .

**Definition 10:-** Let (X, d) be a cone metric space and  $\{x_n\}$  be a sequence in X. If for any  $c \in E$  with  $0 \ll c$ , there exists m, n > N such that  $d(x_n, x_m) \ll c$ , then  $\{x_n\}$  is called a Cauchy sequence in X.

**Definition 11:-** Let (X, d) be a cone metric space and  $\{x_n\}$  be a sequence in X. If every Cauchy sequence is convergent in X, then X called a complete cone metric space.

**Lemma 12:-** Let (X, d) be a cone metric space, P be a normal cone with normal constant K. Let  $\{x_n\}$  be a sequence in X. Then  $\{x_n\}$  converges to x if and only if  $d(x_n, x) \rightarrow 0$ , as  $n \rightarrow \infty$ .

**Lemma 13:-** Let (X, d) be a cone metric space, P be a normal cone with normal constant K. Let  $\{x_n\}$  be a sequence in X. If  $\{x_n\}$  converges to x and  $\{x_n\}$  converges to y, then x = y, that is the limit of  $\{x_n\}$  is unique.

**Lemma 14:-** Let (X, d) be a cone metric space and  $\{x_n\}$  be a sequence in X. If  $\{x_n\}$  converges to x, then  $\{x_n\}$  is Cauchy sequence.

**Lemma 15:** Let (X, d) be a cone metric space, P be a normal cone with normal constant K. Let  $\{x_n\}$  be a sequence in X. Then  $\{x_n\}$  is a Cauchy sequence if and only if  $d(x_n, x_m) \rightarrow 0$ , as  $m, n \rightarrow \infty$ . **Lemma 16:** Let (X, d) be a cone metric space, P be a normal cone with normal constant K. Let  $\{x_n\}$  and  $\{y_n\}$  be two sequences in X and  $x_n \rightarrow x, y_n \rightarrow y$ , as  $n \rightarrow \infty$ . Then,  $d(x_n, y_n) \rightarrow d(x, y)$  as

$$n \rightarrow \infty$$

ii.

Lemma 17:- If P is a normal cone in E, then

i. if  $0 \le x \le y$  and  $a \ge 0$ , where a is real number, then  $0 \le ax \le ay$ ,

 $\text{if } 0 \ \le \ x_n \ \le \ y_n, \text{ for } n \ \in \ N \text{ and } x_n \ \rightarrow \ x, y_n \ \rightarrow \ y, \text{ then } 0 \ \le \ x \ \le \ y.$ 

**Lemma 18:-** Let E is a real Banach space with cone P in E, then for a, b,  $c \in E$ ,

- i. if  $a \le b$  and  $b \ll c$ , then  $a \ll c$ ,
- ii. if  $a \ll b$  and  $b \ll c$ , then  $a \ll c$ .

**Definition 19:-** Let  $(Y, \leq)$  be a partially ordered set. Then, a function  $F: Y \rightarrow Y$  is said to be monotone increasing if it preserves ordering.

**Definition 20:-** Let f and T be self mappings of a nonempty set X. If w = fx = Tx for some  $x \in X$ , then x is called a coincidence point of f and T, and w is called a point of coincidence of f and T. If w = x, then x is called a common fixed point of f and T.

In [7], Sintunavarat and Kumam prove following,

**Theorem 21:-** Let (X, d) be a cone metric space with a regular cone P such that  $d(x, y) \in int P$  for  $x, y \in X$  with  $x \neq y$ . Let  $f: X \to X$  and  $T: X \to X$  be mappings satisfying the inequality

$$d(Tx, Ty) \le \frac{1}{2} [d(fx, fy)] - \psi (d(fx, fy))$$
2.4

for x, y  $\in$  X, where  $\psi$  : int P  $\cup$  { 0 }  $\rightarrow$  int P  $\cup$  { 0 } is continuous mapping such that

i.  $\psi(t) = 0$  if and only if t = 0,

ii.  $\psi(t) \ll t \text{ for } t \in int P$ ,

iii. either  $\psi(t) \le d(fx, fy)$  or  $\psi(t) \ge d(fx, fy)$  for  $t \in int P \cup \{0\}$ .

