

A Peer Reviewed International Journal, Contents available on www.bomsr.com

Vol.4. S1.2016; ISSN: 2348-0580

Email:editorbomsr@gmail.com

DUO NOETHERIAN SEMIGROUPS

A. GANGADHARA RAO¹, J.M.PRADEEP², P.M.PADMALATHA³., P. RAMYA LATHA⁴

 ¹ Dept. of Mathematics V S R & N V R College, Tenali,
² Dept. of Mathematics A.C. College, Guntur,
³ Dept. of Mathematics , J M J College for women, Tenali, ⁴Vignan's Lara Engineering College, Tenali,A.P. India. raoag1967@gmail.com,

ABSTRACT

In this paper the terms Noetherian semigroup, closed semigroup and center of a semigroup are introduced. It is proved that if S is a noetherian semigroup containing proper ideals, then S has a maximal ideal. It is proved that if H is the collection of all ideals in a duo semigroupS which are not principal and $H \neq \emptyset$, then there exists a prime ideal of S which is not a principal ideal. It is proved that if every prime ideal including S is principal in a duo semigroup S, then every ideal in S is principal. Also it is proved that if S is a duo semigroup, which is a union of finite number of principal ideals and every proper prime ideal of S is principal and $S = S^2$ then every proper ideal is principal. If S is a duo semigroup such that $S \neq S^2$ and every maximal ideal is principal then it is proved that (1) S has atmost two maximal ideals and (2) if P is a proper prime ideal of S then either P is a principal ideal or P = xP for some $x \in S$. If every maximal ideal in a closed duo semigroup S is principal and $S \neq S^2$, $< x >^w = \emptyset$ for every $x \in S$, then it is proved that S is a union of two principal ideals and every ideal is an intersection of a prime ideal and an S-primary ideal. If S is a noetherian or archimedian duo

semigroup such that $S = \bigcup_{i=1}^{i=1} \langle x_i \rangle$ and suppose $a \notin \langle x_i a \rangle$ for all $a \in S$, which is not a product of power of x_i 's, then it is proved that S is finitely generated and in particular if S is noetherian cancellative semigroup without identity then S is finitely generated. If S is a duo semigroup which is a union of finite number of principal ideals and if $S = S^2$, then it is proved that S contains idempotent elements. If S is a cancellable duo semigroup which is a union of finite number of principal ideals and $S = S^2$.

KEY WORDS : Chained semigroup, duo chained semigroup, noetherian semigroup and center of a semigroup.

1. PRELIMINARIES :

DEFINITION 1.1 : Let S be any non-empty set. Then S is said to be a

semigroup if there exist a mapping from S×S to S which maps

 $(a, b) \rightarrow ab$ satisfying the condition : (ab)c = a(bc) for all $a, b, c \in S$.

NOTE 1.2:Let S be a semigroup. If A and B are two subsets of S, we shall denote the set $\{ab : a \in A, b \in B\}$ by AB.

DEFINITION 1.3: A nonempty subset A of a semigroup S is said to be a left

ideal of S if $s \in S, a \in A$ implies $sa \in A$.

NOTE 1.4:A nonempty subset A of a semigroup S is aleft ideal of S iff SA⊆A.

A Peer Reviewed International Journal, Contents available on www.bomsr.com

Vol.4. S1.2016; ISSN: 2348-0580

Email:editorbomsr@gmail.com

DEFINITION1.5: A nonempty subset A of a semigroup S is said to be a *right*

ideal of S if $s \in S, a \in A$ implies $as \in A$.

NOTE 1.6 :A nonempty subset A of a semigroup S is aright ideal of Siff AS⊆A.

DEFINITION 1.7: A nonempty subset A of a semigroup S is said to be a *two sided ideal* or simply a *ideal* of S if $s \in S$, $a \in A$ imply $sa \in A$, $as \in A$.

NOTE 1.8 : A nonempty subset A of a semigroup S is atwo sided ideal iff it is both a left ideal and a rightideal of S.

