Vol.4.Issue.4.2016 (October -December)

http://www.bomsr.com Email:editorbomsr@gmail.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

AN ALGORITHMIC APPROACH TO OBTAIN AN EDGE H-DOMINATING SET OF THE GRAPH

D. K. THAKKAR¹, B. M. KAKRECHA²

¹Department of Mathematics,Saurashtra University, Rajkot, Gujarat, India. dkthakkar1@yahoo.co.in ²Department of Mathematics,L. E. College, Morbi, Gujarat, India. kakrecha.bhavesh2011@gmail.com

ABSTRACT

In this paper, the algorithm is developed to find an edge H-dominating set of the graph. It is also proved that the edge H-dominating set obtained by the algorithm is minimal.

Key words: edge dominating set, edge H-dominating set, minimal edge H-dominating set.

AMS Subject Classification (2010)-05C69

©KY PUBLICATIONS

1. INTRODUCTION

The concept of edge domination is well-known. Several papers have been appeared related to edge domination [1, 3, 5, 6]. A new concept called edge H-domination in graph is introduced in [7]. We consider the definitions of edge domination and edge H-domination of the graph. We explain the relation between these both concepts with the help of an example of the graph. An algorithm to _nd an edge dominating set is given in [4]. We have developed an algorithm to find an edge H-dominating set of the graph.

The edge H-dominating set of the Petersen graph is obtained by applying an algorithm on the graph. It is also proved that the edge H-dominating set obtained by an algorithm is a minimal edge H-dominating set.

Definition 1.1 [2] Let G be a graph. A subset F of an edge set E(G) is said to be an *edge dominating* set of G if for every edge e not in F is adjacent to some edge in F. An edge dominating set F of G is a *minimal* edge dominating set if F does not have a proper subset which is an edge dominating set.

Definition 1.2 [7] Let G be a graph. A set $F \subseteq E(G)$ is said to be an edge H-dominating set of G if the following conditions are satisfied by any edge $e = uv \in E(G)$.

1) If e is an isolated edge then $e \in F$.

- 2) If *e* is a pendent edge with v as a pendent vertex and *u* is not a pendent vertex. If $uv \notin F$ then all the edges incident at u (except e) are in *F*.
- 3) If *e* is a pendent edge with *u* as a pendent vertex and v is not a pendent vertex. If $uv \notin F$ then all the edges incident at *v* (except *e*) are in *F*.
- 4) If neither u nor v is a pendent vertex and $uv \notin F$ then all the edges incident at u (except e) are in F or all the edges incident at v (except e) are in F.

Example 1.3 Consider the following graph with vertices 1, 2, 3, 4, 5, 6 and edges 12, 23, 34, 45, 51 and 56.

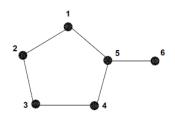


Figure 1 The graph G

The edge sets $F1 = \{23; 45; 15\}$ and $F2 = \{23; 45; 56\}$ are examples of edge H-dominating sets of the graph G. The sets F1 and F2 are also an edge dominating sets of G. The edge set $F = \{23; 45\}$ is an edge dominating set but F is not an edge H-dominating set because for an edge 51 \notin F, the edge incident at vertex 1 is 12 \notin F also the edges incident at vertex 5 are 45 \in F but 56 \notin F. However, we have the following remarks.

Remarks 1.4(1) Every edge H-dominating set of the graph G is edge dominating set but the converse need not be true.

(2) From the definition of edge H-dominating set, if an edge set F of the graph G is an edge H-dominating set then F contains all isolated edges of G.

(3) If G is a graph with $\Delta(G) \le 2$ then every edge dominating set of G is an edge H-dominating set, where $\Delta(G)$ = maximum degree of a vertex in G. In particular, if the graph G is a cycle graph or path graph then every edge dominating set of G is an edge H-dominating set.

In [4], the edge dominating set of the graph is obtained by considering the following greedy approach.