If  $T(X) \subseteq f(X)$  and f(X) is a complete subspace of X, then f and T have a unique point of coincidence in X. Moreover, f and T have a common fixed point in X if ffz = fz for the coincidence point z. **Main Results**  **Theorem22:** Let (X, d) be a cone metric space with a regular cone P such that  $d(x, y) \in int P$  for  $x, y \in X$  with  $x \neq y$ . Let  $f \colon X \to X$  and  $T \colon X \to X$  be mappings satisfying the inequality

$$d(Tx, Ty) \le \frac{1}{2} [d(fx, Ty) + d(fy, Tx)] - \psi (d(fx, Ty), d(fy, Tx))$$
3.1

for x,  $y \in X$ , where  $\psi$ :  $(int P \cup \{0\})^2 \rightarrow int P \cup \{0\}$  is continuous mapping such that i.  $\psi(t_1, t_2) = 0$  if and only if  $t_1 = t_2 = 0$ ,

ii.  $\psi(t_1, t_2) \ll \min\{t_1, t_2\} \text{ for } t_1, t_2 \in \text{ int } P$ ,

iii. either  $\psi(t_1, t_2) \leq d(fx, fy)$  or  $\psi(t_1, t_2) \geq d(fx, fy)$  for  $t_1, t_2 \in int P \cup \{0\}$ .

If  $T(X) \subseteq f(X)$  and f(X) is a complete subspace of X, then f and T have a unique point of coincidence in X. Moreover, f and T have a common fixed point in X if ffz = fz for the coincidence point z. **Proof:-** Let  $x_0 \in X$ . Since  $T(X) \subseteq f(X)$ , we construct the sequence  $\{fx_n\}$  where  $fx_n = Tx_{n-1}$ ,

 $n \ge 1$ . If  $fx_{n+1} = fx_n$ , for some n, then trivially f and T have coincidence point in X. If  $fx_{n+1} \ne fx_n$ , for  $n \in N$  then, from (3.1)we have

$$d(fx_n, fx_{n+1}) = d(Tx_{n-1}, Tx_n)$$

r

 $\leq \frac{1}{2} [d(fx_{n-1}, Tx_n) + d(fx_n, Tx_{n-1})] - \psi (d(fx_{n-1}, Tx_n), d(fx_n, Tx_{n-1}))$ By the property of  $\psi$ , that is  $\psi (t_1, t_2) \geq 0$  for all  $t_1, t_2 \in int P \cup \{0\}$ , we have  $d(fx_n, fx_{n+1}) \leq d(fx_{n-1}, fx_n)$ . Its follows that the sequence  $\{ d(fx_n, fx_{n+1}) \}$  is monotonically decreasing. Since cone P is regular

and  $0 \le d(fx_n, fx_{n+1})$ , for all  $n \in \mathbb{N}$ , there exists  $r \ge 0$  such that

 $d(fx_n, fx_{n+1}) \rightarrow r \text{ as } n \rightarrow \infty.$ 

Since  $\psi$  is continuous and

$$d(fx_{n}, fx_{n+1}) \leq \frac{1}{2} [d(fx_{n-1}, Tx_{n}) + d(fx_{n}, Tx_{n-1})] - \psi (d(fx_{n-1}, Tx_{n}), d(fx_{n}, Tx_{n-1}))$$
  
og n  $\rightarrow \infty$ , we get

by taking  $n \rightarrow \infty$ , we get

$$\leq r - \psi(r, r)$$

which is contradiction, unless r = 0. Therefore,  $d(fx_n, fx_{n+1}) \rightarrow r$  as  $n \rightarrow \infty$ . Let  $c \in E$  with  $0 \ll c$  be arbitrary. Since  $d(fx_n, fx_{n+1}) \rightarrow r$  as  $n \rightarrow \infty$ , there exists  $m \in N$  such that

$$d(fx_m, fx_(m+1)) \ll \psi\left(\psi\left(\frac{c}{2}, \frac{c}{2}\right), \psi\left(\frac{c}{2}, \frac{c}{2}\right)\right).$$

