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ABSTRACT 

In this paper, the conditions, which guarantee the occurring of local 

bifurcations such as (saddle node, transcritical and pitchfork) of all 

equilibrium points of eco-epidemiological model consisting of the prey-

predator model with ( SI and SIS ) epidemic diseases in prey population only, 

are established, it’s observed that there is transcritical bifurcation near 

vanishing equilibrium point and  predator free equilibrium point  while there 

is a saddle–node bifurcation near coexistence equilibrium point, on the other 

hand there is no pitchfork bifurcation near all of the equilibrium points. 

Further investigations for the Hopf bifurcation near coexistence equilibrium 

point are carried out. Finally, numerical simulations are used to illustration 

the occurrence of local bifurcation of this model. 

Keywords: Eco-Epidemiological model, local bifurcation, Sotomayor’s 

theorem, Hopf bifurcation 
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1. INTRODUCTION 

Most dynamical system contains parameters in addition to variables. A general system of 

ordinary differential equation could therefore be written as: ẋ = f( x ; a ), where a is a set of 

parameters on which the equation, and thus their solutions, depend. finding the solution of a set of 

differential equations at different parameter values, gives qualitatively. However, in some models, 

there is a set of parameter values which are close to each other but where the behavior of the 

model is in some way qualitatively different for one set or the other. For instance, a stable 

equilibrium point might have become unstable. We then say that system has a bifurcation. 

In the other word, bifurcation occurs when a small smooth change made to the parameter 

value (the bifurcation parameter) of the system causes a sudden "qualitative" or topological change 

in its behavior. Generally, at a bifurcation, the local stability properties of equilibrium, periodic orbits 

or other invariant sets change [1]. The name "bifurcation" was first introduced by Henri Poincaré in 
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1885 in the first paper in mathematics showing such a behavior [2]. Moreover the bifurcation occurs 

in both continuous systems (described by ordinary differential equations) [3, 4, 5] and discrete 

systems (described by maps) [6, 7, 8, 9]. The bifurcation is divided into two principal classes: local 

bifurcations and global bifurcations. Local bifurcations, which can be analyzed entirely through 

changes in the local stability properties of equilibrium, periodic orbit [10]. While global bifurcations 

occur when larger periodic orbits, collide with equilibrium. This causes changes in the topology of 

the trajectories in phase space which cannot be confined to a small neighborhood, as is the case 

with local bifurcations [11]. 

The Hopf bifurcation is a local bifurcation in which equilibrium point of a dynamical system 

loses stability as a pair of complex conjugate eigenvalues of the linearization around the equilibrium 

point cross the imaginary axis of complex plane, this type is also known as a Poincare Andronov Hopf 

bifurcation. 

In this paper, an application of Sotomayor’s theorem [10,12] for local bifurcation is used to 

study the occurrence of local bifurcation  near the equilibria, furthermore Hopf bifurcation near 

positive equilibrium point conditions are established of a mathematical model proposed by M. A. 

Azhar and Sh. I. Inaam [13]. 

2. mathematical model [13] 

An eco-epidemiological mathematical model consisting of prey-predator model involving SI, SIS 

infectious disease in prey population, is proposed and formulation in [13] as in the following: 
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Where 0 < e1 <1 ,  0 < e2 <1 represent the conversion rate constants. This model consists of a prey, 

whose total population density at time T is denoted by N (T), interacting with predator whose total 

population density at time T is denoted by Y(T). Note that there are two different epidemic diseases 

(SI, SIS), divides the prey population in to three classes namely S(T) that represents the density of 

susceptible prey, I1(T) which represents the density of infected prey by first disease and I2(T) which 

represents the density of infected prey by second disease. Therefore, at any time T, we have N(T) = 

S(T) +I1(T) + I2(T).All the parameters of the model are moreover assumed to be positive and 

described as given in [13] 

Now, for further simplification of the system (1), the following dimensionless variables are 

used in [13]. 

         
 

 
       

  
 
        

  
 
    

    

 
 

 

As well as  system (1) are written in the following dimensionless form: 
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with  ( )  0,   ( )   ,   ( )    and  ( )    and it is observed that the   number of   

parameters have been reduced from fourteen in the system (1) to eleven in the system (2). 