- 1. Let $F = \phi$.
- 2. Take an edge e = uv, and let $F = F \cup \{e\}$.
- 3. Delete e from the graph (along with end vertices u and v).
- 4. If there are no edges left, stop, else go back to step 2.
 - Clearly, the resulting set F is an edge dominating set.

Definition 1.5 (adjacent pendent edges) Two pendent edges e_1 and e_2 are adjacent if they have a common end vertex.

2. An algorithm to find an edge H-dominating set

Apply the following steps on the graph G.

Let $F = \phi$.

Step 1. If the graph has isolated edges then

F = Collection of all isolated edges of the graph.

Delete the end vertices of all isolated edges from the graph.

Step 2. If the graph has pendent edges then

2(I) If $u_1v_1, u_2v_2, \ldots, u_nv_n$ are non adjacent pendent edges of G such that $deg(u_i) = 1$ and $deg(v_i) \ge 3$ for $I = 1, 2, \ldots, n$ then

$$F = F \bigcup_{i=1}^{n} (\bigcup_{w \in N(v_i), w \neq u_i} v_i w)$$

Delete the vertices ui, vi (for i = 1, 2, ..., n) from the graph

2(II) If u_{1v} , u_{2v} , ..., u_{nv} are adjacent pendent edges of G incident at vertex v such that $deg(u_i) = 1$ (for i = 1, 2, ..., n) and $deg(v) \ge n$ then

 $\bigcup_{F = F \ w \in N(v), \ w \neq u_i \ for \ exactly \ one \ i \in \{1, 2, ..., n\}} vu$

Delete the vertices ui (for i = 1, 2, ..., n), v from the graph.

If there are m vertices v_1, v_2, \ldots, v_m such that each vertex v_j (for $j = 1, 2, \ldots, m$) incident with adjacent pendent edges $v_j u_{ji}$ (for $i = 1, 2, \ldots, t_j$) then

$$F = F \bigcup_{j=1}^{m} \left(\bigcup_{w \in N(v_j), w \neq u_{ji} \text{ for exactly one } i \in \{1, 2, \dots, t_j\}} v_j w \right)$$

where t_1, t_2, \ldots, t_m are the number of adjacent pendent edges incident to v_1, v_2, \ldots, v_m respectively. Delete the vertices v_j (for $j = 1, 2, \ldots, m$) and u_{ji} (for $j = 1, 2, \ldots, m$ and $i = 1, 2, \ldots, t_j$) from the graph.

Step 3. After applying Step 1 and Step 2.

Select an edge uv from the graph such that $deg(uv) \ge deg(xy)$ for all other edges xy of the graph. Also confirm that $deg(u) \ge deg(v)$.

$$F = F \bigcup_{w \in N(u)} uw$$

and let w_1, w_2, \ldots, w_n are neighbors of v other than u then

$$F = F \bigcup_{i=1}^{\infty} (\bigcup_{t \in N(w_i), t \neq v} w_i t)$$

Delete the vertices u, v, w_i (for i = 1, 2, ..., n) from the graph.

After deleting the vertices, apply step 3 continuously on the vertices deleted sub-graph till the graph has an edge uv such that $deg(u) \ge 2$ and $deg(v) \ge 2$.

At the end, the set F denotes an edge H-dominating set of the graph.

Examples 2.1 (1) We are applying the algorithm to find an edge *H* -dominating set of the following graph with 10 vertices and 15 edges.

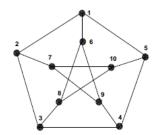


Figure 2 Petersen Graph G

Initially, assume that $F = \phi$

Step 1. does not execute because the graph has no isolated edges.

Step 2. does not execute because the graph has no pendent edges.

