RADMAS- 2016

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Journal, Contents available on www.bomsr.com

Vol.4. \$1.2016; ISSN: 2348-0580

Email:editorbomsr@gmail.com

COMMON FIXED POINT THEOREMS FOR TWO SELF MAPS ON A PARTIALLY ORDERED b-METRIC-LIKE SPACES

K.P.R SASTRY¹, L.VIJAYA KUMAR^{2*}, P.KRISHNA KUMARI³, K.SUJATHA⁴

¹8-28-8/1, Tamil Street, ChinnaWaltair, Visakhapatnam - 530 017, India
 ²Faculty of Mathematics, Dr.B.R.Ambedkar University, Srikakulam-A.P - 530 003, India
 ³Head, Dept. of Mathematics, St. Joseph's College for Women(A), Visakhapatnam - 530 004, India
 ⁴Dept. of Mathematics, St. Joseph's College for Women(A), Visakhapatnam - 530 004, India

ABSTRACT

In this paper we establish common fixed point theorems fortwo self maps on a partially ordered b-metric-like spaces. Incidentally we obtain results of Nannan Fang [12] as corollaries.

Keywords: fixed point, b-metric-like space, partially ordered set, altering distance function. **Mathematics Subject Classification (2010):** Primary 54H25; Secondary 47H10, 54C30

Introduction and Preliminaries

Many generalizations of metric spaces have been introduced [1-5] and were studied with reference to fixed point theorem. The concept of b-metric spaces was introduced by Bahtin[6] and was used by Czersik[7] to study contraction mapping in b-metric spaces. Harandi[8] introduced the notion of metric like spaces and studied the existence of fixed points in such spaces. Alghamdi[9] introduced the notion of b-metric like spaces as natural generalization of metric spaces and metric like spaces. NannanFang [12]obtained common fixed point theorems in ordered b-metric spaces. In this paper we further investigate the existence of common fixed point for a pair of self maps on a partially ordered b-metric-like spaces. Incidentally we obtain the results of NannanFang [12]as corollaries. We begin with some known definitions

Definition(Bahtin[6]): A b-metric on a non empty set X is a function $d: X \times X \to [0, \infty)$ such that for all $x, y, z \in X$ and a constant $b \ge 1$ the following conditions hold.

i.
$$d(x, y) = 0 \iff x = y$$
.

ii.
$$d(x, y) = d(y, x)$$
.

iii.
$$d(x, y) \le b(d(x, z) + d(z, y))$$
.

The pair (X, d) is a called b-metric space.

Definition(Harandi [8]): A metric-like on a non empty set X is a function $d: X \times X \to [0, \infty)$ such that for all $x, y, z \in X$ the following conditions hold.

i.
$$d(x,y) = 0 \Rightarrow x = y$$
.

ii.
$$d(x, y) = d(y, x)$$
.

iii.
$$d(x, y) \le d(x, z) + d(z, y)$$
.

The pair (X, d) is a called metric-like space.

Definition(Alghamdi [9]):A b-metric-like on a non empty set X is a function $d: X \times X \to [0, \infty)$ such that for all $x, y, z \in X$ and a constant $b \ge 1$ the following conditions hold.

i.
$$d(x,y) = 0 \Rightarrow x = y$$
.

$$ii.d(x,y) = d(y,x).$$

iii.
$$d(x, y) \le b(d(x, z) + d(z, y))$$
.

THE PARTY OF THE P

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Journal, Contents available on www.bomsr.com

Vol.4. \$1.2016; ISSN: 2348-0580

Email:editorbomsr@gmail.com

RADMAS- 2016

The pair (X, d) is a called b-metric-like space.

Definition(Alghamdi [9]):Let(X, d) be a b-metric-like space and let $\{x_n\}$ be a sequence of points of X. A point $x \in X$ is said to be limit of the sequence $\{x_n\}$ if $\lim_{n \to \infty} d(x, x_n) = d(x, x)$ and we say that the sequence $\{x_n\}$ is convergent to x and it is denoted by $x_n \to x$ as $n \to \infty$.

