

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Journal, Contents available on www.bomsr.com

Vol.4. \$1.2016; ISSN: 2348-0580

Email:editorbomsr@gmail.com

FIXED POINT THEOREM FOR TWO SELF-MAPS IN A G-METRIC SPACE

K. KUMARA SWAMY¹, T. PHANEENDRA²

1Hyderabad Institute of Technology and Management, Medchal District-501401, Telangana State, India, E-mail: kallakumaraswamy@gmail.com

2Department of Mathematics, VIT University, Vellore-632014, Tamil Nadu, India,

E-mail: drtp.indra@gmail.com

Abstract. An extension of a result of Vats et al [3] is obtained to a pair of compatible self-maps on a *G*-metric space.

2010 Mathematics Subject Classification. 54H25

Key words. G-metric space, Compatible self-maps, G-Cauchy sequence, Common fixed point

1. Introduction

Let X be a nonempty set and $G: X \times X \times X \rightarrow [0, \infty)$ be such that

- (G1) G(x, y, z) = 0 $x, y, z \in X$ are such that x = y = z
- (G2) G(x, x, y) > 0 for all $x, y \in X$ with $x \neq y$
- (G3) G(x, x, y) < G(x, y, z) for all $x, y, z \in X$ with $z \neq y$,
- (G4) $G(x, y, z) = G(\pi(x, y, z))$, where π is a permutation on the set $\{x, y, z\}$
- (G5) $G(x, y, z) \le G(x, w, w) + G(w, y, z)$ for all $x, y, z, w \in X$.

Then G is called a G-metric [2] on X, and the pair (X,G) denotes a G-metric space. It was shown that $\rho_G(x, y) = G(x, y, y) + G(x, x, y)$ is a metric on χ , and the family of G-balls of the form $B_G(x, r) = \{y \in X : G(x, y, y) < r\}$ is a base topology, called the G-metric topology $\tau(G)$ on X.

A sequence $\langle x_n \rangle_{n=1}^{\infty} \subset X$ is said to be *G*-convergent with limit $p \in X$, if it converges to *p* in $\tau(G)$. According to [2], $\langle x_n \rangle_{n=1}^{\infty} \subset X$ converges to $p \in X$, if and only if, $\lim_{n \to \infty} G(x_n, x_n, p) = 0$ or $\lim_{n \to \infty} G(x_n, p, p) = 0$. And, $\langle x_n \rangle_{n=1}^{\infty} \subset X$ is said to be *G*-Cauchy, if $G(fx_n, fx_m, fx_m) \to 0$ *m*, $n \to \infty$. The space *X* is said to be *G*-complete, if every *G*-Cauchy sequence in *X* converges in it.

From the definition of *G*-metric space, it follows that

$$G(x, y, y) \le 2G(x, x, y)$$
 for all $x, y \in X$... (1.1)

Self-maps f and g on a G-metric space (X,G) are said to be compatible [1]

$$\begin{split} & \text{if } \lim_{n \to \infty} G(fgx_n, gfx_n, gfx_n) = 0 \quad \text{whenever} \quad \langle x_n \rangle_{n=1}^{\infty} \subset X \quad \text{is such that} \quad \lim_{n \to \infty} fx_n \\ & = \lim_{n \to \infty} gx_n = p. \end{split}$$

2. Main Result

We prove the following common fixed point theorem:

Theorem 2.1. Suppose that f and g are self-maps on a complete G-metric space (X, G) such that

- (a) $f(X) \subset g(X)$
- (b) f or g is continuous, and $G(fx, fy, fz) \le k \max\{G(gx, fx, fx) + G(gy, fy, fy) + G(gz, fz, fz),$

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Journal, Contents available on www.bomsr.com

Vol.4. S1.2016; ISSN: 2348-0580

Email:editorbomsr@gmail.com

$$\begin{aligned} G(gx, fy, fy) + G(gy, fx, fx) + G(gz, fy, fy), \\ G(gx, fz, fz) + G(gy, fz, fz) + G(gz, fx, fx) \\ for all x, y, z, w \in X, \end{aligned}$$
 ... (2.1)

where 0 < k < 1/3. If f and g are compatible, then f and g have a unique common fixed point.

