

A Peer Reviewed International Journal, Contents available on www.bomsr.com

Vol.4. S1.2016; ISSN: 2348-0580

Email:editorbomsr@gmail.com

EQUIVALENCE RELATIONS AND CONGRUENCES IN PARTIALLY ORDERED SEMIGROUPS

Dr.P.M.PADMALATHA

Department of Mathematics, J.M.J. College, Tenali. padmalatha323@gmail.com

ABSTRACT

In this paper the terms; equivalence relation, left congruence, right congruence, congruence generated by ρ , band, semilattice, semilattice congruence and complete are introduced. It is proved that an equivalence relation ρ on a po semigroup S is a congruence if and only if for all a, b, c, $d \in S$, $a \rho b$ and $c \rho d$ implies $(ac)\rho(bd)$. It is proved that if ρ_1 and ρ_2 are two left congruences (resp. right congruences, congruences) of a po semigroup S, then $(\rho_1 \circ \rho_2)$ is a left congruence (resp. right

congruence, congruence) of S. Also it is proved that if $\rho_1, \rho_2, \dots, \rho_n$ are left congruences (resp. right

congruences, congruences) of a po semigroup S, then $\rho_1 o \rho_2 o \dots o \rho_n$ is a left congruence (resp. right congruence, congruence) of S. It is proved that the intersection of family of congruences on a po semigroup S is again a congruence on S. Futher it is proved that the union of a non-empty family of congruences on a po semigroup S is a congruence on S.

KEY WORDS : Equivalence relation, left congruence, right congruence, congruence generated by p, band, semilattice, semilattice congruence and complete.

1. CONGRUENCES:

DEFINITION 1.1: A relation ρ on a po semigroup S is said to be *reflexive* on S if $x\rho x$ for all $x \in S$.

DEFINITION 1.2 : A relation ρ on a po semigroup S is said to be *symmetric* on S if $x, y \in S$ and $x \rho y$ implies $y \rho x$.

DEFINITION 1.3 : A relation ρ on a po semigroup S is said to be *transitive* on S if *x*, *y*, *z* \in S, *x* ρ *y*, *y* ρ *z* implies *x* ρ *z*.

DEFINITION 1.4 : A relation ρ on a po semigroup S is said to be an *equivalence relation* on S if (i) $x\rho x$ for all $x \in S$, (ii) $x, y \in S$, $x\rho y$ implies $y\rho x$ (iii) $x, y, z \in S$, $x\rho y$, $y\rho z$ implies $x\rho z$.

NOTE 1.5: Let S be a po semigroup. A relation ρ on S is an equivalence relation on S iff ρ is (i) reflexive (ii) symmetric and (iii) transitive.

DEFINITION 1.6 : Let S be a po semigroup. An equivalence relation ρ on S is said to be a *left congruence,* if *a, b, c* \in S, *a* ρ *b* implies (*ca*) ρ (*cb*).

DEFINITION 1.8 : Let S be a po semigroup. An equivalence relation ρ on S is said to be a *right congruence*, if *a*, *b*, *c* \in S, *a* ρ *b* implies (*ac*) ρ (*bc*).

DEFINITION 1.10: Let S be a po semigroup. An equivalence relation ρ on S is said to be a **congruence**, if $a, b, c \in S$, $a \rho b$ implies $(ca)\rho(cb)$ and $(ac)\rho(bc)$.

NOTE 1.12 : An equivalence relation ρ on a po semigroup S is a congruence iff it is both a left congruence and a right congruence on S.

Proceedings of UGC Sponsored Two Day National Conference on

"RECENT ADVANCES IN MATHEMATICS AND ITS APPLICATIONS" (RADMAS– 2016) 17th&18th November, 2016, Department of Mathematics, St. Joseph's College for Women (Autonomous) , Visakhapatnam

A Peer Reviewed International Journal, Contents available on www.bomsr.com

Vol.4. S1.2016; ISSN: 2348-0580

Email:editorbomsr@gmail.com

THEOREM 1.13 : An equivalence relation ρ on a posemigroup S is a congruence if and only if a, b, c, $d \in S$, $a \rho b$ and $c \rho d$ implies $ac \rho$ bd.

