Vol.5.Issue.1.2017 (Jan.-Mar)

http://www.bomsr.com Email:editorbomsr@gmail.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

VAGUE TRANSLATIONS OF VAGUE H-IDEALS IN BCK ALGEBRAS

L. MARIAPRESENTI, I. AROCKIARANI Department of Mathematics Nirmala College for Women, Coimbatore-18 Email: presentimaria88@gmail.com

ABSTRACT

In this paper we introduce vague α -translate and vague λ -multiplication operators on vague H- ideals in BCK algebras and characterized their properties.

Keywords: vague set, vague α - translation, vague λ multiplication.

©KY PUBLICATIONS

1. Introduction

BCK and BCI algebras are two classes of logical algebras. They were introduced by Imai and Iseki[7, 8] and have been extensively investigated by many researchers. BCI algebras are the generalization of BCK algebras. In 1991 Xi[15] applied the concept of fuzzy set to BCK algebra. After that Jun, Meng, Liu and several researchers investigated further properties of fuzzy BCK- algebras and fuzzy ideals[2,5,6,12]. The concept of fuzzy set was introduced by zadeh[16] in 1965. Lee et. al [10] discussed fuzzy translations in algebras. Gau. W. L and Bueher D. J[4] have initiated the study of vague sets with the hope that they form a better tool to understand, interpret and solve real life problems. RanjitBiswas[14] introduced the study of vague groups and Ramakrishna. N[13],T. Eswarlal[3], have extended the study of vague algebra. The objective of this paper is to study the concept of translate operators on H- ideals in BCK- algebra and investigate their properties.

2.Preliminaries:

Definition 2.1:[6] An algebra X with a constant 0 and a binary operation "*" satisfying the following axioms for all $x, y, z \in X$.:

(i) ((x*y)*(x*z))*(z*y) = 0

(ii)
$$(x * (x * y)) * y = 0$$

(iii)
$$x * x = 0$$

(iv) x * y = 0 and y * x = 0 implies x=y.

We can define a partial ordering " \leq " by $x \leq y$ if and only if x * y = 0.

If a BCI- algebra X satisfies 0 * x = 0, for all $x \in X$, then we say that X is a BCK- algebra. Any BCK-algebra X satisfies the following axioms :

- (i) $(x * y) * (x * z) \le (z * y)$
- (ii) $x * (x * y) \le y$
- (iii) $x \le x$
- (iv) $0 \le x$
- (v) $x \le y$ and $y \le x$ implies x=y. where x \le y means x * y = 0.

Definition 2.2:[5] A non empty subset S of X is called a subalgebra of X if $x * y \in S$ for any $x, y \in S$. **Definition 2.3:[6]** A non empty subset I of X is called an ideal of X if it satisfies

 (I_1) $0 \in I$ and (I_2) $x * y \in I$ and $y \in I$ imply $x \in I$.

Definition 2.4:[9] A non empty subset I of X is said to be an H- ideal of X if it satisfies(I1) and

(I₃)
$$x * (y * z) \in I$$
 and $y \in I$ imply $x * z \in I$, for all $x, y, z \in X$.

Definition 2.5: [2] A vague set A in the universe of discourse U is characterized by two membership functions given by:

- (i) A true membership function $t_A : U \rightarrow [0,1]$ and
- (ii) A false membership function $f_A: U \rightarrow [0,1]$

where $t_A(x)$ is a lower bound on the grade of membership of x derived from the "evidence for x", $f_A(x)$ is a lower bound on the negation of x derived from the "evidence for x", and $t_A(x) + f_A(x) \le 1$. Thus the grade of membership of u in the vague set A is bounded by a subinterval $[t_A(x), 1 - f_A(x)]$ of [0,1]. This indicates that if the actual grade of membership of x is $\mu(x)$, then, $t_A(x) \le \mu(x) \le 1 - f_A(x)$. The vague set A is written as $A = \left\{ \langle x, [t_A(x), 1 - f_A(x)] \rangle / u \in U \right\}$ where the interval $[t_A(x), 1 - f_A(x)]$ is called the vague value of x in A, denoted by $V_A(x)$.

Definition 2.6:[2] Let A and B be VSs of the form $A = \left\{ \left\langle x, [t_A(x), 1 - f_A(x)] \right\rangle | x \in X \right\}$ and $B = \left\{ \left\langle x, [t_B(x), 1 - f_B(x)] \right\rangle | x \in X \right\}$ Then

- (i) $A \subseteq B$ if and only if $t_A(x) \le t_B(x)$ and $1 f_A(x) \le 1 f_B(x)$ for all $x \in X$
- (ii) A=B if and only if $A \subseteq B$ and $B \subseteq A$
- (iii) $A^c = \left\{ \langle x, f_A(x), 1 t_A(x) \rangle / x \in X \right\}$
- (iv) $A \cap B = \{ \langle x, \min(t_A(x), t_B(x)), \min(1 f_A(x), 1 f_B(x)) \rangle | x \in X \}$
- (v) $A \cup B = \left\{ \left\langle x, \left(t_A(x) \lor t_B(x) \right), \left(1 f_A(x) \lor 1 f_B(x) \right) \right\rangle / x \in X \right\}$

For the sake of simplicity, we shall use the notation $A = \langle x, t_A, 1 - f_A \rangle$ instead of $A = \{ \langle x, [t_A(x), 1 - f_A(x)] \rangle | x \in X \}.$

Definition 2.7:[11] A vague set A on X is called a vague subalgebra of x if, for any $x \in X$, we have $t_A(xy) \ge \min\{t_A(x), t_A(y)\}$ and $1 - f_A(xy) \ge \min\{1 - f_A(x), 1 - f_A(y)\}$

