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ABSTRACT 

In this contribution, we investigate some relations between Total Dominating 

Color Transversal number, Chromatic number and Total Domination number 

of a  graph. To be precise, we determine the conditions under which       of 

a graph becomes equal or unequal to    or                (Where      ,     

and    are, respectively, the Total Domination Color Transversal number, 

Total Dominating number and Chromatic number of  the graph). We show 

that when     <     or     <    does not imply        =   or      We also give 

different examples  to justify our theorems and statements. Also we 

determine the upper bound of       in terms of   and    and prove related 

results. Additionally, we determine an upper bound of          for perfect 

graphs.  

Keywords: Total Dominating Color Transversal number,   – Partition of a 
graph and Transversal. 
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1. INTRODUCTION 
In [1], Manoharan introduced the concept of Dominating Color Transversal Set of a graph. 

We know that proper coloring of vertices of graph G partitions the vertex set V of G into equivalence 

classes (also called the color classes of G). Using minimum number of colors to properly color all the 

vertices of G yields   equivalence classes. Transversal of a   - Partition of G is a collection  of vertices 

of G that meets all the color classes of the   – Partition. That is, if T is a subset of V ( the vertex set of 

G and {V1, V2, ....,   } is a     - Partition of G then T is called a Transversal of this    - Partition if T   Vi 

   ,   i   {1, 2,....,   }. Dominating Color Transversal Set of graph G is a  Dominating Set with the 
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extra property that it is also Transversal of some such   - Partition of G. Dominating Color 

Transversal Set of G with minimum cardinality is called Minimum Dominating Color Transversal Set 

of G and its cardinality, denoted by     (G) or just by     , is called the  Dominating Color Transversal 

number of G. In [1], Manoharan proved several results regarding this number. Motivated by this 

concept, in [2], we analogously defined the concept of Totalal Dominating Color Transversal Set and 

Total Dominating Color Transversal number of a graph and  proved several results regarding this 

number.  

From the definition it is clear that Total Dominating Color Transversal number must have some 

relations with Total Domination number and Chromatic number of the graph. We investigate the 

same in this contribution. 

Throughtout this paper we assume that graphs are simple, finite, connected and undirected without 

isolated vertices. 

First let us go through some definitions. 

2. Definitions 

Definition 2.1[4]: (Total Dominating Set) Let G = (V, E) be a graph. Then a subset S of V (the vertex 
set of G) is said to be a Total Dominating Set of G if for each v   V, v is adjacent to some vertex in S. 
Definition 2.2[4]: (Minimum Total Dominating Set/Total Domination number) Let G = (V, E) be a 
graph. Then a Total Dominating Set S is said to be a minimum Total Dominating Set of G if | | = 
minimum {| |: D is a Total Dominating Set of G}. Here S is called    set and its cardinality, denoted 
by   (G) or just by   , is called the Total Domination number of G.  
Definition 2.3[2]: (  -partition of a graph) Proper coloring of vertices of a graph G, by using 
minimum number of colors, yields minimum number of  independent subsets of vertex set of G 
called  equivalence classes (also called color classes of G). Such a partition of a vertex set of G is 
called a   - Partition of the graph G. 
Definition 2.4[2]: (Transversal of a   - Partition of a graph) Let G = (V, E) be a graph with   – 
Partition {V1, V2, .....,   }. Then a set S   V is called a Transversal of this   – Partition if S   Vi  ,   i 