Definition(Alghamdi [9]):Let (X, d) be a b-metric-like space.

i.A sequence $\{x_n\}$ is said to be Cauchy if $\lim_{m,n\to\infty}d(x_m,x_n)$ exists and is finite.

ii. A b-metric-like space (X,d) is said to be complete if every Cauchy sequence $\{x_n\}$ in X converges to $x \in X$, so that

$$\lim_{m,n\to\infty} d(x_m,x_n) = d(x,x) = \lim_{n\to\infty} d(x_n,x)$$

Definition (Khan,Swaleh,Sessa[10]):A function $\varphi:[0,\infty)\to[0,\infty)$ is called an altering distance function if the following properties hold.

 $i.\phi$ is continuous and non-decreasing.

$$ii.\varphi(t) = 0 \Leftrightarrow t = 0.$$

Definition (Ciric,Abbas,Saadati,Hussain[11]): Let (X, \leq) be a partially ordered set. Then two mappings $f, g: X \to X$ are said to be weakly increasing if $fx \leq gfx$ and $gx \leq fgx \ \forall x \in X$.

Main result

Before we go to the main result, we introduce the function $d^s: X^2 \to [0, \infty)$ on a b-metric-like space (X, d) as follows:

$$d^{s}(x,y) = |2d(x,y) - d(x,x) - d(y,y)| \ \forall \ x,y \in X....(A)$$

We observe that $d^s(x,x) = 0 \ \forall x \in X$.

Theorem 1. Let(X, \leq) be a partially ordered set and (X, d) bea complete b-metric-like space. Let f, g: $X \to X$ be two weakly increasing mappings with respect to \leq . Suppose

$$d(x,fx) \geq d(x,x)$$
 and $d(x,gx) \geq d(x,x) \ \forall x \in X$. Suppose there exists $k \geq 1$ such that

$$\psi(kd(fx,gy) \le \psi(M_b(x,y)) - \varphi(M'_b(x,y)) + L\psi(N(x,y))....(1.1)$$

wheneverx, y are comparable elements of X,

where
$$M_b(x, y) = \max\{d(x, y), d(x, fx), d(y, gy), \frac{d(x, gy) + d(y, fx)}{4b}\}M'_b(x, y) = \max\{d(x, y), d(x, fx), d(y, gy), \frac{d(x, gy) + d(y, fx)}{4b}\}M'_b(x, y) = \max\{d(x, y), d(x, fx), d(y, gy), \frac{d(x, gy) + d(y, fx)}{4b}\}M'_b(x, y) = \max\{d(x, y), d(x, fx), d(y, gy), \frac{d(x, gy) + d(y, fx)}{4b}\}M'_b(x, y) = \max\{d(x, y), d(x, fx), d(y, gy), \frac{d(x, gy) + d(y, fx)}{4b}\}M'_b(x, y) = \max\{d(x, y), d(x, fx), d(y, gy), \frac{d(x, gy) + d(y, fx)}{4b}\}M'_b(x, y) = \max\{d(x, y), d(x, fx), d(y, gy), \frac{d(x, gy) + d(y, fx)}{4b}\}M'_b(x, y) = \max\{d(x, y), d(x, fx), d(y, gy), \frac{d(x, gy) + d(y, fx)}{4b}\}M'_b(x, y) = \max\{d(x, y), d(x, fx), d(y, gy), \frac{d(x, gy) + d(y, fx)}{4b}\}M'_b(x, y) = \max\{d(x, gy), \frac{d(x, gy) + d(y, fx)}{4b}\}M'_b(x, y) = \max\{d(x, gy), \frac{d(x, gy) + d(y, fx)}{4b}\}M'_b(x, y) = \max\{d(x, gy), \frac{d(x, gy) + d(y, fx)}{4b}\}M'_b(x, y) = \max\{d(x, gy), \frac{d(x, gy) + d(y, fx)}{4b}\}M'_b(x, y) = \max\{d(x, gy), \frac{d(x, gy) + d(y, fx)}{4b}\}M'_b(x, y) = \max\{d(x, gy), \frac{d(x, gy) + d(y, fx)}{4b}\}M'_b(x, y) = \max\{d(x, gy), \frac{d(x, gy), \frac{d(x, gy) + d(y, fx)}{4b}\}M'_b(x, y)\}$$

$$\max\{d(x,y), d(x,fx), d(y,gy), \frac{d(x,gy) + d(y,fx)}{6b}\} \text{ and } N(x,y) = \min\{d^{s}(x,fx), d^{s}(y,fx), d^{s}(x,gy)\},$$

where d^s is defined in (A), $L \ge 0$, ψ and φ are altering distance functions. Let $x_0 \in X$, define the sequence $\{x_n\}$ inductively as follows:

$$x_1 = fx_0$$
, $x_2 = gx_1$ and $x_{2n+1} = fx_{2n}$ and $x_{2n+2} = gx_{2n+1}$ for $n = 0,1,2...$

Then $\{x_n\}$ is an increasing Cauchy sequences.