Proof: Let ρ be an equivalence relation on a po semigroup S.

Suppose that ρ is a congruence on S. Let $a, b, c, d \in S, a \rho b$ and $c \rho d$

a, *b*, *c* \in S, *a* ρ *b* and ρ is right congruence \Rightarrow (*ac*) ρ (*bc*).

b, c, $d \in S$, $c \rho d$ and ρ is left congruence $\Rightarrow (bc)\rho(bd)$.

Now (*ac*) ρ (*bc*), (*bc*) ρ (*bd*), ρ is transitive \Rightarrow (*ac*) ρ (*bd*).

Conversely suppose that $\boldsymbol{\rho}$ is an equivalence relation on a po semigroup S such that

a, b, c, $d \in S$, $a \rho b$ and $c \rho d \Rightarrow (ac)\rho(bd)$.

Now $c \rho c$, $a \rho b \Rightarrow (ca)\rho(cb) \Rightarrow \rho$ is a left congruence.

 $a \rho b, c \rho c \Rightarrow (ac)\rho(bc) \Rightarrow \rho$ is a right congruence and hence ρ is a congruence.

NOTATION 1.14 : Let ρ be a congruence relation on a po semigroup S. We denote the set { $b \in S / a\rho b$ } by a_{ρ} and is called ρ -class containing a. The set of all ρ -classes is denoted by S/ρ .

THEOREM 1.15 : If S is a po semigroup and ρ is a congruence on S then S/ ρ is a semigroup with respect to the operation defined by $a_{\rho}b_{\rho} = (ab)_{\rho}$ for all $a_{\rho}, b_{\rho} \in S/\rho$.

Proof: If $a_{\rho}, b_{\rho} \in S/\rho$, then we define the multiplication on S/ ρ ,

given by $(a_{\rho})(b_{\rho}) = (ab)_{\rho}$ for all $a, b \in S$.

This is well defined, since for all a, b, c, $d \in S$, $a_{\rho} = b_{\rho}$ and $c_{\rho} = d_{\rho} \Rightarrow a\rho b$, $c\rho d$

 \Rightarrow (*ac*) ρ (*bc*), (*bc*) ρ (*bd*)

 \Rightarrow (*ac*) ρ (*bd*) \Rightarrow (*ac*) $_{\rho}$ = (*bd*) $_{\rho}$.

Let $(a)_{\rho}$, $(b)_{\rho}$, $(c)_{\rho} \in S/\rho$.

Then $[(a)_{\rho}(b)_{\rho}](c)_{\rho} = (ab)_{\rho}(c)_{\rho} = [(ab)c]_{\rho} = [a(bc)]_{\rho} = (a)_{\rho}(bc)_{\rho} = (a)_{\rho}[(b)_{\rho}(c)_{\rho}]$. Therefore S/ ρ is a semigroup.

DEFINITION 1.16 : Let ρ be a congruence relation on a po semigroup S. Then the semigroup S/ ρ of all ρ -classes with respect to the operation defined as $(a_{\rho})(b_{\rho}) = (ab)_{\rho}$ for all $a, b \in S$ is called the **quotient semigroup** of S relative to the congruence ρ .

NOTE 1.17: If S is a po semigroup and ρ is a congruence on S, then the quotient semigroup S/ ρ is not a po semigroup w. r. t the relation \leq on S/ ρ defined by means of the order \leq on S, that is, $(a)_{\rho} \leq (b)_{\rho}$ \Leftrightarrow there exist $x \in (a)_{\rho}$ and $y \in (b)_{\rho}$ such that $x \leq y$. But the relation is not a partial order, in general. We show it in the following example.