  {1, 2, 3, ....,  }. 
Definition 2.5[2]: (Total Dominating Color Transversal Set) Let G = (V, E) be a graph. Then a Total 
Dominating Set S   V is called a Total Dominating Color Transversal Set of G if it is Transversal of at 
least one   - Partition of G. 
Definition 2.6[2]: (Minimum Total Dominating Color Transversal Set/Total Dominating Color 
Transversal number) Let G = (V, E) be a graph. Then S   V is called a Minimum Total Dominating 
Color Transversal Set of G if | | = minimum {| |: D is a Total Dominating Color Transversal Set of G}. 
Here S is called       Set and its cardinality, denoted by       (G) or just by       , is called the Total 
Dominating Color Transversal number of G. 
Definition 2.7: (Clique) Let G = (V, E) be a graph. A clique is a subset of vertices, S   V, such that 
every two distinct vertices are adjacent. This is equivalent to a condition that the sub graph induced 
by S, denoted by <S>, is complete. 
Definition 2.8: (Maximum Clique/ Clique number) Let G = (V, E) be a graph.  A clique S is called 
Maximum clique of G if its cardinality is maximum among all cliques that the graph G contains. Here 
cardinality of S is called Clique number of G and it is denoted by   (G) or just by  . 
Definition 2.9: (Perfect Graph) Let G = (V, E) be a graph.  Then G is said to be perfect if for every 
subset S of  V,    (<S>) =   (<S>).    
 Definition 2.10: (Pendant Vertex) Let G = (V, E) be a graph. Then a vertex v of G is called pendant if 
its degree is one. 
Definition 2.11: (Support Vertex) Let G = (V, E) be a graph. Then a vertex v of G is called support if it 
is adjacent to a pendant vertex. 
Definition 2.12: (Isolated Vertex) Let G = (V, E) be a graph. Then a vertex v of G is isolated vertex if 
its degree is 0. 
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Definition 2.13: (Isolate vertex with respect to a set) Let G = (V, E) be a graph and S be a subset of V. 
Then a vertex v in S is called isolate with respect to S if v is not adjacent to any vertex in S. 
3. Main results 
Remark 3.1: For any graph G,   (G)        (G) and   (G)        (G). 

Theorem 3.2 [2]: If   (G) = 2 then       (G) =   (G).  

Theorem 3.3 [2]: If   (G) = 2 then      (G) =   (G).  

First let us note down one basic theorem which will prove very important elementary result later on. 

Result 3.4: If a graph G has k distinct support vertices then       (G)   k. 

Proof: As any Total Dominating Set must contain all the support vertices of the graph G,      k and 

hence       (G)   k. 

Example 3.5: For the below given graph G,     (G) <    (G) but       (G)     (G). 

 
G 

Fig.1 

   (G) = 3 and   (G) = 4 but       (G) = 5   4 =   (G). 

Example 3.6: For the below given graph G,     (G) <   (G) and        (G) =   (G). 

 
G 

Fig. 2 

   (G) = 3,    (G) = 4 and       (G) = 4 =   (G). 

Theorem 3.7: Let G be a graph. Then       (G) =   (G) >    (G)  if and only if following two 

conditions hold: 

(1) There exists a Total Dominating Set D of G and a   – Partition {V1, V2,....,   } of G such that 

|    | = 1,   i = 1, 2, .... ,  . 

(2) No    - Set of G is a transversal of any   – Partition of G. 

Proof: We know that       (G)      (G).  

Suppose (1) is not true. Then       (G)      (G) , which is contradiction to       (G) =   (G). Hence (1) 

is true. 

Suppose (2) is not true. Then there exists a    - Set of G which is a transversal of some   – Partition 

of G.  Therefore       (G)  =    (G) which is contradiction to       (G) >    (G) . Hence (2) is true.  
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Conversely assume (1) and (2).  (1) implies that       (G)     (G) which implies that       (G)  =   (G) 

and (2) implies that       (G) >    (G). So   (G) =       (G)  >    (G).    

Example 3.8: For the below given graph G,    (G) =   (G)  = k but       (G)   k. 

 
G 

Fig.3 

  (G) = 3,   (G) = 3 but       (G) = 4   3 =   (G) =   (G). 

Example 3.9: For the below given graph G,        (G) =   (G) =   (G). 

 
G  

Fig.4 

      (G) =   (G) =   (G) = 3. 

Theorem 3.10: Let G be a graph. Then        (G) =   (G) =    (G) if and only if there exists a 

Minimum Total Dominating Set D of G and a   – Partition {V1, V2,....,   } of G such that |    | = 1, 

  i = 1, 2, .... ,  . 

Proof:  Obvious.  

Remark 3.11: Let G be a graph. If  there exists a    - Set of G such that it is a transversal of some   

– Partition of G then it is not necessary that       (G) =   (G) =    (G). We give the following 

example to justify this. 