Let  $B(fx_m, c) = \{ fx \in X: d(fx_m, fx) \ll c \}$ . Clearly,  $x_m \in B(fx_m, c)$ . Therefore,  $B(fx_m, c)$  is nonempty. Now we will show that  $Tx \in B(fx_m, c)$ , for  $fx \in B(fx_m, c)$ .

Let  $x \in B(fx_m, c)$ . By property (3) of  $\psi$ , we have the following two possible cases.

 $d(fx_{m+1}, fx_m)$ 

$$\leq \Psi\left(\frac{c}{2}, \frac{c}{2}\right) + \Psi\left(\Psi\left(\frac{c}{2}, \frac{c}{2}\right), \Psi\left(\frac{c}{2}, \frac{c}{2}\right)\right) \\ \ll \frac{c}{2} + \frac{c}{2} \ll c.$$

**Case (ii):**  $d(Tx, fx_m) \leq d(Tx, Tx_m) + d(Tx_m, fx_m)$ 

 $d(Tx_m, fx_m)$ 

$$\leq \frac{1}{2} [d(fx, Tx_m) + d(fx_m, Tx)] - \psi(d(fx, Tx_m), d(fx_m, Tx)) +$$

$$\leq \frac{1}{2} [d(fx, fx_{m-1}) + d(fx_m, Tx)] - \psi(d(fx, fx_{m-1}), d(fx_m, Tx)) + d(fx_{m+1}, fx_m)$$

$$\leq \frac{1}{2} [d(fx, fx_{m-1}) + d(fx_m, Tx)] - \psi\left(\psi\left(\frac{c}{2}, \frac{c}{2}\right), \psi\left(\frac{c}{2}, \frac{c}{2}\right)\right) + \psi\left(\psi\left(\frac{c}{2}, \frac{c}{2}\right), \psi\left(\frac{c}{2}, \frac{c}{2}\right)\right)$$

« с.

Therefore, T is a self mapping of  $B(fx_m, c)$ . Since  $fx_m \in B(fx_m, c)$  and  $fx_n = Tx_{n-1}$ ,  $n \ge 1$ , it follows that  $x_m \in B(fx_m, c)$ , for all  $n \ge m$ . Again, c is arbitrary. This establishes that  $\{fx_n\}$  is a Cauchy sequence in f(X). It follows from completeness of f(X) that  $fx_n \to fx$ , for some  $x \in X$ . Now, we observe that

$$\begin{array}{lll} d(fx_m,Tx) &=& d(Tx_{n-1},Tx) \\ &\leq& \frac{1}{2}[d(fx_{n-1},fx)+\,d(fx,fx_{n-1})]\,-\,\psi\left(d(fx_{n-1},fx),d(fx,fx_{n-1})\right)\!. \end{array}$$

By making  $n \to \infty$ , we have  $d(fx, Tx) \le 0$ . Therefore, d(fx, Tx) = 0, that is, fx = Tx. Hence, x is a coincidence point of f and T.

For uniqueness of the coincidence point of f and T, let, if possible,  $y \in X (x \neq y)$  be another coincidence point of f and T.

We note that

$$\begin{aligned} d(fx, fy) &= d(Tx, Ty) \\ &\leq \frac{1}{2} [d(fx, Ty) + d(fy, Tx)] - \psi (d(fx, Ty), d(fy, Tx)) \\ &\leq \frac{1}{2} [d(fx, fy) + d(fy, fx)] - \psi (d(fx, fy), d(fy, fx)). \end{aligned}$$

Hence  $\psi(d(fx, fy), d(fy, fx)) \leq 0$ , which contradiction, by the property of  $\psi$ . Therefore, f and T have a common unique point of coincidence of X.