Obviously that all the interaction functions f1, f2, f3  and  f4 on the right hand side of system (2) are 

continuous and have continuous partial derivatives on   
  with respect to dependent variables    ,    

,    and   . Therefore these functions are Lipschitzian and hence system (2) has a unique solution for 

each non-negative initial condition. Further the boundedness of the system is proved in [13] by 

theorem(1). 

3. Existence and stability analysis of system (2) 

       It is observed that, system (2) has at most three biologically feasible equilibrium points, namely 

    (           )      (  ̅    ̅    ̅   )  and     (       
     

      ) which are mentioned with their 

existence conditions in [13] as in the following:  

1) The vanishing equilibrium point    (           ) always exist and it is a locally 

asymptotically stable  if the following condition holds: 

                                                                                                                                                           (3) 

 

2) The predator free equilibrium point     (  ̅    ̅    ̅   )  exists uniquely in the       
  of 

            if the following conditions hold: 
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And it is a locally asymptotically stable if the following conditions hold: 

 

     ̅       ̅                                                                                                                                    (7) 
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3) The coexistence equilibrium point    (       
     

      ) exists uniquely in       
 , if the 

following conditions hold: 
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Accordingly, in addition to the conditions (     ) hold the isoclines    (    )    intersect the   s-

axis at the positive value namely     , for more details see [13]. 

 

And it is a locally asymptotically stable if the following conditions hold: 
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4. The local bifurcation analysis of system (2) 

In this section, the effect of varying the parameter values on the dynamical behavior of the system 

(2) around each equilibrium points is studied. Recall that the existence of non hyperbolic equilibrium 

point of system (2) is the necessary but not sufficient condition for bifurcation to occur. Therefore, in 

the following theorems an application to the Sotomayor’s theorem is appropriate. 

 

Now, according to Jacobian matrix   of system (2) given in [13] , it is clear to verify   that   for   any   

non   zero vector   (           )
  we have: 
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                                    (18) 

 

and       (   )(       )  (            )     

 

Where   (           )
  and   is any bifurcation parameter. So, according to Sotomayor’s theorem 

the pitchfork bifurcation does not occur for each point                 

 

4.1 Local bifurcation analysis near    

Theorem 1: Assume that condition ( ) is satisfied. Then system ( ) at the equilibrium point     

(           )  with the parameter  ̃    
    

     
  has : 

 no saddle –node bifurcation. 

 transcritical bifurcation. 

Proof: According to the Jacobian matrix    given in [13], system ( )  at  the  equilibrium  

point      has  zero  eigenvalue   (say      ) at     ̃  , it is clear that   ̃     provided that the 

condition ( )  holds, and the Jacobian matrix    with      ̃   becomes: 
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 be the eigenvector corresponding to the eigenvalue      
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[ ] is any nonzero real number. Let   [ ]  (  
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 be the eigenvector 

associated with the eigenvalue               of    the   matrix    ̃ 
  .  Then we have, ( ̃ 
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    By solving this equation for   [ ] we obtain,  [ ]  (  
[ ]     
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, where    
[ ] is any 

nonzero real number. Now, consider: 
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   (    ̃ )       

 



Bull .Math.&Stat.Res ( I SSN:2348-0580)  

   6 

Vol.5.Issue.1.2017 (Jan-Mar.) 

AZHAR ABBAS MAJEED, INAAM IBRAHIM SHAWKA 

Thus, according to Sotomayor’s theorem for local bifurcation, the saddle-node bifurcation condition 

can’t occur. While the first condition of transcritical bifurcation is satisfied. Now, since 
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where      (     )  represents the derivative of     (     ) with respect to   (           )
  

.Further ,it is observed that  
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Moreover, by substituting   [ ] in (18) we get: 
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Hence, it is obtain that: 
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Thus, according to Sotomayor’s theorem system ( )  has transcritical bifurcation at     with the 

parameter      ̃     

 

4.2 Local bifurcation analysis near    

Theorem 2: Assume that conditions (6), (8) and (9)  with the following conditions are satisfied: 
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Then system ( ) at the equilibrium point    (  ̅    ̅    ̅   ) with the parameter  ̅        ̅       ̅  

has: 

 No saddle-node bifurcation. 