THEOREM 1.9 : The nonempty intersection of any two (left or right) ideals of a semigroup S is a (left or right) ideal of S.

THEOREM 1.10 : The nonempty intersection of any family of (left or right) ideals of a semigroup S is a (left or right) ideal of S.

THEOREM 1.11 : The union of any two (left or right) ideals of a semigroup S is a (left or right) ideal of S.

THEOREM 1.12 : The union of any family of (left or right) ideals of a

semigroup S is a(left or right) ideal of S.

DEFINITION 1.13: A semigroup S is said to be a *left duo semigroup* provided every left ideal of S is a two sided ideal of S.

DEFINITION 1.14 : A semigroup S is said to bea *right duo semigroup* provided every right ideal of S is a two sided ideal of S.

DEFINITION 1.15 : A semigroup S is said to be a *duo semigroup* provided it is both a left duo Semigroup and a right duosemigroup.

THEOREM 1.16 : A semigroup S is a duo semigroup if and only if $xS^1 = S^1x$ for all $x \in S$.

THEOREM 1.17 : Let A be a ideal in a duo semigroup S and $a, b \in S$. Then $ab \in A$ if and only if $\langle a \rangle \langle b \rangle \subseteq A$.

COROLLARY 1.18 : Let A be a ideal in a duo semigroup S. Then for any natural number n, $a^n \in A$ implies $\langle a \rangle^n \subseteq A$.

DEFINITION 1.19: An ideal A of a semigroup S is said to be a *maximal ideal* provided A is a proper ideal of S and A is not properly contained in any proper ideal of S.

DEFINITION 1.20 : An ideal P of a semigroup S is said to be a completely prime

ideal provided $x, y \in S$ and $xy \in P$ implies either $x \in P$ or $y \in P$.

DEFINITION 1.21: An ideal P of a semigroup S is said to be a *primeideal* provided A, B are two ideals of S and $AB \subseteq P \Rightarrow$ either $A \subseteq P$ or $B \subseteq P$.

COROLLARY 1.22: An ideal P of a semigroup S is a prime ideal iff*a*, $b \in S$ such that $ab \in P$, then either $a \in P$ or $b \in P$.

THEOREM 1.23 : Let S be a duo semigroup. An ideal P of S is prime ideal if and only if P is a completely prime ideal.

DEFINITION 1.24 : If A is an ideal of a semigroup S, then the intersection of all prime ideals of S containing A is called *prime radical* or simply *radical* of A and it is denoted by **VA** or *rad* **A**.

A Peer Reviewed International Journal, Contents available on www.bomsr.com

Vol.4. S1.2016; ISSN: 2348-0580

Email:editorbomsr@gmail.com

DEFINITION 1.25 : If A is an ideal of a semigroup S, then the intersection of all completely prime ideals of S containing A is called *completeprime radical* or simply *completeradical* of A and it is denoted by *c. rad A*.

NOTE 1.26 : If A is an ideal of a semigroup S then rad A = A₃ and c.rad A = A₄.

THEOREM 1.27 : If A is an ideal of a duo semigroup S, then rad A = c.rad A.

NOTATION 1.28 : If A is an ideal of a semigroup S, then we associate the following four types of sets.

A₁ = The intersection of all completely prime ideals of S containing A.

 $A_2 = \{x \in S : x^n \in A \text{ for some natural number } n\}$

 A_3 = The intersection of all prime ideals of S containing A.

 $A_4 = \{x \in S : <x >^n \subseteq A \text{ for some natural number } n \}$

THEOREM 1.29 : If A is an ideal of a semigroup S, then $A \subseteq A_4 \subseteq A_3 \subseteq A_2 \subseteq A_1$.

THEOREM 1.30 : If A is an ideal in a duo semigroup S then $A_1 = A_2 = A_3 = A_4$.

DEFINITION 1.31 : A semigroup S is said to be an *archimedian semigroup* provided for any

 $a, b \in S$, there exists a natural number n such that $a^n \in \langle b \rangle$.