Let z be a coincidence point of f and T. It follows from ffx = fz and z being a coincidence point of f and T that ffz = fz = Tz.

From 3.1, we get

$$d(Tfz, Tz) \leq \frac{1}{2} [d(fz, Tz) + d(fz, Tfz)] - \psi (d(fz, Tz), d(fz, Tfz))$$
  
$$\leq d(fz, Tfz).$$

Which contradiction. Therefore Tfz = fz, that is ffz = fz = Tz. Hence fz is a common fixed point of f and T. The uniqueness of the common fixed point is easy to establish from 3.1. This complete the proof.

It is easy to see that if f = I (identity mapping ) in Theorem 22 then we get following Corollary. **Corollary 23:-** Let (X, d) be a cone metric space with a regular cone P such that  $d(x, y) \in int P$  for  $x, y \in X$  with  $x \neq y$ . Let  $T : X \rightarrow X$  be a mapping satisfying the inequality

$$d(Tx, Ty) \le \frac{1}{2} [d(x, Ty) + d(y, Tx)] - \psi (d(x, Ty), d(y, Tx))$$
3.2

for x, y  $\in$  X, where  $\psi$  :  $(int P \cup \{0\})^2 \rightarrow int P \cup \{0\}$  is continuous mapping such that

i. 
$$\psi(t_1, t_2) = 0$$
 if and only if  $t_1 = t_2 = 0$ 

ii. 
$$\psi(t_1, t_2) \ll \min\{t_1, t_2\} \text{ for } t_1, t_2 \in \text{ int } P$$
,

iii. either 
$$\psi(t_1, t_2) \leq d(fx, fy)$$
 or  $\psi(t_1, t_2) \geq d(fx, fy)$  for  $t_1, t_2 \in int P \cup \{0\}$ .

If  $T(X) \subseteq f(X)$  and f(X) is a complete subspace of X, then T has a unique point in X.

If we take  $\psi(t_1, t_2) = k(t_1 + t_2)$  for  $0 < k < \frac{1}{2}$  in Corollary 23 then we get following result.

**Corollary24:-** Let (X, d) be a cone metric space with a regular cone P such that  $d(x, y) \in int P$  for  $x, y \in X$  with  $x \neq y$ . Let  $T \colon X \to X$  be a mapping satisfying the inequality

$$d(Tx, Ty) \le \frac{1}{2}[d(x, Ty) + d(y, Tx)]$$
 3.3

for x,  $y \in X$ . If  $T(X) \subseteq f(X)$  and f(X) is a complete subspace of X, then T has a unique point in X.

If we take  $\psi(t_1, t_2) = (\alpha - k)(t_1 + t_2)$  for  $\alpha \in [\frac{1}{4}, \frac{1}{2})$ ,  $0 < k < \frac{1}{2}$  in Theorem 22 then we get following result.

**Corollary 25:-** Let (X, d) be a cone metric space with a regular cone P such that  $d(x, y) \in int P$  for  $x, y \in X$  with  $x \neq y$ . Let  $f: X \to X$  and  $T: X \to X$  be a mapping satisfying the inequality

$$d(Tx,Ty) \le k[d(fx,Ty) + d(fy,Tx)]$$
3.4

for  $x, y \in X$ . If  $T(X) \subseteq f(X)$  and f(X) is a complete subspace of X, then f and T have a unique point of coincidence in X. Moreover, f and T have a common fixed point in X if ffz = fz for the coincidence point z.

