RADMAS- 2016

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Journal, Contents available on www.bomsr.com

Vol.4. \$1.2016; ISSN: 2348-0580

Email:editorbomsr@gmail.com

SOME CHARACTERIZATIONS OF VAGUE 'N' GROUPS

N. RAMAKRISHNA 1. CH.MALIKA 2

Department of Mathematics, Mrs. A.V.N. College, Visakhapatnam-530 001, India. nrk8367@yahoo.co.in¹, mallikakodavati5@gmail.com²

ABSTRACT

In this paper we introduce the concepts of Vague N set, Vague N group and we studied their properties. These concepts are used in the development of some important results and theorems in vague algebra.

Keywords: Vague set, Vague group, Vague N set, Vague N group.

Mathematics Subject Classification (2000): 08A72, 20N25, 03E72.

1. Introduction

Gau.W.L and Bueher D.J. [1] have initiated the study of vague sets as an improvement over the theory of fuzzy sets to interpret and solve real life problems which are in general vague. Ranjit Biswas [5] initiated the study of vague groups. In this paper we introduce the concept of vague N set, Vague N group and we studied the some of their properties.

2. Preliminaries: We discuss here a review of some definitions and results which are in Gau. W. L. and Buehrer [1], Ranjit Biswas [5].

Definition 2.1: A vague set A in the universe of discourse U is a pair (t_A, f_A) where $t_A: U \to [0,1]$, $f_A: U \to [0,1]$, are mappings such that $t_A(u) + f_A(u) \le 1$, for all $u \in U$. The functions t_A and t_A are called true membership function and false membership function respectively.

Definition 2.2: The interval $[t_A(u), 1-f_A(u)]$ is called the vague value of u in A, and it is denoted by $V_A(u)$. i.e. $V_A(u) = [t_A(u), 1-f_A(u)]$.

Definition 2.3 : Let (G , *) be a group. A vague set A of G is called a vague group of G if for all x,y in G $V_A(xy) \ge imin\{V_A(x),V_A(y)\}$ and $V_A(x^{-1}) \ge V_A(x)$ for all x in G .

i.e.
$$t_A(xy) \ge min\{t_A(x), t_A(y)\}$$
 , $f_A(xy) \le max\{f_A(x), f_A(y)\}$

and
$$t_A(x^{-1}) \ge t_A(x)$$
, $f_A(x^{-1}) \le f_A(x)$.

Here the element xy stands for x * y.

Notation 2.3: Let I[0,1] denotes the family of all closed subinterval of [0,1]. If $I_1=[a_1,b_1]$ and $I_2=[a_2,b_2]$ be two elements of I[0,1]. We call $I_1\geq I_2$ if $a_1\geq a_2$ and $b_1\geq b_2$, with the order in I[0,1] is a lattice with operations min., or inf and max. or sup given by imin. $\{I_1,I_2\}=[min.(a_1,a_2),min.(b_1,b_2)]$, $imax\{I_1,I_2\}=[max.(a_1,a_2),max.(b_1,b_2)]$

3. Vague N set and Vague N group

Now we introducing the following

THE PARTY OF THE P

RADMAS-2016

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Journal, Contents available on www.bomsr.com

Vol.4. \$1.2016; ISSN: 2348-0580

Email:editorbomsr@gmail.com

Definition 3.1: A vague N set A_N in the universe of discourse X is a pair (t_{A_N}, f_{A_N}) where $t_{A_N}: X \times N \to [0,1]$, $f_{A_N}: X \times N \to [0,1]$, are mappings such that $t_{A_N}(x,n) + f_{A_N}(x,n) \le 1$

for all $(x,n) \in X \times N$. The functions t_{A_N} and f_{A_N} are called true membership function and false membership function respectively.

Definition 3.2: If $A_N = (t_{A_N}, f_{A_N})$, $B_N = (t_{B_N}, f_{B_N})$ are two vague N sets of X then their intersection is defined as $V_{(A_N \cap B_N)}(x,n) = imin.\{V_{A_N}(x,n),V_{B_N}(x,n)\}$.

i.e. $t_{(A_N \cap B_N)}(x,n) = min.\{t_{A_N}(x,n),t_{B_N}(x,n)\}$ and

 $f_{(A_N\cap B_N)}(x,n)=max.\{f_{A_N}(x,n),f_{B_N}(x,n)\}$, for x in G and n in N.

