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ABSTRACT 

The price of gold in India has undergone unprecedented fluctuations in the 

recent past. As India is the second largest imported of gold and its price is a 

matter of concern. Moreover, though the demand of gold in India as jewelry 

and for industrial purpose is prevalent, the major demand is as an investment 

since it has always proved to be a safe haven in times of financial 

turbulences. The study attempts to find an econometric model which will be 

able to forecast a financial time- series accurately for long term trend by 

capturing the amplitudes of volatility clustering. This paper aims at building 

the best fit ARIMA model for the given data and hence to capture the 

volatility of the residuals by means of the best fit GARCH model. The 

prediction power and validity of a hybrid model of ARIMA and GARCH is 

analysed in the study.  

Key words: Time Series, Forecasting, ARIMA, GARCH, Volatility clustering, 

Hybrid model 
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I. INTRODUCTION 

 Gold is considered to be a hedge as it assures maximum returns at minimum risk.Due to 

these attributes the demand of the gold is increasing day by day in India. India is one of the largest 

consumers of gold. Nearly 800 tons of gold is imported every year. Indian accounts for 23 percent of 

the world’s total annual demand for gold *1+. The efficiency of these models in capturing the 

fluctuations in gold is the interest of the study. Price of gold has been going through unpredictable 

ups and downs. The rise of price from 2008 took it to almost 200 percent increase in 2013 (all time 

high of Rs. 32943 per 10 gram on 29th August 2013) and an almost equal fall of around 20 percent in 

2015 (Rs 26645 per 10 grams on September 2015).  
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 Among the various econometric models, the most widely applicable ones are ARIMA as a 

linear model which allows one to focus on the dynamics of the series and GARCH to capture 

volatility. ARIMA is extensively used in the area of short term forecasting of stationary time series. 

The highlight of this model is the assumption of uniform variance of the residuals. When this is 

violated, the model seems to be weak. Hence an attempt is made to construct an autoregressive 

model of the series and capture the variances of the residuals obtained using the most widely used 

Hetroskedastic model GeneralisedHetroskedasticModel(GARCH). 

II. Methodology 

 Autoregressive Integrated Moving Average ModelARIMA(p, d, q) developed by Box- 

Jenkin[2] is a combination of Autoregressive model, AR(p) and Moving Average model, MA(q) of a 

time series which is stationary at level d. AR model describes the model as a linear model regressed 

on its past values at p time points while the MA model represents the residuals as a model of its past 

values at q time points. 

The ARIM (p,d,q) model may be represented as  

Yt = α0 + α1Yt-1 + α2Yt-2+ … + εt +β1εt-1 + β2εt-2 + … βqεt-q +Vt   (1) 

 To develop the ARIMA model, we analyse the components of the series, i.e, trend and 

seasonality. This is to detrend and deseasonalise the data if there is any pattern observed. This is 

followed by stationarity test which can be obtained by any standard tests like Dickey –Fuller test or 

Phillips – Perron test.  If the series is found to be non-stationary, we try to achieve stationarity by 

either differencing or log transformations. The value of d in ARIMS is the level at which a given series 

becomes stationary and is determined through Unit- root test. Once we achieve a stationary time 

series, the parameters of the AR and MA (p, q) are determinedusingCorrelogram which will depict 

Autocorrelation and Partial Autocorrelation plots. The value of p is determined from the PCF plot 

while that of q is determined from the ACF plot. The significance level of individual coefficients is 

measured by Box- Pierce Q statistics and for all the coefficients jointly together by Ljung- Box (LB) 

statistic. The Box- Pierce Q statistics is given by  

Q =  ρ2𝑚
𝑘−1  = χ2                                                                          (2) 

AndLB statistic is defined as  

LB = n(n+2) 
ρ2

𝑛−𝑘
𝑚
𝑘−1                                                                          (3) 

where n is the sample size and m is the lag length. 