Proof. Let $x_0 \in X$ be arbitrary. In view of the inclusion (a), we can choose points $x_1, x_2, ..., x_n, ...$ such that

$$fx_{n-1} = gx_n$$
 for $n = 1, 2, ...$ (2.2)

Writing $x = x_n$ and $y = z = x_{n+1}$ in (2.1), and then using (1.1), (2.2) and the rectangle inequality of *G*, we have

$$\begin{split} G(fx_n, fx_{n+1}, fx_{n+1}) &\leq k \max\{G(fx_{n-1}, fx_n, fx_n) + G(fx_n, fx_{n+1}, fx_{n+1}) + G(fx_n, fx_{n+1}, fx_{n+1}), \\ G(fx_{n-1}, fx_{n+1}, fx_{n+1}) + G(fx_n, fx_n, fx_n) + G(fx_n, fx_{n+1}, fx_{n+1}), \\ G(fx_{n-1}, fx_{n+1}, fx_{n+1}) + G(fx_n, fx_{n+1}, fx_{n+1}) + G(fx_n, fx_n, fx_n)\} \\ &\leq k \max\{G(fx_{n-1}, fx_n, fx_n) + 2G(fx_n, fx_{n+1}, fx_{n+1}), \\ [G(fx_{n-1}, fx_n, fx_n) + G(fx_n, fx_{n+1}, fx_{n+1})] + G(fx_n, fx_{n+1}, fx_{n+1}) \\ &= k [G(fx_{n-1}, fx_n, fx_n) + 2G(fx_n, fx_{n+1}, fx_{n+1})] \\ \text{or} \qquad G(fx_n, fx_{n+1}, fx_{n+1}) \leq \frac{k}{1-2k} G(fx_{n-1}, fx_n, fx_n). \end{split}$$

By induction, we get

$$G(fx_n, fx_{n+1}, fx_{n+1}) \le q^n G(fx_0, fx_1, fx_1), \text{ for all } n \ge 1.$$
(2.3)

where $q = \frac{k}{1-2k} < 1$. By repeated use of rectangle inequality and (2.1), we have

$$G(fx_n, fx_m, fx_m) \le \sum_{j=n}^{m-1} G(fx_j, fx_{j+1}, fx_{j+1}) \le \sum_{j=n}^{m-1} q^j G(fx_0, fx_1, fx_1) \le \frac{q^n}{1-q} G(fx_0, fx_1, fx_1)$$

for m > n. As $m, n \to \infty$, this implies that $G(fx_n, fx_m, fx_m) \to 0$, proving that $\langle gx_n \rangle_{n=1}^{\infty}$ is G-Cauchy in X.

Since X is G-complete, we can find a point $p \in X$ such that

$$\lim_{n \to \infty} f x_{n-1} = \lim_{n \to \infty} g x_n = p.$$
 ... (2.4)

Suppose that g is continuous. Then

$$\lim_{n \to \infty} gfx_{n-1} = \lim_{n \to \infty} ggx_n = gp.$$
 ... (2.5)

Since f and g are compatible, $\lim_{n\to\infty} G(fgx_n, gfx_n, gfx_n) = 0$, which implies that