Here the element x y stands for x * y.

Theorem 3.4: If A_N is a vague N group of group G then for all ${\bf x}\in G$, $n\in N$, $V_{A_N}(x^{-1},n)=V_{A_N}(x,n)$

Proof: Let $A_{\scriptscriptstyle N}$ be a vague N group of a group G ,we have

 $V_{A_{\scriptscriptstyle N}}(x^{-1},n)\!\ge\!V_{A_{\scriptscriptstyle N}}(x,n)$, for all $\mathsf{x}\in G$, $\mathsf{n}\in N$. Since $x^{-1}\in G$

we have $V_{A_N}(x,n) = V_{A_N}((x^{-1})^{-1},n) \ge V_{A_N}(x^{-1},n)$.

This implies $V_{A_N}(x^{-1},n)=V_{A_N}(x,n)$.

Theorem 3.5: If A_N is a vague N group of group G then for all $\mathbf{x} \in G$, $n \in N$, $V_{A_N}(e,n) \ge V_{A_N}(x,n)$.

Proof: Let A_N be a vague N group of a group G,

For all $x \in G$, $n \in N$ we have

$$V_{A_{N}}(e,n)=V_{A_{N}}((xx^{-1},n)\geq imin\{V_{A_{N}}(x,n),V_{A_{N}}(x^{-1},n)\}=imin\{V_{A_{N}}(x,n),V_{A_{N}}(x,n)\}=V_{A_{N}}(x,n)$$

This implies $V_{A_{\nu}}(e,n) \ge V_{A_{\nu}}(x,n)$, for all $x \in G$, $n \in N$.

Theorem 3.6: A necessary and sufficient condition for a vague N set of a group G to be a vague N group of G is that $V_{A_N}(xy^{-1},n) \geq imin.\{V_{A_N}(x,n),V_{A_N}(y,n)\}$.

 $\textbf{Proof: Let } \ A_{\!\scriptscriptstyle N} \ \text{ be a vague N set. Suppose } \ V_{\!\scriptscriptstyle A_{\!\scriptscriptstyle N}}(xy^{^{-1}},n) \geq imin.\{V_{\!\scriptscriptstyle A_{\!\scriptscriptstyle N}}(x,n),V_{\!\scriptscriptstyle A_{\!\scriptscriptstyle N}}(y,n)\}$

for all $x \in G$, $n \in N$. We have by theorem 3.4, $V_{A_{v_i}}(e,n) \ge V_{A_{v_i}}(x,n)$.

Now
$$V_{A_N}(x^{-1}, n) = V_{A_N}(ex^{-1}, n) \ge imin\{V_{A_N}(e, n), V_{A_N}(x, n)\}$$

=
$$V_{A_{\scriptscriptstyle N}}(x,n)$$
}. Thus $V_{A_{\scriptscriptstyle N}}(x^{-1},n)\!\geq\!V_{A_{\scriptscriptstyle N}}(x,n)$.

THE SAME AND THE S

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Journal, Contents available on www.bomsr.com

Vol.4. \$1.2016; ISSN: 2348-0580

Email:editorbomsr@gmail.com

RADMAS- 2016

Let x, y \in G , $n \in N$, $V_{A_N}(xy,n) = V_{A_N}(x(y^{-1})^{-1},n)$

 $\geq imin.\{V_{A_{N}}(x,n),V_{A_{N}}(y^{-1},n)\} \geq imin.\{V_{A_{N}}(x,n),V_{A_{N}}(y,n)\} \ . \ \text{This gives}$

 $A_{\scriptscriptstyle N}$ is a vague N group of G .

Conversely, $\ A_{\scriptscriptstyle N}$ is vague N group of G . Let ${\sf x}$, ${\sf y} \in G$, $n \in N$ we have

$$V_{A_N}(xy^{-1},n) \ge imin.\{V_{A_N}(x,n),V_{A_N}(y^{-1},n)\} = imin.\{V_{A_N}(x,n),V_{A_N}(y,n)\}.$$

This completes the proof.