Step 3. Since the graph is 3-regular, we consider any edge uv from the graph such that $deg(uv) \ge deg(xy)$ for all other edges xy of the graph, also deg(u) = deg(v) in this case. Let uv = 12 with u = 1 and v = 2 then

$$F = F \cup \{15,16\} \text{ since } F = F \quad w \in N(u), w \neq v$$

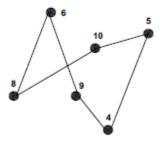
Also, $w_1 = 3$ and $w_2 = 7$ are neighbors of v = 2 other than u = 1 therefore,

$$\bigcup_{i=1}^{'} (\bigcup_{i \in N(w_i), i \neq v} w_i t)$$

 $F = F \cup \{34, 38, 79, 710\}$ since $F = F \stackrel{i=1}{=} t \in \mathbb{N}$

Thus, we get $F = \{15, 16, 34, 38, 79, 710\}$

Delete the vertices u, v, w_1 and w_2 from the graph. After deleting these vertices, we get the following graph.



 $G1 = G \{u, v, w_1, w_2\}$

We again applying step 3 on vertices deleted subgraph since there is an edge uv such that $deg(u) \ge 2$ and $deg(v) \ge 2$.

Let uv = 45 with u = 4 and v = 5 then

 $F = F \cup \{49\}$

Also, $w_i = 10$ is a neighbor of v = 5 other than u = 4 therefore,

 $F = F \cup \{180\}$

Thus, we get $F = \{15, 16, 34, 38, 79, 710\} \cup \{49, 810\}$

Delete the vertices u, v, w_1 from the graph. After deleting these vertices, we get the following graph

Now, we stop the process because there is no edge uv in G2 such that $deg(u) \ge 2$ and $deg(v) \ge 2$. Finally, the edge set v {15,16,34,38,79,710,49,810} is an edge H-dominating set of the Petersen graph G.

(2) Consider the graph given in Figure 1. Apply the algorithm to find an edge H -dominating set of the graph.

Initially, assume that $F = \phi$.

Step 1. does not execute because the graph has no isolated edges.

Step 2. Since 56 is a pendent edge of the graph, by step **2(I)** of the algorithm, $F = \{15, 45\}$. Delete the vertices 5, 6 from the graph. After deleting these vertices, we get the following

graph.

Step 3. Since there is an edge 23 such that deg(2) = 2 and deg(3) = 2, F = F U {34}

or $F = F \cup \{12\}$

Thus, Finally the edge set $F = \{15, 45, 34\}$ or $F = \{15, 45, 12\}$ is an edge H-dominating set of the graph G.

Question 2.2 Is the set F obtained by the algorithm edge H-dominating set ?

Answer: Yes.

Proof: Consider an edge $e = xy \in E(G) - F$. By step 1 of the algorithm, F contains all the isolated edges of the graph G, therefore e = xy is not an isolated edge of G.

To prove that the set F obtained by the algorithm is an edge H-dominating set, it is enough to prove for any edge $e = xy \in E(G) - F$, either all the edges incident at x are in F or all the edges incident at y are in F.

Case 1. Suppose that $xy \in E(G) - F$. is a pendent edge of G with deg(x) = 1 and $deg(y) \ge 2$.

1(i). If xy does not have any adjacent pendent edge(s) in G then by (I) of step 2 of algorithm, all the edges incident at y are in F (except xy).

1(ii). If xy has adjacent pendent edge(s) in G then by (II) of step 2 of algorithm, all the edges incident at y are in F if xy 62 F.

Similarly, if xy 62 F is a pendent edge with deg(y) = 1 and $deg(x) \ge 2$ then also

by similar argument, we prove that all the edges incident at x are in F if $xy \notin F$.

Case 2. Suppose that $e = xy \in E(G) - F$ is not a pendent edge of G. Therefore $deg(x) \ge 2$ and $deg(y) \ge 2$.

Since $xy \notin F$ and xy is not a pendent edge, by step 3 of algorithm, either xy = uv or xy = vw for some $w \in N(v), w \neq u$.

If xy = uv then by step 3 of algorithm, all the edges incident at x = u are in F (except uv = xy).