DEFINITION 1.32 : A ideal A of a semigroup S is said to be a left primary ideal provided

i) If X, Y are two ideals of S such that $XY \subseteq A$ and $Y \nsubseteq A$ then $X \subseteq \sqrt{A}$.

ii) VA is a prime ideal of S.

DEFINITION 1.33 : An ideal A of a semigroup S is said to be a right primary

ideal provided

i) If X, Y are two ideals of S such that $XY \subseteq A$ and $X \nsubseteq A$ then $Y \subseteq \sqrt{A}$.

ii) VA is a prime ideal of S.

DEFINITION 1.34 : An ideal A of a semigroup S is said to be a *primary ideal* provided A is both a left primary ideal and a right primary ideal.

THEOREM 1.35 : Let A be an ideal of a semigroup S. Then X, Y are two

ideals of S such that $XY \subseteq A$ and $Y \not\subseteq A \Rightarrow X \subseteq \sqrt{A}$ if and only if $x, y \in S$,

 $\langle x \rangle \langle y \rangle \subseteq A$ and $y \notin A \Rightarrow x \in \sqrt{A}$.

THEOREM 1.36 : Let A be an ideal of a semigroup S. Then X, Y are two

ideals of S such that $XY \subseteq A$ and $X \not\subseteq A \Rightarrow Y \subseteq \sqrt{A}$ if and only if $x, y \in S$,

 $\langle x \rangle \langle y \rangle \subseteq A$ and $x \notin A \Rightarrow y \in \sqrt{A}$.

DEFINITION 1.37 : A ideal A of a semigroup S is said to be *semiprimary* provided VA is a prime ideal of S.

DEFINITION 1.38 : A semigroup S is said to be a *semiprimary semigroup* provided every ideal of S is a semiprimary ideal.

THEOREM 1.39 : Every left primary or right primary ideal of a semigroup is a semiprimary ideal. DEFINITION 1.40 :Let P be any prime ideal in a semigroup S. A primary ideal A in S is said to be *P*-

primary or P is a prime ideal belonging to A provided $\sqrt{A} = P$. DEFINITION 1.41 :Let S be any prime ideal in a semigroup S. A primary ideal A in S is said to be S-

primary or S is a prime ideal belonging to A provided $\sqrt{A} = S$.

A Peer Reviewed International Journal,

Contents available on www.bomsr.com

Vol.4. S1.2016; ISSN: 2348-0580

Email:editorbomsr@gmail.com

THEOREM 1.42 : If A_1, A_2, \ldots, A_n are P-primary ideals in a semigroup S, then $\sum_{i=1}^{1} \sum_{j=1}^{n-1}$ is also a P-primary ideal.

DEFINITION 1.43 :An ideal A in a semigroup S is said to have a (*left, right*) *primary decomposition* if $A = A_1 \cap A_2 \cap \ldots \cap A_n$ where each A_i is a (left, right) primary ideal. If no A_i contains $A_1 \cap A_2 \cap \ldots \cap A_i$. $_1 \cap A_{i+1} \cap \ldots \cap A_n$ and the radicals P_i of the ideals A_i are all distinct, then the primary decomposition is said to be *reduced*. If P_i is minimal in the set

{ P_1, P_2, \ldots, P_n } then P_i is said to be *isolated prime*.

THEOREM 1.44 :Every ideal in a (left, right) duo noetherian semigroup S has a reduced (right, left) primary decomposition.

NOTE 1.45 : If S is a semigroup and $a \in S$ then we denote $a > m = \bigcap_{n=1}^{\infty} \langle a \rangle^n$

$$\langle a \rangle^{w} = \bigcap_{n=1}^{\infty} \langle a^{n} \rangle = \bigcap_{n=1}^{\infty} a^{n} S^{1}$$
.

NOTE 1.46 : If S is a duo Γ -semigroup then

DEFINITION1.47 : An element *a* of semigroup S is said to be *semisimple* provided $a \in \langle a \rangle^2$, that is $\langle a \rangle^2 = \langle a \rangle$.