But from (2.1), we see that

$$G(ffx_n, fx_n, fx_n) \le k \max\{G(gfx_n, ffx_n, ffx_n) + G(gx_n, fx_n, fx_n) + G(gx_n, fx_n, fx_n), G(gfx_n, fx_n, fx_n) + G(gx_n, ffx_n, ffx_n) + G(gx_n, fx_n, fx_n), G(gfx_n, fx_n, fx_n) + G(gx_n, fx_n, fx_n) + G(gx_n, fx_n, fx_n), G(gfx_n, fx_n, fx_n) + G(gx_n, fx_n, fx_n) + G(gx_n, fx_n, fx_n), G(gfx_n, fx_n, fx_n) + G(gx_n, fx_n, fx_n) + G(gx_n, fx_n, fx_n), G(gfx_n, fx_n, fx_n) + G(gx_n, fx_n, fx_n) + G(gx_n, fx_n, fx_n) + G(gx_n, fx_n, fx_n), G(gfx_n, fx_n, fx_n) + G(gx_n, fx_n, fx_n) + G(gx_n, fx_n, fx_n), G(gfx_n, fx_n, fx_n) + G(gx_n, fx_n, fx_n) + G(gx_n, fx_n, fx_n), G(gfx_n, fx_n, fx_n) + G(gx_n, fx_n, fx_n) + G(gx_n, fx_n, fx_n), G(gfx_n, fx_n, fx_n) + G(gx_n, fx_n, fx_n) + G(gx_n, fx_n, fx_n), G(gfx_n, fx_n, fx_n) + G(gx_n, fx_n, fx_n) + G(gx_n, fx_n, fx_n), G(gfx_n, fx_n, fx_n) + G(gx_n, fx_n, fx_n) + G(gx_n, fx_n, fx_n), G(gx_n, fx_n, fx_n) + G(gx_n, fx_n, fx_n) + G(gx_n, fx_n, fx_n), G(gx_n, fx_n, fx_n) + G(gx_n, fx_n, fx_n) + G(gx_n, fx_n, fx_n), G(gx_n, fx_n, fx_n) + G(gx_n, fx_n) + G(gx_n, fx_n) + G(gx_n, fx_n) + G(gx_n, fx_n) +$$

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Journal, Contents available on www.bomsr.com

Vol.4. S1.2016; ISSN: 2348-0580

Email:editorbomsr@gmail.com

 $G(gfx_n, fx_n, fx_n) + G(gx_n, fx_n, fx_n) + G(gx_n, ffx_n, ffx_n) \}.$

In the limit as $n \to \infty$, from this, in view of (2.4), (2.5), (2.6), it follows that $G(gp, p, p) \le k[G(gp, p, p) + 2G(gp, p, p)]$ or $(1-3k)G(gp, p, p) \le 0$ so that gp = p, since k < 1/3.

Again, from (2.1), we have

 $\begin{aligned} G(fx_n, fp, fp) &\leq k \max\{G(gx_n, fx_n, fx_n) + G(gp, fp, fp) + G(gp, fp, fp), \\ G(gx_n, fp, fp) + G(gp, fx_n, fx_n) + G(gp, fp, fp) \\ G(gx_n, fp, fp) + G(gp, fp, fp) + G(gp, fx_n, fx_n)\}. \end{aligned}$

Proceeding the limit as $n \rightarrow \infty$, in this and using gp = p and (1.1), we get

$$G(p, fp, fp) \le 2k G(p, fp, fp)$$
. ...(2.7)

If G(p, fp, fp) > 0, (2.7) would give $G(p, fp, fp) \le 2k G(p, fp, fp) < G(p, fp, fp)$, which would be a contradiction. Therefore, G(p, fp, fp) = 0 so that fp = p. In other words, p is a common fixed point of f and g.

The case of f being continuous can similarly be handled. The uniqueness of the common fixed point follows from (1.2), (2.1) and the choice of k.

Remark. Let *g* be the identity map *i* on *X*. we first observe that (a) holds good, and the pair (*f*, *i*) is compatible. Further, (2.1) reduces to (9) of Theorem 2 of [3]. Thus, with g = i, Theorem 2.1 reduces to Theorem 2 of Vats et al [3].

References

- [1] Binayak Choudhary, Sanjay Kumar, S., Asha, Krishnapanda Das, Some Fixed Point Theorems in G-metric spaces, Math. Sci. Letters, 1(1)(2012), 25-31
- [2] Mustafa, Z., Sims, B., A new approach to generalized metric spaces, Journal of Nonlinear and Convex Anal., 7(2) (2006), 289-297
- [3] Vats, R. K., Kumar, S., Sihag, V., Fixed Point Theorems in Complete *G*-metric space, Fasc. Math. 47 (2011), 127-138