 Transcritical bifurcation. 

Proof: According to the Jacobian matrix    [     ]   given in [13], system ( ) at the equilibrium 

point    has zero eigenvalue (say      ) at       ̅    and the Jacobian matrix    with           

      ̅    becomes:  

  ̅    ( ̅  )  [ ̅  ]    

where   ̅        for all                except   ̅      
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[ ] is any nonzero real number. It is clear that   
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Thus, according to the Sotomayor’s theorem for local bifurcation the saddle-node bifurcation 

condition can’t occur. While the first condition of transcritical bifurcation is satisfied. Now, since 
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where       (      )  represents the derivative of      (      ) with respect to   
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Thus, according to Sotomayor’s theorem of local bifurcation system ( )  has transcritical bifurcation 

at     with the parameter       ̅                 

 

4.3 Local bifurcation analysis near    

Theorem 3: Assume that conditions (1) and (15)  with the following conditions are satisfied: 
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  has:  

 No transcritical bifurcation. 

 Saddle –node bifurcation. 

Proof: The characteristic equation of Jacobian matrix    given by (   ) in [13] having zero eigenvalue 

(say       ) if and only if        and then     becomes a non-hyperbolic equilibrium point. 

Clearly the Jacobian matrix of system ( )  at the equilibrium point     with parameter      
  

becomes:  
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[ ] is any nonzero real number. It is clear that   
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conditions (  )     (  ) hold in addition to condition (  ), Now, consider: 
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Thus, according to the Sotomayor’s theorem for local bifurcation the transcritical bifurcation 

condition can’t occur. While the first condition of saddle-node bifurcation is satisfied. 
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So, according to conditions (  ) (  )(  ) and (  ) we obtain that: 
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Thus, according to Sotomayor’s theorem system ( )  has saddle-node bifurcation at     with the 

parameter       
      

 

5 The Hopf bifurcation analysis of system (2) 

In this section, the occurrence of a Hopf bifurcation near the positive equilibrium point    of 

system ( ) is investigated, therefore an application to the hopf bifurcation theorem [14] for local 

bifurcation is appropriate as shown in the following theorem. 
 

5.1 Hopf bifurcation analysis near   : 

To discuss the occurrence of Hopf bifurcation , first we need to know that the Hopf bifurcation for 

    are constructed according to the Haque and Venturino methods [14]. Consider the 

characteristic equation given by: 

  ( )        
     

           

 

here       ( (  ))            ( ( 
 ))               ( ( 

 ))   and       ( (  )) with 

  ( ( 
 )) and   ( ( 

 )) represent the sum of the principal minors of order two and three of  

 (  ) respectively. 

 

Clearly, the first condition of  Hopf  bifurcation holds if and only if: 
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Consequently,     
  (       )

  
   So, the characteristic equation becomes: 



Bull .Math.&Stat.Res ( I SSN:2348-0580)  

   11 

Vol.5.Issue.1.2017 (Jan-Mar.) 

AZHAR ABBAS MAJEED, INAAM IBRAHIM SHAWKA 

  ( )  (   
  

  
) (       

   

  
)                                                                                       (26) 

Clearly, the roots of equation (26) are:  
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Now, to verify the transversality condition of  Hopf  bifurcation, we substitute  ( )   
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( ) into equation (26), and then calculating its derivative with respect to the bifurcation 

parameter   ,    
 ( ( ))    comparing the two sides of this equation and then equating their real 

and imaginary parts, we have:  
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Solving the linear system (27) by using Cramer's rule for the unknowns   
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Hence the second necessary and sufficient condition which is called (transversality condition) of 

Hopf bifurcation 

 

  
  ( )    ̃   

 
 ( )    ̃  is not equal to zero if and only if: 

 ̅( ) ̅( )   ̅( ) ̅( )                                                                                                               (29) 

Moreover, according to the above results, the occurrence of Hopf bifurcation near the positive 

equilibrium point    is established as it shows in the following theorem. 