DEFINITION 1.48 : An element *a* of semigroup S is said to be an *idempotent* or if $a^2 = a$.

DEFINITION 1.49 : A semigroup S is said to be an *idempotent semigroup* provided every element of S is an idempotent.

DEFINITION 1.50 : An element *a* of a semigroup S is said to be *regular* provided

a = axa, for some $x \in S$.

DEFINITION 1.51: A semigroup S is said to be *a regular semigroup* provided every element of S is regular.

THEOREM 1.52 : If S is a duo semigroup, then *a* is regular if and only if *a* is semisimple for any element $a \in S$.

THEOREM 1.53 : If a semigroup S contains regular elements then S contains idempotents.

THEOREM 1.54 : If a semigroup S regular then S contains idempotents.

DEFINITION 1.55: A semigroup S is said to be a *group* if

(1) $\exists e \in S \ni ae = ea = a$ for all $a \in S$.

(2) every element $a \in S$ has a inverse in S.

2. DUO NOETHERIAN SEMIGROUPS :

DEFINITION 2.1 :A semigroup S is said to be a *noetherian semigroup* if ascending chain of ideals becomes stationary.i.e., if $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$ is an ascending chain of ideals of S, then there exists a natural number *m* such that $A_m = A_n$ for all natural numbers $n \ge m$.

NOTE 2.2 : A semigroup S is noetherian if and only if every ideal of S is a union of finite number of principal ideals of S.

"RECENT ADVANCES IN MATHEMATICS AND ITS APPLICATIONS" (RADMAS- 2016) 17th&18th November, 2016, Department of Mathematics, St. Joseph's College for Women (Autonomous) , Visakhapatnam

A Peer Reviewed International Journal, Contents available on www.bomsr.com

Vol.4. S1.2016: ISSN: 2348-0580

Email:editorbomsr@gmail.com

THEOREM 2.3 : If S is a noetheriansemigroup containing proper ideals then S has a maximal ideal.

Proof: Let A_1 be a proper ideal of S. If A_1 is not a maximal ideal of S, then there exists a proper ideal A_2 of S such that $A_1 \subset A_2$. If A_2 is not a maximal ideal of S, then there exists a proper ideal A_3 of S such that $A_1 \subset A_2 \subset A_3$. By continuing this process we get an ascending chain of proper ideals of S. Since S is noetherian, the chain $A_1 \subset A_2 \subset A_3$... is stationary. It is a contradiction. Therefore there exists a maximal ideal of S.

THEOREM 2.4 : Let H be the collection of all ideals in aduo semigroup S which are not principal. If $H \neq \emptyset$ then there exists a prime ideal which is not a principal ideal.

Proof: Let H = { A_{α} : $\alpha \in \Delta$ } be the collection of all ideals in a duo semigroup S, which are not principal. If $\alpha \in \Delta$ = <x> for some $x \in S$, then $x \in A_{\beta}$ for some $\beta \in \Delta$. Therefore $<x>\subseteq A_{\beta} \subseteq \overset{\alpha \in \Delta}{=} = <x>$ and hence $A_{\beta} = <x>$. Then $A_{\beta} \notin H$. It is a contradiction. Hence $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is not principal. So $\bigcup_{\alpha \in \Delta} A_{\alpha} \in H$. Thus H satisfies all the conditions of Zorn's lemma. By Zorn's lemma, H has a maximal element say P. Suppose if possible P is not a prime ideal. Then there exists $a, b \in S$ such that $ab \subseteq P$ and $a \notin P$ and $b \notin P$. Since P is maximal in H, $P \cup \langle b \rangle \notin H$. Therefore $P \cup \langle b \rangle$ is a principal ideal. Then $P \cup \langle b \rangle = \langle x \rangle$ for some $x \in S$. If $x \in P$ then we get P = <x> and hence $b \in P$. It is not true. Hence $x \notin P$. Therefore $x \in < b$ >and hence $\langle b \rangle = \langle x \rangle$. Hence $P \subseteq \langle b \rangle$. Now $P' = \{s \in S : sb \in P\}$ is an ideal of S. Then clearly $a \in P'$ and $a \notin P$. Therefore $P \subset P'$ and $P \neq P'$. By the maximality of P in H, we get $P' \notin H$. Therefore $P' = \langle y \rangle$ for some $y \in S$. Now $y \in P' \Rightarrow yb \in P \Rightarrow \langle yb \rangle \subseteq P$. Let $t \in P$. Since $P \subseteq \langle b \rangle$, we have t = sb for some $s \in S$. Now $sb \in P$. Hence $s \in P' = \langle y \rangle$. Therefore s = ry for some $r \in S$. Now $t = sb = (ry)b = r(yb) \in \langle yb \rangle \Rightarrow t \in \langle yb \rangle = \langle yb \rangle$. Therefore we have $P \subseteq \langle yb \rangle$. Hence $P = \langle yb \rangle$. Thus P \notin H. It is a contradiction. Therefore P is a prime ideal. COROLLARY 2.5 : If H is the collection of all ideals in a duo semigroup S, which are not finitely generated and H $\neq \emptyset$, then there exists a prime ideal which is not finitely generated.