Example  3.12:  

 
G 

Fig. 5 

Here {        } is a    - set of G. Clearly it is a transversal of the defined   - Partition of G. 

Also      (G) = 3 =    (G)     (G) = 2. 

 Example 3.13: For the below given graph G,    (G) <    (G) but                (G). 
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G 

Fig. 6 

  (G) = 3,     (G) = 4 but       (G) = 5      (G). 

Example 3.14: For the below given graph G,    (G) <    (G)  and       (G) =    (G). 

 
                                                                          G 

                                                                       Fig. 7 

  (G) = 3,     (G) = 4 and       (G) = 4 =    (G). 

Theorem 3.15: Let G be a graph. Then        (G) =    (G) >   (G)  if and only if following two 

conditions holds: 

(1) There exists a    - Set of G such that it is a transversal of some   – Partition {V1, V2,....,   } of G. 

 (2) For every    – Set D of G satisfying (1) , |    | > 1 for some i   {1, 2, 3, .....,  }. 

Proof: Obvious.  

Now we discuss upper bound of       in terms of    and  . We provide different examples to justify 

our results.  

Theorem 3.16: For every graph G,       (G)       (G) +      -2.  

Proof: Let S be a    - set of G. Then S has at least two vertices that are adjacent and so they are in 

different color classes for every   – Partition of G. Adding, to S , one vertex from each remaining   - 2 

color classes yields a Total Dominating Color Transversal Set of G. Hence        (G)       (G) +      - 

2. 

Remark 3.17: Above given upper bound is sharp. Following example 3.18 justifies this. 

Example 3.18: Let G be a graph. If       = 2 or        = 2 then      (G) =    (G) +      -2. 

Proof: If        then     (G) =    (G) by theorem 3.2. So       (G) =    (G) + 2 – 2 =     (G) +      

-2. If    (G) = 2 then      (G) =       by theorem 3.3. So     (G) =      + 2 – 2 =    (G) +      -2. 

 Remark 3.19: There are graphs G for which      > 2 and        > 2 but still      (G) =    (G) +      

- 2. We give the following example 3.20 to justify this.                

Example 3.20: Consider graph G as in Fig. 3.      (G) = 4,    (G) = 3 and       3. Trivially      (G) = 

4 = 3 + 3 - 2 =    (G) +      - 2. 



Bull .Math.&Stat.Res ( ISSN:2348 -0580)  

   129 

Vol.4.Issue.4.2016 (Oct-Dec.) 

D.K.THAKKAR, A.B.KOTHIYA 

Theorem 3.21: Let G be a graph. Then      (G) =    (G) +      -2 if and only if every    - Set D of G 

is contained in the union of (some) two color classes of every   – Partition of G. 

Proof: Assume      (G) =    (G) +      -2. Suppose there exists a    - Set D of G that is not 

contained in the union of any two color classes of some   – Partition {V1, V2, .....,   } of G. Then D 

meets at least three color classes of {V1, V2, .....,   }. Then adding, to D, one vertex from each 

remaining at most   - 3 color classes, yields a Total Dominating Color Transversal set of G. Hence 

     (G)   | | +  (G) – 3 <    (G) +      -2. So we get contradiction. Hence every    - Set D of G is 

contained in the union of (some) two color classes of every   – Partition of G. Conversely assume 

that every    - Set D of G is contained in the union of (some) two color classes of every   – Partition 

of G. Then adding, to D, one vertex from each remaining   - 2 color classes yields Minimum Total 

Dominating Color Transversal Set of G. Therefore      (G) =       (G) +      -2.  

Corollary 3.22: Let G be a graph. If there exists     - Set  of G that meets at least k color classes of 

some   – Partition of G then      (G)      (G) +      - k. 

Remark 3.23: Let G be a graph. Every    - Set D of G is contained in the union of (some) two color 

classes of some   – Partition of G does not imply      (G) =    (G) +      -2. Following example 3.24 

justifies this. 