EXAMPLE 1.18: We consider the po semigroup $S = \{a, b, c, d, e\}$ defined by the multiplication and the order \leq below:

α	а	b	С	d	е		ß	a	b	с	d	e
a	а	e	С	d	е		a	a	е	С	d	е
b	a	e	С	d	е		b	a	b	С	d	e
С	a	e	С	d	е		С	a	е	С	d	е
d	а	e	С	d	е		d	a	е	С	d	е
е	a	e	С	d	e	-	е	a	е	С	d	е
_						-						

and $\leq = \{ (a, a), (a, d), (b, b), (c, c), (c, e), (d, d), (e, e) \}.$

For $x, y, z \in S$, we have

A Peer Reviewed International Journal,

Contents available on <u>www.bomsr.com</u>

Vol.4. \$1.2016; ISSN: 2348-0580

Email:editorbomsr@gmail.com

(xy)a = a = x(ya), (xy)c = c = x(yc)(xy)d = d = x(yd), (xy)e = e = x(ye)(xy)b = e = x(yb),(xy)b = e = x(yb) if $y \neq b$ (xb)b = e = x(bb) if $x \neq b$ (bb)b = e = b(bb), (bb)b = b = b(bb).Then S is a semigroup. Since $xa \le xd$, ax = dx, $xc \le xe$, cx = ex for all $x \in S$, S is a po semigroup. Let ρ be the congruence on S defined as follows: $\rho = \{ (a, a), (b, b), (c, c), (d, d), (e, e), (a, e), (e, a), (c, d), (d, c) \}.$ Let \leq be an order on S/ ρ defined by means of the order \leq on S, that is, $(a)_{\rho} \leq (b)_{\rho} \Leftrightarrow$ there exist $x \in (a)_{\rho}$ and $y \in (b)_{\rho}$ such that $x \leq y$. We have $a_{\rho} = \{a, e\}, b_{\rho} = \{b\}$ and $c_{\rho} = \{c, d\}$. Also we have $a_{\rho} \leq c_{\rho}$ and $c_{\rho} \leq a_{\rho}$ but $a_{\rho} \neq c_{\rho}$. Thus \leq is not an order relation on S/ ρ . THEOREM 1.19 : Let S be a po semigroup. If ρ_1 and ρ_2 are two left congruences of S, then $(\rho_1 \circ \rho_2)$ is a left congruence on S. **Proof** : Let p_1 and p_2 be two left congruences on S. Clearly ($\rho_1 \circ \rho_2$) is an equivalence relation on S. Let $a, b \in S$ and $s \in S$, $a(\rho_1 \circ \rho_2)b$. Since $\alpha(\rho_1 \circ \rho_2)b$ there exists $c \in S$ such that $\alpha \rho_1 c$ and $c \rho_2 b$. Since ρ_1 , ρ_2 are left congruences on S, it follows that $(sa)\rho_1(sc)$ and $(sc)\rho_2(sb)$ This implies that $(sa)(p_1op_2)(sb)$ and hence (p_1op_2) is a left congruence on S. From theorem 1.19, it can be easily prove the following result by induction:

COROLLARY 1.20 : Let S be a po semigroup. If $\rho_1, \rho_2, \dots, \rho_n$ are left congruences on S, then

 $\rho_1 o \rho_2 o \dots \rho_n$ is a left congruence on S.

THEOREM 1.21 : Let S be a po semigroup. If ρ_1 and ρ_2 are two right

congruences on S, then $(\rho_1 o \rho_2)$ is a right congruence on S.

 $\textit{Proof}: Let \ \rho_1 and \ \rho_2 be \ two \ right \ congruences \ on \ S.$

Suppose $a(\rho_1 \circ \rho_2)b$ holds for $a, b \in S$.

Then there exists $c \in S$ such that $a \rho_1 c$ and $c \rho_2 b$ hold.