If xy = vw for some $w \in N(v)$, $w \in u$ then also by step 3 of algorithm, all the edges incident at y = w are in F (except vw = xy).

Thus, F is an edge H-dominating set of G.

Definition 2.3 Let G be a graph and F be an edge H-dominating set of G. The set F is said to be a minimal edge H -dominating set if $F - \{e\}$ is not an edge H -dominating set for every edge $e \in F$

Example 2.4 The edge sets {12, 45, 56}, {34,15, 56} are minimal edge *H* -dominating sets of the graph given in figure 1.

Question 2.5 Is the set *F* obtained by the algorithm minimal ?

Answer: Yes.

Proof: To prove F is minimal, it is enough to prove $F - \{xy\}$ is not an edge H-dominating set, for any edge $xy \in F$.

Since xy is an edge of G which belongs to F and F is an edge H-dominating set obtained by applying the algorithm on G, there are following three possibilities about xy of F.

Case 1. $xy \in F$ is an isolated edge of G.

Since xy is an isolated edge of G and $xy \in F$. $F - \{xy\}$ is not an edge H-dominating set of G.

Case 2. $xy \in F$ is a pendent edge of G.

Since xy is a pendent edge of G and $xy \in F$. By (II) of step 2 of algorithm, there is at least one pendent edge e of the graph G such that e is adjacent to xy and $e \notin F$. If xy is removed from F then we get two adjacent pendent edges e and xy outside F. It

means that $F - \{xy\}$ g is not an edge H-dominating set of G.

Case 3. $xy \in F$ is neither isolated nor pendent edge of *G*. By step 3 of algorithm, either xy is incident to a vertex *u* of an edge $uv \notin F$ or xy is incident to a vertex *w* of an edge $vw \notin F$ for *some* $w \in N(v)$, $w \neq u$.

3(i). If *xy* is incident to a vertex *u* of an edge $uv \notin F$ also by step 3 of algorithm, $vw \notin F$ for all $w \in N(v)$, $w \neq u$. Therefore, in case of $F - \{xy\}$, there is an edge $uv \notin F$ such that an edge *xy* incident to *u* and $xy \notin F - \{xy\}$ also there is an edge *vw* incident to *v* with $w \neq u$ and $vw \notin F - \{xy\}$. Thus, *uv* does not edge H-dominated by the edges of $F - \{xy\}$. Hence $F - \{xy\}$ is not an edge H-dominating set of *G*. **3(ii).** If *xy* is incident to a vertex *w* of an edge $vw \notin F$ for some $w \notin N(v)$, $w \neq u$ then by similar argument, we prove that an edge $vw (w \neq u, w \notin N(v))$ does not edge H-dominated by edges of $F - \{xy\}$. Hence $F - \{xy\}$ is not an edge $Vw (w \neq u, w \notin N(v))$ does not edge H-dominated by edges of $F - \{xy\}$.

Hence F is a minimal edge H-dominating set of G.

References

- [1]. S. Arumugam and S. Velammal, Edge Domination in Graphs, Taiwanese Journal ofMathematics, 2(2) 1998, 173-179.
- [2]. T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamental of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
- [3]. S. Mitchell and S. T. Hedetniemi, Edge Domination in Trees, Congr. Numer. 19 (1977), 489-509.
- [4]. Serge Plotkin. Optimization Paradigms. Lecture Notes for 2009-2010 Academic Year, January 2010.
- [5]. D. K. Thakkar and B. M. Kakrecha, About the Edge Domination Number of the Graphs, ATAM-RIP, 11(2) (2016), 93-98.
- [6]. D. K. Thakkar and B. M. Kakrecha, Vertex Removal and the Edge Domination Number of Graphs, IJMAA, 4(2A) (2016) 1-5.
- [7]. D. K. Thakkar and B. M. Kakrecha, Edge H-domination in Graphs, Submitted for publication.