THEOREM 2.6 : If every prime ideal including S is principal in a duo semigroup S, then every ideal in S is principal.

Proof: Let Hbe the collection of all ideals in S which are not principal. If $H \neq \emptyset$ then by theorem 2.4, H contains a proper prime ideal which is not principal. It is a contradiction. Hence $H = \emptyset$. Therefore every ideal in S is principal.

COROLLARY 2.7 : If every prime ideal including S is finitely generated in a duo semigroup S, then every ideal in S is finitely generated.

THEOREM 2.8 : Let S be a duo semigroup, which is a union of finite number of principal ideals. If every proper prime ideal of S is principal and $S = S^2$ then every proper ideal is principal.

A Peer Reviewed International Journal, Contents available on www.bomsr.com

Vol.4. S1.2016; ISSN: 2348-0580

Email:editorbomsr@gmail.com

Proof :Since S is a duo semigroup which is a union of finite number of principal

 $\bigcup_{i=1}^{n} \langle x_i \rangle$ ideals, S = i=1 where $x_i \notin \langle x_j \rangle$ for all $i \neq j$. Since S = S², $x_i \in \langle x_i^2 \rangle$ for i = 1, 2, ..., n. Thus x_i is semi simple and hence by theorem 1.52, x_i is regular. By theorem 1.54, $\langle x_i \rangle = \langle e_i \rangle$ for some idempotent e_i in S. Let A be any proper ideal such that $\sqrt{A} = S$. Therefore $e_i \in e_i^n$ for all i = 1, 2, ..., n. Therefore $x_1, x_2, ..., x_n \in A$ and hence S = A. It is a contradiction. Therefore there exists no ideal of A of S such that $\sqrt{A} = S$. By theorem 2.6, every proper ideal is principal.

THEOREM 2.9 : If S is a duo semigroup such that $S \neq S^2$ and every maximal ideal is principal then S has atmost two maximal ideals.

Proof: Let S be a duo semigroup such that $S \neq S^2$. Suppose that every maximal ideal is principal. Let $a \in S \setminus S^2$. Then $S \setminus \{a\}$ is a maximal ideal. Therefore $S \setminus \{a\} = \langle b \rangle$ for some $b \in S$. Clearly $a \neq b$. Let $b \in S^2$. Then $S \setminus \{a\} = \langle b \rangle \subseteq S^2$ and hence $S \setminus \{a\} = S^2$. Let M be a maximal ideal of S. Then $M = \langle c \rangle$ for some $c \in S$. If $c \in S^2$ then $M \subseteq S^2$ Since M is maximal, $M = S^2 = S \setminus \{a\}$. If $c \notin S^2$ then $c \notin S \setminus \{a\}$ and hence c = a. Thus $M = \langle a \rangle$. So if $b \in S^2$, S can have at most two maximal ideals, namely $S \setminus \{a\}$ and $\langle a \rangle$. Let $b \notin S^2$. Then $S = \langle b \rangle \cup \{a\} = \{a\} \cup \{b\} \cup S^2$. Let $M = \langle c \rangle$ be a maximal ideal. If $c \notin S^2$ then $c \notin S^2$ then $c \notin S^2$ then $c \notin S^2$.