Theorem 3.7: If A_N , B_N are two vague N groups of a group G then $A_N \cap B_N$ is also a vague N group of G.

Proof : $A_{\scriptscriptstyle N}$, $B_{\scriptscriptstyle N}$ are two vague N groups of a group G , we have

$$t_{(A_N \cap B_N)}(xy^{-1}, n) = min.\{t_{A_N}(xy^{-1}, n), t_{B_N}(xy^{-1}, n)\}$$

 $\geq \min\{\min\{t_{A_{N}}(x,n),t_{A_{N}}(y,n)\},\min\{t_{B_{N}}(x,n),t_{B_{N}}(y,n)\}\}.$

$$= min\{min\{t_{A_{N}}(x,n),t_{B_{N}}(x,n)\}, min\{t_{A_{N}}(y,n),t_{B_{N}}(y,n)\}\}$$

$$= min\{t_{(A_N \cap B_N)}(x,n), t_{(A_N \cap B_N)}(y,n)\}.$$

Thus $t_{(A_N \cap B_N)}(xy^{-1}, n) \ge min\{t_{(A_N \cap B_N)}(x, n), t_{(A_N \cap B_N)}(y, n)\}$.

Similarly we have $f_{(A_N \cap B_N)}(xy^{-1}, n) \le \max\{f_{(A_N \cap B_N)}(x, n), f_{(A_N \cap B_N)}(y, n)\}$.

Hence $V_{(A_N \cap B_N)}(xy^{-1}, n) \ge imin\{V_{(A_N \cap B_N)}(x, n), V_{(A_N \cap B_N)}(y, n)\}$.

Thus $A \cap B$ is a vague N group of group G.

Theorem 3.8: Let A_N be a vague N group of a group G .Then $V_{A_N}(xy^{-1},n)=V_{A_N}(e,n)$ implies $V_{A_N}(x,n)=V_{A_N}(y,n)$ for any x and y in G , n in N .

Proof: Suppose $V_{A_{v}}(xy^{-1},n) = V_{A_{v}}(e,n)$. Consider

 $V_{A_{N}}(x,n) = V_{A_{N}}(x.e,n) = V_{A_{N}}(x.y^{-1}.y,n) \geq imin. \\ \{V_{A_{N}}(x.y^{-1},n), V_{A_{N}}(y,n)\} = imin. \\ \{V_{A_{N}}(e,n), V_{A_{N}}(y,n)\} = V_{A_{N}}(y,n) \\ \text{since } V_{A_{N}}(e,n) \geq V_{A_{N}}(y,n) \text{ for all y in } G \ .$

This gives $V_{A_N}(x,n) \ge V_{A_N}(y,n)$, since $V_{A_N}(z,n) = V_{A_N}(z^{-1},n)$, we get

 $V_{A_N}(yx^{-1},n)=V_{A_N}(e,n)$ and now interchange the roles of x and y then we get $V_{A_N}(y,n)\geq V_{A_N}(x,n)$ This implies $V_{A_N}(x,n)=V_{A_N}(y,n)$.

Theorem 3.9: Let G be a group and A_N be a vague N group of G and if for a fixed y in G, if for all x in G, n in N: $V_{A_N}(x,n) \leq V_{A_N}(y,n)$ then $V_{A_N}(xy,n) = V_{A_N}(x,n) = V_{A_N}(yx,n)$.

 ${\bf Proof:} V_{{\cal A}_{{\cal N}}}(xy,n) \! \geq \! imin. \{ V_{{\cal A}_{{\cal N}}}(x,n), V_{{\cal A}_{{\cal N}}}(y,n) \} \! = \! V_{{\cal A}_{{\cal N}}}(x,n)$

implies $V_{A_N}(xy,n) \ge V_{A_N}(x,n)$, since by hypothesis $V_{A_N}(y,n) \ge V_{A_N}(x,n)$ for all x, we in particular have $V_{A_N}(x,n) \ge V_{A_N}(xy,n)$ by taking xy in place of x now

A THE STREET

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Journal, Contents available on www.bomsr.com