Further fand g have a common fixed point, if

(i) f or g is continuous or (ii) (X, \leq, d) satisfies the following property:

 $\{z_n\}$ is an increasing sequences and converges to $z \Rightarrow z_n \le z$ for every n.

Proof.

We first observe that(1) u is fixed point of fif and only if u is a fixed point of g.

$$(2)M'_b(x,y) \le M_b(x,y) \ \forall x,y \in X$$

Now
$$x_1 = fx_0 \le gfx_0 = gx_1 = x_2 \Rightarrow x_1 \le x_2$$

$$x_2 = fx_1 \le fgx_1 = fx_2 = x_3 \Rightarrow x_2 \le x_3$$

THE PARTY OF THE P

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Journal,

Contents available on www.bomsr.com

Vol.4. \$1.2016; ISSN: 2348-0580

Email:editorbomsr@gmail.com

RADMAS- 2016

Thus
$$x_1 \le x_2 \le x_3$$

Inductively we can show that $x_n \le x_{n+1}$ for $n = 1,2,3 \dots$

Thus $\{x_n\}$ is an increasing sequence.

Suppose $x_{2n} = x_{2n+1}$ for some n, so that

$$x_{2n} = f x_{2n}$$

 x_{2n} is a fixed point of f and hence is a fixed point of g.

Thus x_{2n} is a common fixed point of fandg.

Similarly we can show that

 $x_{2n+1} = x_{2n+2}$ for some *n*

 $\Rightarrow x_{2n+1}$ is a common fixed point of f and g.

Hence we may suppose without loss of generality that if $x_n \neq x_{n+1}$ for $n = 1,2,3 \dots$

Now $\psi(d(x_{2n+1}, x_{2n+2}) \le \psi(kd(x_{2n+1}, x_{2n+2}))$ = $\psi(kd(fx_{2n}, gx_{2n+1}))$

$$\leq \psi(M_b(x_{2n}, x_{2n+1})) - \varphi(M'_b(x_{2n}, x_{2n+1})) + L\psi(N(x_{2n}, x_{2n+1}))...(1.2)$$

Now

$$M_b(x_{2n},x_{2n+1}) = \max \left\{ d(x_{2n},x_{2n+1}), d(x_{2n},fx_{2n}), d(x_{2n+1},gx_{2n+1}), \frac{d(x_{2n},gx_{2n+1}) + d(x_{2n+1},fx_{2n})}{4b} \right\}$$

$$= \max \left\{ d(x_{2n}, x_{2n+1}), d(x_{2n}, x_{2n+1}), d(x_{2n+1}, x_{2n+2}), \frac{d(x_{2n}, x_{2n+2}) + d(x_{2n+1}, x_{2n+1})}{4h} \right\}$$

Since $d(x_{2n}, x_{2n+2}) \le bd(x_{2n}, x_{2n+1}) + bd(x_{2n+1}, x_{2n+2})$

 $\operatorname{and} d(x_{2n+1},x_{2n+1}) \leq bd(x_{2n+1},x_{2n}) + bd(x_{2n},x_{2n+1}) = 2bd(x_{2n+1},x_{2n})$

we have,

$$\frac{d(x_{2n},x_{2n+2}) + d(x_{2n+1},x_{2n+1})}{4b} \le \frac{3bd(x_{2n},x_{2n+1}) + d(x_{2n+1},x_{2n+2})}{4b}$$

$$= \frac{3}{4}d(x_{2n},x_{2n+1}) + \frac{1}{4}d(x_{2n+1},x_{2n+2})$$

$$= \max \left\{ d(x_{2n},x_{2n+1}), d(x_{2n+1},x_{2n+2}) \right\}$$

Hence $M_b(x_{2n}, x_{2n+1}) = \max\{d(x_{2n}, x_{2n+1}), d(x_{2n+1}, x_{2n+2})\}$