**Example 26:** Let  $X = [0,1], E = R \times R$ , with usual norm, be a real Banach space,  $P = \{ (x, y) \in E : x, y \ge 0 \}$  be a regular cone and the partial ordering  $\leq$  with respect to the cone P be the usual partial ordering in E. Define  $d : X \times X \rightarrow E$  as :

$$d(x, y) = (|x - y|, |x - y|), \text{ for } x, y \in X.$$

Then (X, d) is a complete cone metric space with  $d(x, y) \in int P$ , for  $x, y \in X$  with  $x \neq y$ . Let us define  $\psi$ :  $(int P \cup \{0\})^2 \rightarrow int P \cup \{0\}$  such that  $\psi(t_1, t_2) = \frac{t_1 + t_2}{3}$  for all  $t_1, t_2 \in int P \cup \{0\}$ , fx = 2x and Tx =  $\frac{x}{7}$  for x  $\in$  X then, Theorem 22 is true and  $0 \in X$  is the unique common fixed point of f and T.

**Corollary 27:-** Let (X, d) be a cone metric space with a regular cone P such that  $d(x, y) \in int P$  for  $x, y \in X$  with  $x \neq y$ . Let  $f: X \to X$  and  $T: X \to X$  be mappings satisfying the inequality

$$\int_{0}^{d(Tx,Ty)} \rho(s) ds \le \beta \in \int_{0}^{d(fx,Ty)+d(fy,Tx)} \rho(s) ds$$
 3.5

for  $x, y \in X, \beta \in \left[\frac{0,1}{2}\right)$  and  $\rho : [0, \infty) \to [0, \infty)$  is a Lebesgue integrable mapping satisfying  $\in t_0^{\epsilon} \rho(s)$  ds for  $\epsilon > 0$ . If  $T(X) \subseteq f(X)$  and f(X) is a complete subspace of X, then f and T have a unique point of coincidence in X. Moreover, f and T have a common fixed point in X if ffz = fz for the coincidence point z.

**Corollary 28 :-** Let (X, d) be a cone metric space with a regular cone P such that  $d(x, y) \in int P$  for  $x, y \in X$  with  $x \neq y$ . Let  $T : X \to X$  be mapping satisfying the inequality

$$\int_{0}^{d(\mathrm{Tx},\mathrm{Ty})} \rho(s) \mathrm{d}s \leq \beta \int_{0}^{d(x,\mathrm{Ty}) + d(y,\mathrm{Tx})} \rho(s) \mathrm{d}s \qquad 3.6$$

for  $x, y \in X, \beta \in \left[\frac{0,1}{2}\right)$  and  $\rho : [0,\infty) \to [0,\infty)$  is a Lebesgue integrable mapping satisfying  $\int_{0}^{\epsilon} \rho(s) ds$  for  $\epsilon > 0$ . Then T has a fixed point in X.

#### References

- [1]. S. K. Chatterjea, "Fixed-point theorems," Comptes Rendus de l'Acad´emie Bulgare des Sciences, vol. 25,1972, pp. 727-730.
- [2]. B. S. Choudhury, "Unique fixed point theorem for weak C-contractive mappings," Kathmandu University Journal of Science, Engineering and Technology, vol. 5 (1),2009, pp. 6 - 13.
- [3]. B. S. Choudhury and N. Metiya, Fixed points of weak contractions in cone metric spaces, Nonlinear Analysis 72 (2010), no. 3-4, 1589-1593.
- [4]. L.G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, Journal of Mathematical Analysis and Applications, vol. 332, no. 2, pp. 1468-1476, 2007.

- [5]. S.D. Lin, A common fixed point theorem in abstract spaces, Indian Journal of Pure and Applied Mathematics, vol. 18, no. 8, pp. 685-690, 1987.
- [6]. B. Rzepecki, "On fixed point theorems of Maia type," Publications de l?Institut Math'ematique, vol. 28 (42), pp. 179-186, 1980.
- [7]. W. Sintunavarat and P. Kumam, "Common fixed points of f-weak contractions in cone metric spaces," Bull. of Iran. Math. Soc. vol. 38 No. 2 2012, pp 293-303.