Since ρ_1, ρ_2 are right congruences on S, it follows that $(as)\rho_1(cs)$ and $(cs)\rho_2(bs)$ for all $s \in S$. This implies that $(as)(\rho_1 \circ \rho_2)(bs)$ hold for all $s \in S$ and hence $(\rho_1 \circ \rho_2)$ is a right congruence on S.

From theorem 1.21, the following corollary can be proved easily by induction:

COROLLARY 1.22 : Let S be a po semigroup. If $\rho_1, \rho_2, \dots, \rho_n$ are right congruences on S, then

 $\rho_1 o \rho_2 o \dots \rho_n$ is a right congruence on S.

THEOREM 1.23 :Let S be a po semigroup. If ρ_1 and ρ_2 are two congruences on S, then ($\rho_1 o \rho_2$) is a congruence of S.

Proof : By theorem 1.19, $(\rho_1 o \rho_2)$ is a left congruence on S.

By theorem 1.21, $(\rho_1 o \rho_2)$ is a right congruence on S and

A Peer Reviewed International Journal, Contents available on www.bomsr.com

Vol.4. \$1.2016; ISSN: 2348-0580

Email:editorbomsr@gmail.com

hence $(\rho_1 o \rho_2)$ is a congruence on S.

From theorem 1.23, the following result can be proved easily by induction:

COROLLARY 1.24: Let S be a po semigroup. If $\rho_1, \rho_2, ..., \rho_n$ are congruences on S, then

 $\rho_1 o \rho_2 o \dots \rho_n$ is a congruence of S.

THEOREM 1.25 : The intersection of any family of congruences on a po semigroup S is again a congruence on S.

Proof: Let $\{\rho_i \mid i \in \Delta\}$ be a family of congruences on S.

 $\prod_{i \in \Lambda} \rho_i$

Let $\psi = i \in \Delta$. Clearly Ψ is an equivalence relation on S.

Let $a, b, c, d \in S$.

Suppose that $a \downarrow b, c \downarrow d$.

$$a \Downarrow b, c \Downarrow d \Rightarrow a \stackrel{\bigcap}{i \in \Delta} \stackrel{\rho_i}{b}, c \stackrel{\bigcap}{i \in \Delta} \stackrel{\rho_i}{d} \Rightarrow a \stackrel{\rho_i}{b}, c \stackrel{\rho_i}{o} d \text{ for all } \stackrel{\rho_i}{\rho_i}$$

 $\Rightarrow ac \stackrel{\rho_i}{\longrightarrow} bd \text{ for all } \stackrel{\rho_i}{\longrightarrow} ac \stackrel{i \mapsto \rho_i}{\longrightarrow} bd \Rightarrow ac \psi bd.$

Hence the intersection of any family of congruences on a po semigroup S is again a congruence on S. **THEOREM 1.26 : The union of any family of congruences on a po semigroup S is a congruence on S.**

Proof: Let $\{\rho_i / i \in \Delta\}$ be a family of congruences on S.

 $\bigcup_{i \in \Delta} \rho_i$ Let $\psi = i \in \Delta$ where ρ_i is a congruence on po semigroup S. Let $a, b, c \in S$. Suppose that $a \notin b$.

$$a \downarrow b \Rightarrow a \stackrel{i \in \Delta}{i \in \Delta} {\rho_i} b \Rightarrow a \stackrel{\rho_i}{i} b \text{ for some } {\rho_i} \text{ on S}$$

 $\Rightarrow a \stackrel{\rho_i}{\rightarrow} b \text{ for some} \stackrel{\rho_i}{\rightarrow} on \text{ S and } \rho_i \text{ is a congruence on } S \Rightarrow ca \rho_i cb \Rightarrow ca \stackrel{\rho_i}{i \in \Delta} cb$ $\Rightarrow ca \psi cb \Rightarrow \psi \text{ is a left congruence on } S$

Now $a \stackrel{\rho_i}{\to} b$ for some $\stackrel{\rho_i}{\to} on S$, ρ_i is a congruence on $S \Rightarrow ac \rho_i bc \Rightarrow ac \stackrel{i \in \Delta}{\to} bc \Rightarrow ac \psi bc \Rightarrow \psi$ is right congruence on S.