Similarly $M'_b(x_{2n}, x_{2n+1}) = \max\{d(x_{2n}, x_{2n+1}), d(x_{2n+1}, x_{2n+2})\}$

and

$$\begin{split} N(x_{2n}, x_{2n+1}) &= \min\{d^s(x_{2n}, fx_{2n}), d^s(x_{2n+1}, fx_{2n}), d^s(x_{2n}, gx_{2n+1})\} \\ &= \min\{d^s(x_{2n}, x_{2n+1}), d^s(x_{2n+1}, x_{2n+1}), d^s(x_{2n}, x_{2n+2})\} \\ &= 0 \quad (\because d^s(x_{2n+1}, x_{2n+1}) = 0) \end{split}$$

$$-\varphi(\max\{d(x_{2n},x_{2n+1}),d(x_{2n+1},x_{2n+2})\}).....(1.3)$$

If $d(x_{2n}, x_{2n+1}) \le d(x_{2n+1}, x_{2n+2})$, we get from (1.3)

$$\begin{split} \psi(d(x_{2n+1},x_{2n+2})) &\leq \psi\big(d(x_{2n+1},x_{2n+2})\big) - \varphi(d(x_{2n+1},x_{2n+2})) \\ &\Rightarrow \varphi(d(x_{2n+1},x_{2n+2})) \leq 0 \\ &\Rightarrow d(x_{2n+1},x_{2n+2}) = 0 \\ &\Rightarrow x_{2n+1} \neq x_{2n+2}, \text{a contradiction.} \end{split}$$

Hence $d(x_{2n+1}, x_{2n+2}) < d(x_{2n}, x_{2n+1})$ for $n = 1, 2, 3 \dots \dots$

Similarly we can show that $d(x_{2n},x_{2n+1}) < d(x_{2n-1},x_{2n})$ for $n=1,2,3\dots$

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Journal,

Contents available on www.bomsr.com

Vol.4. \$1.2016; ISSN: 2348-0580

Email:editorbomsr@gmail.com

RADMAS-2016

Thus $d(x_{n+1}, x_{n+2}) < d(x_n, x_{n+1})$ for $n = 1, 2, 3 \dots \dots$

 $\therefore \{d(x_n, x_{n+1})\}$ is a strictly decreasing and hence diverges to a limit $r \ge 0$

Now from (1.3), we have

$$\psi(d(x_{2n+1},x_{2n+2})) \le \psi(d(x_{2n+1},x_{2n+2})) - \varphi(d(x_{2n+1},x_{2n+2}))$$

On letting $n \to \infty$, we get $\psi(r) \le \psi(r) - \varphi(r)$ (: ψ, φ are continuous)

$$\Rightarrow \varphi(r) = 0$$
$$\Rightarrow r = 0$$

Thus
$$\{d(x_n, x_{n+1})\}$$
 decreases to 0.....(1.4)

Claim: $\{x_n\}$ is a Cauchy sequence.

Case (i): $\lim_{m,n\to\infty} d(x_{2m},x_{2n})$ exists and is finite say *l*.

So
$$\exists N \ni d(x_{2m}, x_{2n}) > \frac{l}{2} \text{ for } m, n \ge N$$

Inparticular, $d(x_{2m}, x_{2m+2}) > \frac{l}{2}$ for $m \ge N$

$$\frac{l}{2} < d(x_{2m}, x_{2m+2}) \le b. d(x_{2m}, x_{2m+1}) + b. d(x_{2m+1}, x_{2m+2})$$

$$\rightarrow 0 \text{ as } m \rightarrow \infty(\because by (1.4))$$

$$\therefore \frac{l}{2} = 0.$$

$$\therefore l = 0.$$

Suppose $\varepsilon > 0$. Then $\exists N \ni d(x_n, x_{n+1}) < \frac{\varepsilon}{2} \ if \ n \ge N$