 $M = S \setminus \{a\}$ or $M = S \setminus \{b\}$. If $c \in S^2$ then $M = S^2$ and hence M is properly contained in a proper ideal $S \setminus \{a\}$. It is a contradiction. Hence S has at most two maximal ideals.

THEOREM 2.10 : Let S be a duo semigroup such that $S \neq S^2$ and every maximal

ideal is principal. If P is a proper prime ideal of S then either P is a principal ideal or P = xP for some $x \in S$.

Proof: Let P be any proper prime ideal and $a \in S \setminus S^2$. Now $S \setminus \{a\}$ is a maximal ideal. Therefore $S \setminus \{a\} = \langle b \rangle$ for some $b \in S$. If $a \notin P$ then $P \subseteq S \setminus \{a\} = \langle b \rangle$. If $b \in P$ then

 $P = \langle b \rangle$. If $b \notin P$ then P = bP, since P is a prime ideal. Let $a \in P$. If $b \in P$ then

P = S. If $b \notin P$ then $P \subseteq S \setminus \{b\}$. Since $S \setminus \{b\}$ is maximal ideal, we have $P \subseteq S \setminus \{b\} = \langle x \rangle$ for some $x \in S$. If $x \in P$ then $P = \langle x \rangle$. If $x \notin P$, let $y \in P$. Then $y \in \langle x \rangle$. So $y \in xS \subseteq P$ for some $s \in S$. Since P is prime, $s \in P$. Hence $y \in P \subseteq xP$. Clearly $xP \subseteq P$. Hence

 $P = \langle x \rangle$ or P = xP for some $x \in S$.

THEOREM 2.11 : If every maximal ideal in a duo semigroup S is principal and $S \neq S^2$, $\langle x \rangle^w = \emptyset$ for every $x \in S$, then S is a union of two principal ideals and every ideal is an intersection of a prime ideal and an S-primary ideal.

Proof: Let P be any proper prime ideal of S. By theorem 2.10, either P is a principal ideal or P = x P for some $x \in S$. If P = x P for some $x \in S$, then $x^n P = P$ for all natural numbers *n*. Thus

$$P = \bigcap_{n=1}^{\infty} x^n P \subseteq \bigcap_{n=1}^{\infty} \langle x^n \rangle = \langle x \rangle^w = \Phi$$

^{*n*=1} . It is a contradiction. Therefore $P = \langle x \rangle$ for some $x \in S$. Thus every proper prime ideal is a principal ideal. If $a \in S \setminus S^2$ then by hypothesis, the maximal ideal $S \setminus \{a\}$ is of the form $\langle b \rangle$ for some $b \in S$. Therefore $S = \{a\} \cup \langle b \rangle = \langle a \rangle \cup \langle b \rangle$. Then every ideal of S is an intersection of a prime ideal and an S-primary ideal of S.

A Peer Reviewed International Journal, Contents available on www.bomsr.com

Vol.4. S1.2016; ISSN: 2348-0580

Email:editorbomsr@gmail.com

THEOREM 2.12 : Let S be a duo noetherian semigroup such that $S = \bigcup_{i=1}^{i=1} Suppose$ $a \notin x_i a > for all a \in S$, which is not a product of power of x_i 's. Then S is finitely generated. In particular if S is noetherian cancellative semigroup without identity then S is finitely generated. *Proof* : Suppose that there exists an element *a* such that *a* is not a product of x_i 's. If $a = x_i s_1$ where $a \neq s_1$ is not a product of power of x_i 's. Hence $s_1 = x_j s_2$ where s_2 is not product of powers of x_i 's. If $s_2 \in s_1 >$ then $s_2 = s_1 r$ for some $r \in S^1$ and hence