So, Ψ is a congruence on the po semigroup S. Therefore the union of a non-empty family of congruences on a po semigroup S is a congruence on S.

NOTE 1.27: The set of all congruences on a po semigroup *S* is denoted by *C*(*S*).

DEFINITION 1.28 : The intersection of all congruences on a po semigroup S containing a binary relation ρ on S is called the *congruence generated by* ρ .

DEFINITION 1.29 : A po semigroup S is said to be a *band* if every element of S is a idempotent.

DEFINITION 1.30 : A po semigroup S is said to be a *semilattice* if S is a commutative band.

DEFINITION 1.31 : A congruence ρ on a po semigroup S is said to be *semilattice congruence* if $a, b \in$

A Peer Reviewed International Journal,

Contents available on <u>www.bomsr.com</u>

Vol.4. S1.2016; ISSN: 2348-0580

Email:editorbomsr@gmail.com

 $S \Rightarrow aa \rho a and ab \rho ba.$

DEFINITION 1.32 : A semilattice congruence ρ on a po semigroup S is said to be *complete* if for any a, $b \in S$, $a \leq b$ implies $a \rho ab$.

NOTE 1.33 : A semilattice congruence ρ on a po semigroup S is **complete** iff $a, b \in S$, $a \le b$ implies $a\rho(ab)$.

REFERENCES

- [1]. ANJANEYULU A., Primary ideals in semigroups Semigroup Forum, Vol.20 (1980) 129-144.
- [2]. ANJANEYULU A., On primary semigroups Czechoslovak Mathematical Journal, 30(105) 1980, Praha.
- [3]. BOURNE S.G., *Ideal theory in a commutative semigroup* Dissertation, John Hopkins University (1949).
- [4]. BRAJA ISLAM., *Characterizations of Regular Gamma Semigroups Using Quasi-Ideals* International Journal of Mathematical Analysis, Vol. 3, 2009, No. 36, 1789-1794.
- [5]. CHINRAM. R and SIAMMAI. P., On Green's Relations for Γ-semigroups and Reductive Γ-semigroups – International Journal of Algebra, Vol. 2, 2008, No.4, 187-195.
- [6]. CLIFFORD A. H. and PRESTON G. B., *The algebraic theory of semigroups* Vol-I, American Mathematical Society, Providence (1961).
- [7]. CLIFFORD A. H. and PRESTON G. B., *The algebraic theory of semigroups* Vol-II, American Mathematical Society, Providence (1967).
- [8]. DUTTA. T. K and CHATTERJEE. T. K., *Green's equivalence on* **Γ***-semigroup,* Bull.Col.Soc., 80, (1987), 30-35.
- [9]. JUN. Y. B., **Γ**-filters and semilattice **Γ**-congruences in po-**Γ**-semigroups, PU. M. A. No. 2-3-4 (1977), 275-280.
- [10]. PETRICH. M., Introduction to semigroups Merril Publishing Company, Columbus, Ohio, (1973).
- [11]. SCWARTZ S., Prime ideals and maximal ideals in semigroups Czechoslovak Mathematical Journal.,19(94), (1969), 72-79.
- [12]. SEN. M.K., On Γ -semigroups, Proceeding of International Conference on Algebra and it's Applications, Decker Publication, New York 301.
- [13]. SEN. M.K. and SAHA. N.K., On Γ Semigroups-II, Bull. Calcutta Math. Soc. 79 (1987), No.6, 331-335.
- [14]. SIRIPITUKDET. M and IAMPAN. A., On the least (ordered) Semilattice Congruence in Ordered Γ semigroups – The Journal of Mathematics Volume 4(2006) Number 2 : 403 – 415.