$$d(x_{2n}, x_{2n+1}) < \frac{\varepsilon}{2b} \text{ if } n \ge N$$

$$d(x_{2m}, x_{2n}) < \frac{\varepsilon}{2h} \text{ if } m, n \ge N$$

Suppose $m, n \ge 2N$. Then

$$d(x_{2m}, x_{2n+1}) \le bd(x_{2m}, x_{2n}) + bd(x_{2n}, x_{2n+1})$$

$$b\left(\frac{\varepsilon}{2b} + \frac{\varepsilon}{2b}\right) = \varepsilon$$

Similarly $d(x_{2m+1}, x_{2n+1}) \le bd(x_{2m+1}, x_{2n}) + bd(x_{2n}, x_{2n+1})$

$$< b\left(\frac{\varepsilon}{b} + \frac{\varepsilon}{2b}\right) = \frac{3}{2}\varepsilon$$

$$\therefore d(x_{2m+1},x_{2n+1}) \to 0 \text{ as } m,n \to \infty$$

$$d(x_m, x_n) \to 0$$
 as $m, n \to \infty$

$$\lim_{n\to\infty} d(x_m,x_n)$$
 exists and is finite

 $\therefore \{x_n\}$ is a Cauchy sequence

Case (ii) $\lim_{m,n\to\infty} d(x_{2m},x_{2n})$ does not exist.

So
$$\exists \ \varepsilon > 0$$
 and $\{m_i\}\{n_i\} \ni n_i > m_i > i \ and \ d(x_{2m_i}x_{2n_i}) \ge \varepsilon$(1.5)

This means
$$d(x_{2m_i}x_{2n_i-2}) < \varepsilon$$
.....(1.6)

From (1.5) and (1.6)

$$d(x_{2m_{i}}x_{2n_{i}+1}) \leq b \ d(x_{2m_{i}}x_{2n_{i}-2}) + bd(x_{2n_{i}-2}x_{2n_{i}+1})$$

$$\leq b\varepsilon + bd(x_{2n_{i}-2}x_{2n_{i}+1})$$

$$\therefore \overline{\lim} d(x_{2m_{i}}x_{2n_{i}+1}) \leq b\varepsilon$$

A STATE OF THE STA

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Journal, Contents available on www.bomsr.com

Vol.4. \$1,2016: ISSN: 2348-0580

Email:editorbomsr@gmail.com

RADMAS-2016

Also from (1.5) and (1.6)

$$d(x_{2m_i}x_{2n_i+1}) \le b \ d(x_{2m_i}x_{2n_i}) + bd(x_{2n_i},x_{2n_i+1})$$

$$= bd(x_{2n_i},x_{2n_i+1}) + b(b \ d(x_{2m_i}x_{2n_i-1}) + d(x_{2n_i-1},x_{2n_i}))$$

$$\le bd(x_{2n_i},x_{2n_i+1}) + b^2d(x_{2m_i},x_{2n_i-1}) + b^2d(x_{2n_i-1},x_{2n_i})$$

$$\leq bd(x_{2n_i}, x_{2n_i+1}) + b^2d(x_{2n_i-1}, x_{2n_i}) + b^2(bd(x_{2m_i}, x_{2n_i-2}) + bd(x_{2n_i-2}, x_{2n_i-1}))$$

$$= bd(x_{2n_i}, x_{2n_i+1}) + b^2d(x_{2n_i-1}, x_{2n_i}) + b^3(bd(x_{2m_i}, x_{2n_i-2}) + b^3d(x_{2n_i-2}, x_{2n_i-1}))$$

$$\leq bd(x_{2n_i}, x_{2n_i+1}) + b^2d(x_{2n_i-1}, x_{2n_i}) + b^3d(x_{2n_i-2}, x_{2n_i-1})) + b^3\varepsilon$$