Theorem (4): Assume that conditions (  ) (  ) (  ) (  ) (  ) and (  ) with the following 

conditions are satisfied: 

     
  (         
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                                                                                                                     (30) 

 

         
  
 

 
                                                                                                                                    (31) 

Proof: Consider the characteristic equation of system (2) at    which is given by (   ) in [13], now to 

verify the necessary and sufficient conditions for Hopf bifurcation to occur we need to find a 

parameter say (  
 ) satisfy that: 
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general of the following form: 
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substituting into (  ) gives the following simplifications: 
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Then substituting into (  ) we get that: 
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provided that conditions (  ) (  )     (  ) are hold. So, we obtain that the Hopf bifurcation 

occurs around the equilibrium point      at the parameter       
   and the proof is complete.  

 

6 Numerical Simulation of system (2) [13] 

In this section, the dynamical behavior of system (  ) is studied numerically for different sets 

of parameters and different sets of initial points. It is observed that, for the following set of 

hypothetical parameters that satisfies stability conditions of the positive equilibrium point, system 

( ) has a globally asymptotically stable positive equilibrium point as shown in Fig. (  ) . 
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Fig.1: Time series of the solution of system (2) that started from four different initial point 

 (                  )  (                  ) (                 ) and (                  ) for the data 

given in (33). ( ) trajectories of   as a function of time, ( ) trajectories of     as a function of time, 

( ) trajectories of     as a function of time and  ( ) trajectories of    as a function of time . 

Clearly, figure (1) shows that the solution of system ( ) approaches asymptotically to the 

positive equilibrium point     (                            ) starting from four different initial 

points and this is confirming our obtained analytical results, see [13]. 

 

Moreover system (2) is solved numerically for the data given in (   ) with varying one 

parameter at each time and the obtained results are given in table (1), for more details see [13]. 
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Fig.2: Time series of the solution of system (2) approaches asymptotically to the predator free 

equilibrium point     (                     ) for the data given in (33) with         . 

 

Clearly, figure (2) shows that system (2) has a bifurcation since varying the first external infection 

rate in the range               keeping other parameters as data given in (   ) observed that 

system (2) approach the predator free equilibrium point   . 

 
Fig.3: Time series of the solution of system (2) approaches asymptotically to the positive equilibrium 

point    (                       ) for the data given in (33) with          . 

 

Also, figure (3) shows that system (2) has a bifurcation since varying the death rate of the predator in 

the range                  keeping other parameters as data given in (   ) observed that 

system (2) approach asymptotically to the positive equilibrium point   . 

 
Fig.4: Time series of the solution of system (2) approaches asymptotically the predator free 

equilibrium point     (                   ) for the data given in (33) with         . 

 

Finally, figure (4) shows that system (2) has a bifurcation since varying the death rate of the infected 

prey by first disease in the range             keeping other parameters as data given in (   ) 

observed that system (2) approach the predator free equilibrium point   . 

7 Conclusion 
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the occurrence of local bifurcation such as (saddle- node, transcritical and pitchfork) are presented, 

moreover the Hopf bifurcation near positive equilibrium point conditions are also derived of eco-

epidemiological mathematical model with ( SI and SIS ) infectious diseases in prey which is 

transmitted within the same species by contact and external source.    Further, it is observed that: 

1) For the set of hypothetical parameters value given in (33), system (2) do not have a periodic 

dynamics, while still has possibility to have a periodic dynamics for other set of parameters, 

especially Hopf bifurcation existing analytically. 

2) For the parameters value (a7 and a8 ) given in (33) there is no any kind of bifurcation, since 

they do not have any effect on the dynamical behavior of system (2). 

3) For the parameters value ( a1, a2, a3, a4, a5, a6, a9, a10, a11 ) given in (33), system (2) has one 

bifurcation . 

4) The parameters value a2  given in (33) has no bifurcation occur near E0 , While still has has 

possibility to have a bifurcation for other set of parameters, especially transcritical bifurcation 

existing analytically near E0. 
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