Diagnostic test can also be carried out with Akaike’s Information Criterion(AIC) and Scwartz 

Information Criterion(SIC). The least values of AIC and SIC will be yield by the best fie models. Mean 

absolute Percent Error (MAPE) is also widely utilized as model diagnostic. 

The basic assumption that the variance of residuals in this model is hetroskedastic is violated most of 

the times. Hence in this paper we extract the residuals to fit a GARCH model which will explain the 

long term patterns of hetroskedasticity.  

 Among the multitude of non- linear models, the most popular models are Autoregressive 

Conditionally Hetroskedastic (ARCH) model and Generalized Autoregressive Conditionally 

Hetroskedastic (GARCH) models[6]. They are expedient in modeling and forecasting volatility. The 

assumption of CRLM is that the variance of the errors is constant, which is termed homoscedasticity.  

ARCH models do not assume that variance is constant. ARCH models are preferred to CLRMs since it 

is unlikely to financial time series to have constant variance for the errors over time. Another 

important feature that motivates the use of ARCH/ GARCH models is volatility clustering or volatility 

pooling. Volatility clustering describes the tendency of large changes in assets prices to follow large 
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changes and small changes to follow small changes. Knowledge of volatility is important to make 

effective financial planning.  

 If the first difference has varying variance instead if a constant, it is termed Autoregressive 

Hetroskedastic (ARCH) models.  ARCH models are capable of modeling and capturing volatility 

clustering.  An ARCH(q) model is usually represented as 

Yt = f(Yt-p)+ ut;                                                  (4) 

ut ͠   N(0, ht) where  

 

ht = α0 + α1ut-1+ α2ut–2 + α3ut –3 + … + αqut–q                                          (5) 

 Generalized Autoregressive Conditional Hetroskedasticity (GARCH) model is one of the most 

popular ARCH model. It allows the conditional variance to be dependent upon previous own lags, so 

that the conditional variance equation can be represented as  

σ2
t = α0 + α1u

2
t – 1 + βσ 2 

t-1                                          (6) 

Eq (6) represents the GARCH (1, 1) model.  

GARCH (p, q) model may be represented as follows: 

σ2
t = α0 + α1ut- 1+ α2ut– 2 + α3ut– 3 + … + αqut–q + β1σ 2t-1 + β2σ 2t-2 +… +βpσ2

t-p(7) 

Before estimating a GARCH type model, first it must be ensured that this model is appropriate. The 

most widely used test for non- linearity is BDS test. This test is also a model diagnostic. It has a null 

hypothesis that the data are pure noises. If a proposed linear model is adequate, then the 

standardized residuals should be white noises, while if the postulates model in insufficient to 

capture all the relevant features of the data, BDS statistic for the standardized residuals will be 

statistically significant. Once ARCH effect is found then we are required to find the specification of 

the model using Akaike Information Criterion (AIC) and Schwartz Bayesian Information Criterion 

(SBIC).  

III. Review of Literature 

 Research papers in Econometric modeling of financial time – series has no dearth. But hybrid 

models which combine two or more models to improve the accuracy of estimation and prediction 

are not very popular as the former.  

 There are a few researches that has taken place with a similar concept of hybrid of two or 

more models. Sallemet.al [7] in an attempt to model the time series of rainfall, findsthere is volatility 

clustering in the series. The focus was on modeling and predicting the mean behavior of the time 

series through conventional methods of an Autoregressive Moving Average (ARMA) modeling 

proposed by the Box Jenkins methodology. The conventional models operate under the assumption 

that the series is stationary that is: constant mean and either constant variance or season-

dependent variances, however, does not take into account the second order moment or conditional 

variance, but they form a good starting point for time series analysis. The residuals from preliminary 

ARIMA models derived from the daily rainfall time series were tested for ARCH behavior. The 

autocorrelation structure of the residuals and the squared residuals were inspected, the residuals 

are uncorrelated but the squared residuals show autocorrelation, the Ljung-Box test confirmed the 

results. McLeod-Li test and a test based on the Lagrange multiplier (LM) principle were applied to 

the squared residuals from ARIMA models. The results of these auxiliary tests show clear evidence to 

reject the null hypothesis of no ARCH effect. Hence indicates that GARCH modeling is necessary. 