Letting $i \to \infty$,

 $\lim_{i\to\infty}d(x_{2m_i}x_{2n_i+1})$

$$< b \lim_{i \to \infty} d(x_{2n_i}, x_{2n_i+1}) + b^2 \lim_{i \to \infty} d(x_{2n_i-1}, x_{2n_i}) + b^3 \lim_{i \to \infty} d(x_{2n_i-2}, x_{2n_i-1})) + b^3 \varepsilon$$

$$\therefore \lim_{i \to \infty} d(x_{2m_i} x_{2n_i+1}) \le b^3 \varepsilon$$

From (1.5)

$$\begin{split} \varepsilon &\leq d\big(x_{2m_i}x_{2n_i}\big) \leq bd\big(x_{2m_i},x_{2n_i+1}\big) + bd\big(x_{2n_i+1},x_{2n_i}\big) \\ \text{By } &(1.4)\frac{\varepsilon}{b} \leq \underline{\lim}_{i \to \infty} d\big(x_{2m_i}x_{2n_i+1}\big) \leq \overline{\lim}_{i \to \infty} d\big(x_{2m_i}x_{2n_i+1}\big) \leq \varepsilon b \\ \text{Similarly} & \frac{\varepsilon}{b} \leq \underline{\lim}_{i \to \infty} d\big(x_{2m_i-1},x_{2n_i}\big) \leq \overline{\lim}_{i \to \infty} d\big(x_{2m_i-1}x_{2n_i}\big) \leq \varepsilon b \\ \varepsilon &\leq \overline{\lim}_{i \to \infty} d\big(x_{2m_i},x_{2n_i}\big) \leq \varepsilon b^2 \\ \frac{\varepsilon}{b} \leq \overline{\lim}_{i \to \infty} d\big(x_{2m_i},x_{2n_i}\big) \leq \varepsilon b^2 \end{split}$$

Since x_{2n_i} and x_{2m_i-1} are comparable,

$$\psi(\varepsilon b) + \varphi \left(d(x_{2n_i}, x_{2m_i-1}) \right) \le \psi(\varepsilon b) - \varphi \left(M_b(x_{2n_i}, x_{2m_i-1}) \right)$$

$$\le \psi \left(M_b(x_{2n_i}, x_{2m_i-1}) \right) + L \psi N(x_{2n_i}, x_{2m_i-1})$$

On letting $i \to \infty$

$$\psi(\varepsilon \mathbf{b}) + \varphi\left(\frac{\varepsilon}{b}\right) \le \psi(\varepsilon \mathbf{b}) - \varphi\left(\underline{\lim}_{i \to \infty} d\left(x_{2m_i - 1}, x_{2n_i}\right)\right)$$

$$\le \psi(\varepsilon \mathbf{b}) + 0$$

$$\therefore \varphi\left(\frac{\varepsilon}{b}\right) \le 0$$

$$\therefore \frac{\varepsilon}{b} = 0$$

$$\therefore \varepsilon = 0$$

This is a contradiction.

 $\therefore \{x_n\}$ isa Cauchy sequence in X.

So
$$\exists x \ni x_n \to x \text{ as } n \to \infty$$

$$\therefore \lim_{m,n\to\infty} d(x_m,x_n) = d(x,x) = \lim_{n\to\infty} d(x_n,x)$$

Inparticular

$$\lim_{n\to\infty} d(x_n, x_{n+1}) = d(x, x)$$

$$\therefore d(x, x) = 0 \ (\because \text{ by } (1.4))$$

i. Suppose f is continuous. Then

$$\lim_{n\to\infty} x_{2n+1} = \lim_{n\to\infty} f x_{2n} = f\left(\lim_{n\to\infty} x_{2n}\right) = f x(\because f \text{ is continuous})$$

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Journal,

Contents available on www.bomsr.com

Vol.4. S1.2016; ISSN: 2348-0580

RADMAS- 2016 Email:editorbomsr@gmail.com

 \therefore xisa fixed point of f and hence is a common fixed point of f and q.

ii. Suppose (ii) holds

Since $\{x_n\}$ is an increasing sequence, it converges say to x.

By (ii) we have $x_n \le x$ for every n.