Vol.4. \$1.2016; ISSN: 2348-0580

Email:editorbomsr@gmail.com

RADMAS-2016

 $V_{A_{N}}(x,n) = V_{A_{N}}(x.e,n) = V_{A_{N}}(xy.y^{-1},n) \geq imin. \\ \{V_{A_{N}}(xy,n),V_{A_{N}}(y^{-1},n)\} = imin. \\ \{V_{A_{N}}(xy,n),V_{A_{N}}(y,n)\} = V_{A_{N}}(xy,n) \\ \text{which implies } V_{A_{N}}(x,n) \geq V_{A_{N}}(xy,n) \text{ .Thus}$

 $V_{A_N}(xy,n)=V_{A_N}(x,n)$. In a similar fashion , we have $V_{A_N}(yx,n)=V_{A_N}(x,n)$. This completes the theorem.

Theorem 3.10 : Let A_N be a Vague N group of group G and $x \in G$, $n \in N$. Then $V_{A_N}(xy,n) = V_{A_N}(y,n)$ for all $y \in G$ iff $V_{A_N}(x,n) = V_{A_N}(e,n)$.

 $\begin{aligned} &\textbf{Proof} \text{: Suppose } V_{A_N}\left(xy,n\right) = V_{A_N}\left(y,n\right) for \ all \ y \in G, n \in N \text{ . Chose } \ y = e \text{ in this equality then we} \\ &\text{have } V_{A_N}\left(x.e,n\right) = V_{A_N}\left(e,n\right) \text{ implies } V_{A_N}\left(x,n\right) = V_{A_N}\left(e,n\right) \text{ . Conversely, suppose} \\ &V_{A_N}\left(x,n\right) = V_{A_N}\left(e,n\right) \text{ .} \end{aligned}$

For any $y \in G$, $V_{A_N}(y,n) \le V_{A_N}(e,n)$ implies $V_{A_N}(y,n) \le V_{A_N}(x,n)$.

Now, $V_{A_{N}}(xy,n) \ge imin\{V_{A_{N}}(x,n),V_{A_{N}}(y,n)\} = V_{A_{N}}(y,n)$ by

(1). This implies $V_{A_{y}}(xy,n) \ge V_{A_{y}}(y,n)$ for all $y \in G$.

But
$$V_{A_N}(y,n) = V_{A_N}(e.y,n) = V_{A_N}(x^{-1}x.y,n) \ge imin\{V_{A_N}(x^{-1},n),V_{A_N}(xy,n)\}$$

$$= \min \{V_{A_N}(x,n), V_{A_N}(xy,n)\} = \min \{V_{A_N}(e,n), V_{A_N}(xy,n)\} = V_{A_N}(xy,n)$$

This implies $V_{A_N}(y,n) \ge V_{A_N}(xy,n)$. Thus $V_{A_N}(xy,n) = V_{A_N}(y,n)$.

Conclusion: Group theory has many applications in computer Science, Space Physics, Analytical Chemistry, etc, In this paper we introduced and studied the properties of vague N set and vague N group.

Acknowledgements: The authors are grateful to Prof. K. L. N. Swamy for his valuable suggestions and discussions on this work.

References

- [1]. Gau, W.L. and Buechrer, D.J., Vague sets, IEEE Transactions on systems, Man and Cybernetics, Vol 23(1993) 610-614.
- [2]. N.Ramakrishna, T.Eswarlal, GSV SatyasaiBaba, A.Characterization of Cyclic Groups in terms of L-Fuzzy Subgroups. Southeast Asian Bulletin of Mathematics, 2009, 33; pp 913-916
- [3]. N.Ramakrishna, A.Characterization of Cyclic Groups in terms of Vague groups,Int.journal of computational cognition,Vol.6 No.2,June 2008 pp 7-9.
- [4]. N.P.Mukharjee, Fuzzy normal subgroups and fuzzy cosets, information sciences 34, 225-239(1984).
- [5]. Ranjit Biswas, Vague Groups, Int. journal of computational cognition, Vol.4 No.2, June 2006.
- [6]. Rosenfeld A, Fuzzy groups. Jon. Maths. Anal. Appli. 35(1971)512`517.
- [7]. Zadeh, L.A., Fuzzy Sets, Infor and Control, volume 8 (1965) 338-353.