Therefore the composite ARIMA-GARCH model captures the dynamics of the daily rainfall series in 

study areas more precisely. On the other hand, Seasonal ARIMA model became a suitable model for 

the monthly average rainfall series of the same locations treated. 
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 Babu et.al [1] has used the hybrid approach to model Stock market data for multi-step or N-

step ahead forecasting. For one-step ahead prediction ARIMA or GARCH can be employed, but for 

multi-step ahead prediction, the prediction accuracy decreases and data dynamics is lost over the 

complete prediction horizon. In the study they have decomposed the series into two using Moving 

Average (MA) filter, one of them is modelled using ARIMA and the other using GARCH aptly. Indian 

Stock market data is considered in order to evaluate the accuracy of the proposed model. The 

performance of this model is compared with traditional models, which reveals that for multi-step 

ahead prediction, the proposed model outperforms the others in terms of both prediction accuracy 

and preserving data trend.  

 Maizah[4] et.al.proposed hybrid model of linear ARIMA and non-linear GARCH to be better 

in forecasting the price of Malaysian gold. They have used the daily selling prices of the 1 oz 

Malaysian gold recorded from 18th July 2001 until 15th April 2014. ARIMA (1, 1, 1) model is found to 

be the most appropriate by comparing the AIC and MAPE values of prediction. The residuals of this 

model on analysis by ARCH LM test for hetroskedasticity proved to have ARCH effect. Hence a 

GARCH model is proposed to handle the hetroskedasticity of the series. ARIMA(1, 1, 1) along with 

GARCH (2,1) proved to be the most appropriate combination. Based on the AIC values, the model 

that minimizes the estimatedinformation loss more is ARIMA-GARCH. ARIMA is 0.46 times as 

probable as ARIMA-GARCH to minimize the information loss. The bias proportion, the variance 

proportion, and the covariance proportion sum up to 1. While the bias proportion measures how far 

the mean of the forecast is from the mean of the actual series, the variance proportion measures 

how far the variation of the forecast is from the variation of the actual series. The remaining 

unsystematic forecasting errors are measured by the covariance proportion measures. They 

conclude that the most effective way to improve forecasting accuracy is using hybrid model. 

 Maizah [5] et.al used a four year daily data to find an accurate model for prediction and 

concludes that ARIMA- GJR is a better model which is providing lower values of MAPE than ARIMA 

only. Using ordinary least squares method to estimate the parameters, an appropriate ARIMA model 

for this series is ARIMA (2, 1, 2) with an AIC value of 10.88681. When the model was used for 

forecasting, the MAPE value for in-sample forecast is 0.759026. the residuals were not following 

Normal distribution, according to JarqueBera test result and also existence of c=volatility clustering 

was evident among the residuals as per LM test result. Comparing the various variants of GARCH 

models, it is concluded that ARIMA(2, 1,,2)- GJR(1,1) gives the best results with least MAPE values 

even though non-normality is prevalent in the residuals. 

IV. Result and Discussion 

 The value of gold traded in MCX in lakhs of rupees for the past 5years (April 1st, 2010 to 

November 30th, 2015) is the data used in the present study. A total of 1204 sample data from April 

1st, 2010 to March 31st 2014 is used as in-sample for modeling and the remaining data of  

427sample points from April 1st. 201 to November 30th, 2015 are used for forecasting as out-

sample. The analysis is carried out using the econometric software Eviews.  