Now

$$\psi(kd(x_{2n+1},gx)) = \psi(kd(fx_{2n},gx))$$

$$\leq \psi(M_b(x_{2n},x)) - \varphi(M_b'(x_{2n},x)) + L\psi(N(x_{2n},x))$$

$$M_b(x_{2n}, x) = \max \left\{ d(x_{2n}, x), d(x, fx_{2n}), d(x, gx), \frac{d(x_{2n}, gx) + d(x, fx_{2n})}{4b} \right\}$$

$$= \max \left\{ d(x_{2n}, x), d(x, x_{2n+1}), d(x, gx), \frac{d(x_{2n}, gx) + d(x, x_{2n+1})}{4b} \right\}$$
Since
$$\frac{d(x_{2n}, gx) + d(x, x_{2n+1})}{4b} \le \frac{bd(x_{2n}, x) + b.d(x, gx) + b.d(x, gx)}{4b}$$

$$= \frac{1}{4}d(x_{2n}, x) + \frac{1}{4}d(x, gx) + \frac{1}{4}d(x, gx)$$

Since
$$\frac{d(x_{2n},gx)+d(x,x_{2n+1})}{4b} \le \frac{bd(x_{2n},x)+b.d(x,gx)+b.d(x,gx)}{4b}$$

$$= \frac{1}{4}d(x_{2n}, x) + \frac{1}{4}d(x, gx) + \frac{1}{4}d(x, gx)$$

$$M_b(x_{2n}, x) = \max\{d(x_{2n}, x), d(x, x_{2n+1}), d(x, gx)\}\$$

Similarly
$$M_b'(x_{2n}, x) = \max\{d(x_{2n}, x), d(x, x_{2n+1}), d(x, gx)\}$$

and
$$N(x_{2n}, x) = \min\{d^s(x_{2n}, fx_{2n}), d^s(x, fx_{2n}), d^s(x_{2n}, gx)\}\$$

= $\min\{d^s(x_{2n}, x_{2n+1}), d^s(x, x_{2n+1}), d^s(x_{2n}, gx)\}\$

Now

$$\psi(d(x_{2n+1},gx)) \leq$$

$$\psi(\max\{d(x_{2n},x),d(x,x_{2n+1}),d(x,gx)\}) - \varphi(\max\{d(x_{2n},x),d(x,x_{2n+1}),d(x,gx)\}) + L\psi(N(x_{2n},x))$$

On letting $n \to \infty$, we get

$$\psi(d(x,gx)) \le \psi d(x,gx) - \varphi(d(x,gx)) + L\psi(0)$$

$$\therefore \varphi(d(x,gx)) = 0$$

$$\therefore d(x,gx) = 0$$

$$\therefore gx = x$$

 \therefore xisa fixed point of gand hence is a common fixed point of fand g.

Theorem 2.Under the hypothesis of theorem 1, no two common fixed points of f and g are comparable.

Proof: Suppose x and y are common fixed points of f and g and $x \le y$

Then
$$\psi(d(fx, gy) \leq \psi(M_b(x, y)) - \varphi(M_b'(x, y)) + L\psi(N(x, y))$$

$$= \psi(d(x, y)) - \varphi(d(x, y))$$

$$\therefore \varphi(d(x, y)) = 0$$

$$\therefore d(x, y) = 0$$

$$\therefore x = y.$$

 \therefore Any two comparable common fixed points of f and g are equal.

Corollary 3. Let(X, \leq) be a partially ordered set and suppose that there exists a b-metric-like d on Xsuch that (X,d) is a complete b-metric-like space and let $f,g:X\to X$ be two weakly increasing mappings with respect to \leq . Suppose f satisfies $d(x, fx) \geq d(x, x)$ and g satisfies $d(x, gx) \geq$ $d(x,x), \forall x \in X$. Suppose there exists $k \geq 1$ such that

$$\psi(kd(fx,gy) \le \psi(M_h(x,y)) - \varphi(M_h(x,y)) + L\psi(N(x,y))$$
....(3.1)

THE PARTY OF THE P

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Journal, Contents available on www.bomsr.com

Vol.4. \$1.2016; ISSN: 2348-0580 Email:editorbomsr@gmail.com

RADMAS-2016

where $M_b(x, y) = \max\{d(x, y), d(x, fx), d(y, gy), \frac{d(x, gy) + d(y, fx)}{4h}\}$ and

 $N(x,y)=\min\{d^s(x,fx),d^s(y,fx),d^s(x,gy)\}$, where d^s is defined in (A) for all comparable elements $x,y\in X, L\geq 0, \psi$ and φ are altering distance functions. Then f and g have a common fixed point.