Example 3.24: 

 
G Fig.8 

   (G) = 4 and      = 3. Graph G has exactly two    – Sets. They are D1 = {u1, u2, u3, u4} and D2 = {u1, 

u2, u3, u7}.  Let {V1, V2, V3} be a   - Partition of G, as shown above in Fig. 8, with V1 = {u1, u3}, V2 = {u2, 

u4, u7} and V3 = {u5, u6, u8, u9, u10}. Clearly Di   V1   V2. (i = 1, 2). But       (G) = 4   5 =     (G) +  (G) 

– 2 = 4 + 3 – 2,  under the following   - Partition of G. 

 
G 

Fig. 9 

Theorem 3.25: Let G be a graph. If      (G) =    (G) +      -2 then every    - Set of G is contained 

in a       - Set of G. 

Proof: Consider a    – Set D of G. We know by theorem 3.21 that every    – Set is contained in 

(some) two color classes of every    - Partition of G. So by adding, to D, one vertex from each 

remaining   -2 color classes yields a Total Dominating Color Transversal Set of G. Note that this set is 

minimum with this property. So every    - Set of G is contained in a       - Set of G. 
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Remark 3.26: Converse of above theorem 3.25 is not true in general. Below given example 2.37 

justifies this. 

Example 3.27: Consider the graph G given in Fig. 9. Graph G has exactly two    – Sets. They are D1 = 

{u1, u2, u3, u4} and D2 = {u1, u2, u3, u7}. Note that both are       - Sets of G. So we can say that both D1 

and D2 are contained a       – Set of G. But      (G) = 4   5 = 4 + 3 - 2 =          (G) +      -2. 

Now we obtain an upper bound of        number for  Perfect graphs. we assume that complement 

graph  ̅ have no isolated vertex. 

Theorem 3.28 [8]: A  graph G is Perfect if and only if  ̅ is Perfect. 

Theorem 3.29: If G is a perfect graph then      (G)      (G) +   (G) – 2. 

Proof: Obvious as for a Perfect G,       =   (G) and by theorem 3.16.  

Theorem 3.30: If G is a perfect graph then      ( ̅)   2   (G) +   ( ̅) – 2. 

Proof: It is obvious to say that the theorem 3.16 is also true for a disconnected graph G.  

By theorem 3.16,       ( ̅)      ( ̅) +    ̅  -2.  By theorem 3.28,    ̅  =   ( ̅). And hence      ( ̅)   

   ( ̅) +   ( ̅) - 2. 

Claim:    ( ̅)   2   (G) 

Suppose S   V is a maximum clique of G. Hence | | =   (G). Also S is a maximum independent set in 

 ̅. Therefore S is a dominating set in ̅. If S is not a Total Dominating Set in  ̅ then S has at most | | 

isolates. As  ̅  is a graph with no isolated vertex, each vertex of S has adjacent vertex in  ̅ . So adding 

at most | |  vertices the resultant set becomes a Total Dominating set of  ̅. So     ( ̅)  2 | |  = 2   

(G). Hence      ( ̅)   2   (G) +   ( ̅) – 2.  

Remark 3.31: Bound of      ( ̅) in theorem 3.30 is sharp. Following example 3.32 justifies this. 

Example 3.32: We know that every bipartite graph is Perfect.   

                                           
                                                                         

̅̅ ̅ 

                                                   Fig. 10                                           Fig. 11 

     (  
̅̅ ̅) = 4,   (C4) = 2 and   (  

̅̅ ̅) = 2. So      (  
̅̅ ̅) = 4 =  2  (C4) +   (  

̅̅ ̅) – 2. 

Theorem 3.33: If G is a Perfect graph then       = k – 2, where 

k = min {   (G) +   (G), 2  ( ̅    (G)}.  

Proof: By theorem 3.16,      (G)       (G) +      - 2  =    (G) +   (G) - 2                                             (1) 

By theorem 3.30,      ( ̅)   2   (G) +   ( ̅) – 2                                                                                         (2) 

As G is perfect,  ̅ is also Perfect.(theorem 3.28). Hence applying inequality (2) to  ̅, we obtain the 

following inequality:      (G) =      ( ̿)   2   ( ̅) +   (G) – 2                                                                  (3) 

From (1) and (3),       = k – 2, where k = min {   (G) +   (G), 2  ( ̅    (G)}. 
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