 The general descriptive statistics as provided in Fig1 indicates average value of five years as 

Rs. 768436.20 with a very high standard deviation of Rs. 564844.70. The series is positively skewed 

(1.674 > 0) indicating majority of the days price was below the average price and the series is 

leptokurtic (Kurtosis=8.22 > 3) indicating a clustering of price around the average. The series seem to 

vary significantly from Normal distribution as the null hypothesis of Normality in JarqueBera test for 

is rejected. (Jarque – Bera value = 2620.364 with p- value < 0.05). 
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Figure:1: Daily Value of gold traded in MCX in Lakhs of rupees. 
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Figure 2. Plot of Daily Value of gold traded in MCX in Lakhs of rupees and Plot of Log differenced 

Value. 

The line graph (Fig 2)indicates a typical stationary time- series.This is confirmed by Augmented 

Dickey- Fuller test ( t =-3.0959 with p-value <0.05), indicating the absence of Unit root. 

Table 1: Augmented Dickey- Fuller test 

Lag Length: 11 (Automatic - based on SIC, maxlag=24) 

   t-Statistic   Prob.* 

          
Augmented Dickey-Fuller test statistic -3.095984  0.0271 

Test critical values: 1% level  -3.434184  

 5% level  -2.863120  

 10% level  -2.567659  

*MacKinnon (1996) one-sided p-values.  

The parameters of ARIMA model is determined on the basis of the Correlogram and confirmed by 

AIC and MAPE values 

 
Figure 3: Correlogram of the Log differenced Value of gold traded in MCX 
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The Correlogram hints AR(1) and MA(1). However the different parameters of p and q in 

ARIMA(p,d,q) is checked with d = 0, since the series is stationary at level. The criterion to select the 

best model is least values of AIC and MAPE value for the in- sample forecast. 

Table 2: Comparing the AIC and MAPE values to choose (p, q) values 

AR(p) MA(q) AIC MAPE 

2 0 9.4732 34.1045 

1 1 9.1825 31.1192 

2 1 9.1815 31.7624 

2 2 9.1810 30.1062 

1 0 9.6104 31.8164 

1 2 9.1820 31.4600 

1 3 9.1752 31.8154 

The most appropriate model seems to be ARIMA(2, 0, 2) with least values of AIC as 9.181 and MAPE 

as 30.1062. The fitted ARIMA model is represented as  

  Yt= 0.7191*Y(t-1) + 0.2789*Y(t-2)- 0.5514ε(t-1) - 0.3208485ε(t – 2), 

whereYt is the value of gold and ε is the residuals of the model. 

IV.1. Residual Diagnosis of the model ARIMA (2,0,2) 

 The residuals of the fitted model is supposed to be N(0, σ2). Figure 4 provides the 

descriptive analysis of the residuals and result of normality test. The residuals are not N(0, σ2) and 

hence it is worth to model the residuals for its non- linearity. 
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Std. Dev.   523522.0

Skewness  -0.006604

Kurtosis   6.186045

Jarque-Bera  508.3989

Probability  0.000000

 
Figure 4: Descriptive statistics of residuals of ARIMA(2, 0,2) 

IV.2. Test for Serial correlation  

 The residuals are tested for their serial correlation by Breusch – Godfrey LM test. The null 

hypothesis of no serial correlation is rejected (F statistic value=5.03, p- value =0.0067 <0.05). Hence 

the residuals seem to have autocorrelation. 

Table 3: Result of test of serial correlation carried out on residuals of ARIMA(2, 0 2) 

Breusch-Godfrey Serial Correlation LM Test:  

     
     F-statistic 5.030966     Prob. F(2,1196) 0.0067 

Obs*R-squared 9.248808     Prob. Chi-Square(2) 0.0098 
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IV.3. Test for Hetroskedasticity 

 Test of hetroskedasticity by Breusch-Pagan-Godfrey with null hypothesis that ARCH effect 

does not exist is carried out on the residuals. The test result is provided in table 4; it suggests the 

presence of ARCH effect ( F- statistic= 111.01, p- value < 0.05 . This is ascertained from the line graph 

of the residuals 

Table 4: Result of hetroskedasticity test carried out 

Heteroskedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 111.0110     Prob. F(2,1199) 0.0000 

Obs*R-squared 187.8017     Prob. Chi-Square(2) 0.0000 

Scaled explained SS 483.2872     Prob. Chi-Square(2) 0.0000 
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VALUE__RS__IN_LAKHS_ Residuals  
Figure 5: Volatility clustering of residuals of ARIMA(2, 0, 2) 

Thus it is imperative to develop better model that will describe the ARCH/GARHC effect. Once again 

based on the minimum values of AIC and MAPE, ARIMA(2, 0, 2) – GARCH (1,1) model seems to be 

the best fit.  