Proof: Since $M'_h(x, y) = M_h(x, y)$

$$\psi(kd(fx,gy) \le \psi(M_b(x,y)) - \varphi(M_b(x,y)) + L\psi(N(x,y)) \Rightarrow$$
$$\psi(kd(fx,gy) \le \psi(M_b(x,y)) - \varphi(M'_b(x,y)) + L\psi(N(x,y))$$

Hence the result follows from Theorem 1.

Corollary 4. Let(X, \leq) be a partially ordered set and suppose that there exists a b-metric-like d on X such that (X, d) is a complete b-metric-like space and let $f, g: X \to X$ be two weakly increasing mappings with respect to \leq . Suppose f satisfies $d(x, fx) \geq d(x, x)$ and g satisfies $d(x, gx) \geq d(x, x)$, $\forall x \in X$. Suppose there exists $k \geq 1$ such that

$$\psi(kd(fx,gy) \le \psi(M_b{'}(x,y)) - \varphi(M_b{'}(x,y)) + L\psi(N(x,y))....(4.1)$$

where $M_b{'}(x,y) = \max\{d(x,y),d(x,fx),d(y,gy),\frac{d(x,gy)+d(y,fx)}{6b}\}$ and

 $N(x,y)=\min\{d^s(x,fx),d^s(y,fx),d^s(x,gy)\}$, where d^s is defined in (A) for all comparable elements $x,y\in X, L\geq 0, \psi$ and φ are altering distance functions. Then f and g have a common fixed point.

Proof:

$$\psi(kd(fx,gy) \le \psi(M_b{'}(x,y)) - \varphi(M_b{'}(x,y)) + L\psi(N(x,y)) \Rightarrow \\ \psi(kd(fx,gy) \le \psi(M_b(x,y)) - \varphi(M_b(x,y)) + L\psi(N(x,y))$$

andhence the result follows from Corollary3.

Corollary5. If in Corollary3,k is replaced by b^2 , then f and g have a common fixed point.

Corollary 6.(Nannan Fang[12], Theorem 1): If in Corollary3, k is replaced by b^4 , then f and g have a common fixed point.

Acknowledgement: I am grateful Prof.G.TulasiRao Principal Dr.B.R.Ambedkar University Srikakulam for giving me the necessary facilities to carry on this research and permission to attend this conference.

References

- [1]. J.Liu, M.Song, common fixed point theorems for three maps under nonlinear contraction of cycle from in partially ordered G-metric spaces, Adv. Fixed Point Theory 5 (2015), 293-309.
- [2]. D.C. Dhage, H.K. Nashine, V.S.Patil, Common fixed points for some variants of weakly contraction mapping in partially ordered metric spaces, Adv. Fixed Point Theory 3 (2013),29-48.
- [3]. K.S. Eke, Some fixed and coincidence point results for expansive mapping on G-partial metric spaces, Adv. Fixed Point Theory 5 (2015), 369-386.
- [4]. Z. Mustafa, B. Simis, A new approach to a generalized metric spaces, J.Nonlinear convex Anal. 7 (2007),289-297.
- [5]. Z.Kadelburg, S. Radenovic, Coupled fixed point results under tvs-cone metric and w-conedistance, Adv. Fixed Point Theory 2 (2012), 29-46.
- [6]. I.A. Bahtin, The Contraction mapping principle in quasimetric spaces, In: Function Analysis,

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Journal, Contents available on www.bomsr.com

Vol.4. \$1.2016; ISSN: 2348-0580

Email:editorbomsr@gmail.com

Uľyanovsk(1989).

- [7]. S.Czersik, Contraction mapping in b-metric spaces, ActMath:Infor, Univ, Ostrav. 1(1993), 5-11
- [8]. A.A. Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl. 2012 (2012), Article ID 204.
- [9]. M.A. Alghamdi, N. Hussain, P. Salimi, Fixed point and coupled fixed point theorems on b-metric-like spaces, Inequal. Appl. 2013 (2013), Article ID 402.
- [10]. M.S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc. 30 (1984).1-9.
- [11]. L. Ciric, M. Abbas, R. Saadati, N. Hussain, Common fixed points of almost generalized contractive mappings in ordered metric spaces, Appl. Math. Comput. 217 (2011), 5784-5789.
- [12]. NannanFang, A New common fixed point theorem in ordered b-metric-like spaces, Adv. Fixed Point Theory 6 (2016), No.1, 101-114.