 $s_1 = x_j(s_1r) \in \langle x_js_1 \rangle$, which is not true. Hence $\langle s_1 \rangle \subset \langle s_2 \rangle$. By continuing this process, we get a nonterminating chain of ideals $\langle s_1 \rangle \subset \langle s_2 \rangle \subset \langle s_3 \rangle \subset \cdots$ Since S is noetherian, it is a contradiction. So S is finitely generated. If S is a cancellative semigroup and if a = a(ba), then ba is an identity in S. It is a contradiction. So $a \notin \langle x_i a \rangle$ for all $a \in S$. As above, we have S is finitely generated.

THEOREM 2.13 : Let S be a duo semigroup which is a union of finite number of principal ideals. If S = S², then S contains idempotent elements.

$$\bigcup_{i=1}^{n} \langle x_i \rangle$$

Proof: Suppose that S = i = 1 and $x_i \notin \langle x_j \rangle$ for $i \neq j$ and $S = S^2$. Since $S = S^2$, we have $x_i \in \langle x_i \rangle^2$ for each i = 1, 2, 3, ..., n. Therefore each x_i is semi-simple in S. By theorem 1.52, x_i is regular in S and hence by theorem 1.53, S contains idempotents.

THEOREM 2.14 : Let S be a cancellable duo semigroup which is a union of finite number of principal ideals. Then S contains identity if and only if $S = S^2$.

Proof :Suppose that S is a cancellable duo semigroup and $S = S^2$. By theorem 2.13, S contains idempotent element say *e*. Let $a \in S$. Then a(ee) = ae. Since S is cancellative, ae = a. Similarly ea = a. Then *e* is the identity in S. Therefore S contains the identity. Conversely suppose that S contains the identity. Then clearly $S = S^2$.

REFERENCES

- [1]. Anjaneyulu. A, and Ramakotaiah. D., *On a class of semigroups,* Simon stevin, Vol.54(1980), 241-249.
- [2]. Anjaneyulu. A., *Structure and ideal theory of Duo semigroups*, Semigroup Forum, Vol.22(1981), 257-276.
- [3]. Anjaneyulu. A., Semigroup in which Prime Ideals are maximal, Semigroup Forum, Vol.22(1981), 151-158.
- [4]. Clifford. A.H. and Preston. G.B., *The algebraic theory of semigroups,* Vol-I, American Math.Society, Providence(1961).
- [5]. Clifford. A.H. and Preston. G.B., *The algebraic theory of semigroups*, Vol-II, American Math.Society, Providence(1967).
- [6]. Giri. R. D. and Wazalwar. A. K., *Prime ideals and prime radicals in non-commutative semigroup,* Kyungpook Mathematical Journal Vol.33(1993), no.1,37-48.
- [7]. SATYANARAYANA M., *Commutative primary semigroups* Czechoslovak Mathematical Journal.22(97), (1972) 509-516.

Proceedings of UGC Sponsored Two Day National Conference on

[&]quot;RECENT ADVANCES IN MATHEMATICS AND ITS APPLICATIONS" (RADMAS– 2016) 17th&18th November, 2016, Department of Mathematics, St. Joseph's College for Women (Autonomous) , Visakhapatnam

A Peer Reviewed International Journal,

Contents available on <u>www.bomsr.com</u>

Vol.4. S1.2016; ISSN: 2348-0580

Email:editorbomsr@gmail.com

- [8]. SATYANARAYANA M., Commutative semigroups in which primary ideals are prime, Math. Nachr., Band 48 (1971), Heft 1-6, 107-111.
- [9]. Sen. M.K. and Saha. N.K., On Γ-Semigroups-I, Bull. Calcutta Math. Soc. 78(1986), No.3, 180-186.
- [10]. Sen. M.K. and Saha. N.K., On Γ-Semigroups-II, Bull. Calcutta Math. Soc. 79(1987), No.6, 331-335.