Table 5:Coefficientsof ARIMA (2, 0, 2)- GARCH (1, 1)  

 

     
     Variable Coefficient Std. Error z-Statistic Prob.   

     
     VALUE__RS__IN_LAKHS_(1) 0.254167 0.016036 15.84986 0.0000 

VALUE__RS__IN_LAKHS_(2) 0.747085 0.016043 46.56687 0.0000 

MA(1) -0.184986 0.027246 -6.789453 0.0000 

MA(2) -0.675880 0.024923 -27.11833 0.0000 

     
      Variance Equation   

     
     C 2.34E+10 5.73E+09 4.090749 0.0000 

RESID(-1)^2 0.219515 0.042196 5.202271 0.0000 

GARCH(-1) 0.703056 0.046804 15.02141 0.0000 

     
     The results show both ARCH and GARCH effects are significant. They are the internal causes of 

volatility in the model. The AIC value of this hybrid model is 7.335 and MAPE value is 26.333 which is 

less than the ARIMA model developed earlier. The residuals of the is hybrid model is tested for ARCH 

effect. The Breusch-Pagan-Godfrey test accepted at 5% level the null hypothesis of no ARCH effect ( 

F Statistic = 2.987, P value =0.076 > 0.05); this indicates that the model is better than ARIMA model. 

The test for normality and serial correlation are also in favour of the hybrid model developed. 
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IV.4. Model Validation 

 Sample data from April 1st, 2014 to November 30th 2015 is used to validate the model. The 

427 observations are stationary at level (ADF Test, t = -14.9157, p-value = 0.00 < 0.05, hence the null 

hypothesis of unit root is rejected.). The series is slightly positively skewed and leptokurtic 

(Skewness coefficient = 0.73435 > 0, Kurtosis coefficient = 4.343>3). Test of Normality rejects that 

the series is distributed normal (Jarque-Bera = 71.025, p – value = 0.00< 0.05) 

ARIMA(2,0,2)- AGRCH(1,1) model of the out- of - sample data 

Table 6: Hybrid Model developed on the out- sample data 

GARCH = C(5) + C(6)*RESID(-1)^2 + C(7)*GARCH(-1) 

          
Variable Coefficient Std. Error z-Statistic Prob.   

          
Y’(1) 0.449175 0.031502 14.25841 0.0000 

Y’(2) 0.549875 0.031300 17.56777 0.0000 

MA(1) -0.176629 0.040009 -4.414709 0.0000 

MA(2) -0.590296 0.040448 -14.59382 0.0000 

          
 Variance Equation   

          
C 9.45E+08 5.56E+08 1.700870 0.0890 

RESID(-1)^2 0.064384 0.031661 2.033512 0.0420 

GARCH(-1) 0.880263 0.054993 16.00678 0.0000 

          
          

 It may be observed that at 5% level of significance ARIMA as well as both ARCH and GARCH 

are significant. The AIC value and MAPE value  are6.37 and 34.23. The Hetroskedasticity of the 

residuals of the out- of sample data  provided in table rejects ARCH effect in the residuals 

Table 7: Test of hetroskedasticity on the Out- sample data 

Heteroskedasticity Test: ARCH   

          
F-statistic 2.831119     Prob. F(1,422) 0.0932 

Obs*R-squared 2.825580     Prob. Chi-Square(1) 0.0928 

 The descriptive statistics is provided in Fig.6. shows the residuals are normally distributed 

(Jarque- Bera = 5.81, p-value = 0.054> 0.05) with mean approximately 0. 
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Figure 6: Descriptive statistics of the out- sample data 
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 The test for serial correlation carried out by Ljung- Box Q- test does not reject the possibility 

serial correlation. The test result is provided in table 8. The results prove that there isno significant 

serial correlation among the residuals. 

Table 8: Ljung- Box Q-Statistic on squared residuals for ARIMA(2, 0, 2)- GARCH (1,1) 

 
The graph of forecasting of out-sample values and its volatility is provided in Fig: 7. 
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Figure 7: forecasting the values and volatility of out- sample data 

From the graph it can be observed that the forecast precision appears to be increased and there is 

no clustering of volatility. Thus the hybrid ARIMA(2, 0, 2) GARCH(1,1) can be considered as an 

improved model to forecast the value of gold.  

V. Conclusion 

 This study attempted to capture the volatility of a time series while developing a linear 

model. Daily value of gold traded through Multi Commodity Exchange (MCX), India, for the past 5 

years (April 1st, 2010 to November 30th, 2015) is the data used in the study. A total of 1204 sample 

data is used as in-sample for modeling and the remaining data of 427 sample points are used for 

forecasting and testing the validity of the model. The study concludes that ARIMA (2, 0, 2) – GARCH 

(1, 1) is an appropriate model for forecasting the value of gold in India.The financial time- series of 

Value of gold traded in MCX, India, is used to construct the model. The model was developed on a 

sample of 1204 observations and it is validated on an out- sample series of 427observation which 

are the daily data over a period of 6 years where there were significant fluctuations in the value of 

the commodity. The analysis carried out find that the hybrid model is more effective than the usually 

used ARIMA model for forecasting. ARIMA(2, 0, 2)-GARCH (1,1) is found to be the most appropriate 

model for the data.It can be concluded that the major drawbacks of ARIMA model is rectified by the 

hybrid model and it out-performs the usual ARIMA model. 

Date: 12/03/15   Time: 11:12

Sample: 4/01/2014 11/30/2015

Included observations: 425

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob...

1 0.082 0.082 2.8479 0.091

2 0.025 0.019 3.1186 0.210

3 -0.07... -0.08... 5.6707 0.129

4 -0.00... 0.010 5.6730 0.225

5 -0.07... -0.07... 7.9923 0.157

6 0.043 0.049 8.7851 0.186

7 0.005 0.001 8.7947 0.268

8 -0.05... -0.07... 10.217 0.250

9 -0.04... -0.02... 10.993 0.276

1... -0.04... -0.03... 11.689 0.306

1... 0.011 0.017 11.745 0.383

1... 0.018 0.012 11.887 0.455

1... 0.014 -0.00... 11.974 0.530

1... 0.020 0.023 12.158 0.594

1... 0.073 0.071 14.520 0.486

1... -0.02... -0.03... 14.839 0.536

1... -0.05... -0.05... 16.233 0.507

1... 0.003 0.019 16.238 0.576

1... -0.02... -0.02... 16.452 0.627

2... 0.022 0.029 16.661 0.675

2... 0.009 -0.00... 16.697 0.729

2... 0.002 -0.00... 16.700 0.780

2... 0.033 0.057 17.182 0.800

2... 0.055 0.047 18.544 0.776

2... 0.010 -0.00... 18.587 0.816

2... 0.020 0.016 18.777 0.846

2... -0.01... -0.02... 18.861 0.875

2... -0.02... -0.01... 19.249 0.890

2... 0.017 0.030 19.387 0.911

3... 0.056 0.044 20.815 0.894

3... -0.02... -0.02... 20.991 0.912

3... -0.01... -0.00... 21.130 0.929

3... -0.05... -0.04... 22.298 0.921

3... -0.00... 0.010 22.318 0.938

3... 0.077 0.082 25.090 0.892

3... 0.162 0.134 37.389 0.405

*Probabilities may not be valid for this equation specification.
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