Definition 2.8:[11] A vague set A of a BCK- algebra X is called a vague ideal of X if the following condition is true:

(i) $(V_A(0) \ge V_A(x)), \quad (\forall x \in X)$

(ii) $(V_A(x) \ge i \min \{V_A(x * y), V_A(y)\}$ $(\forall x, y \in X)$ that is, $t_A(0) \ge t_A(x), \ 1 - f_A(0) \ge 1 - f_A(x), \text{ and}$ $(t_A(x) \ge \min \{t_A(x * y), t_A(y)\}$ $(1 - f_A(x) \ge \min \{1 - f_A(x * y), 1 - f_A(y)\}$ for all $x, y \in X$

Definition 2.9:[11] Let A be a vague set of a universe X with the true- membership function t_A and the false- membership function f_A . The (α, β) - cut of the vague set A is a crisp subset $A_{(\alpha, \beta)}$ of the set X given by $A_{(\alpha, \beta)} = \{x \in X / V_A(x) \ge [\alpha, \beta]\}$. Clearly $A_{(0,0)}$ =X. The (α, β) - cut of the vague set A are also called vague cuts of A.

Definition 2.10:[11] The α - cut of the vague set A is a crisp subset A_{α} of the set X given by $A_{\alpha} = A_{(\alpha,\alpha)}$. Thus $A_0 = X$, and if $\alpha \ge \beta$ then $A_{\beta} \subseteq A_{\alpha}$ and $A(\alpha, \beta) = A_{\alpha}$. Equivalently, we define the α -cut as

$$A_{\alpha} = \{ x : x \in X, t_A(x) \ge \alpha \}.$$

3. Translation of vague H- ideal

In this paper, we take T = $1 - \sup\{t_A(x) \mid x \in X\}$ for any vague set V_A = $[t_A, 1-f_A]$ of X.

Definition 3.1: Let $V_A = [t_A, 1-f_A]$ be a vague subset of X and let $\alpha \in [0, T]$. An object having the form $(V_A)_{\alpha}^T = [(t_A)_{\alpha}^T, (1-f_A)_{\alpha}^T]$ is called a vague α - translation of A if $(V_A)_{\alpha}^T(x) = V_A(x) + \alpha$ for all $x \in X$. where (i.e.,) $(t_A)_{\alpha}^T(x) = t_A(x) + \alpha$ and $(1-f_A)_{\alpha}^T(x) = 1 - f_A(x) + \alpha$.

Example 3.3: Let X = {0, 1, 2, 3} be a BCK- algebra with the following cayley table:

*	0	1	2	3
0	0	0	0	0
1	1	0	1	0
2	2	2	0	0
3	3	3	3	0

Define a vague set $V_A = [t_A, 1-f_A]$ in X as follows:

Х	0	1	2	3
V _A	[0.4,0.8]	[0.3,0.7]	[0.3,0.6]	[0.3,0.6]

Then V_A is a vague H- ideal of X and T = 0.6. If we take α = 0.12, then the vague α - translation $(V_A)^T_{\alpha} = [(t_A)^T_{\alpha}, (1 - f_A)^T_{\alpha}]$ of V_A is given by,

Х	0	1	2	3
$(V_A)^T_{\alpha}$	[0.52,0.92]	[0.42,0.82]	[0.42,0.72]	[0.42,0.72]

Then $(V_A)_{\alpha}^T$ is also a Vague H-ideal of X.

Theorem 3.4: If $V_A = [t_A, 1-f_A]$ is a vague H- ideal of X, then the vague α - translation of $(V_A)^T_{\alpha} = [(t_A)^T_{\alpha}, (1-f_A)^T_{\alpha}]$ of A is a vague H- ideal of X for all $\alpha \in [0,T]$.

Proof: Let $V_A = [t_A, 1-f_A]$ be a vague H- ideal of X and $\alpha \in [0, T]$, then $(V_A)^T_{\alpha}(0) = V_A(0) + \alpha \ge V_A(x) + \alpha = (V_A)^T_{\alpha}(x)$ for all $x \in X$. Now,

$$(V_A)^T_{\alpha}(x*z) = V_A(x*z) + \alpha \ge \min\{V_A(x*(y*z)), V_A(y)\} + \alpha$$

$$= \min\{V_A(x*(y*z)) + \alpha, V_A(y) + \alpha\}$$

$$\min\{(V_A)^I_\alpha(x*(y*z)), (V_A)^I_\alpha(y)\} \quad \forall x, y, z \in \mathbb{Z}$$

Hence the vague α - translation of $(V_A)^T_{\alpha} = [(t_A)^T_{\alpha}, (1 - f_A)^T_{\alpha}]$ of A is a vague H- ideal of X.

Theorem 3.5: If $V_A = [t_A, 1-f_A]$ is a vague subset of X such that a vague α -translation $(V_A)_{\alpha}^T = [(t_A)_{\alpha}^T, (1-f_A)_{\alpha}^T]$ of A is a vague H-ideal of X for some $\alpha \in [0,T]$. Then $V_A = [t_A, 1-f_A]$ is a vague H-ideal of X.

Proof: Assume that $(V_A)^T_{\alpha} = [(t_A)^T_{\alpha}, (1 - f_A)^T_{\alpha}]$ is a vague H- ideal of X for some $\alpha \in [0,T]$. Let $x, y \in X$. We have $V_A(0) + \alpha = (V_A)^T_{\alpha}(0) \ge (V_A)^T_{\alpha}(x) = V_A(x) + \alpha$ which implies $V_A(0) \ge V_A(x)$. Now we have

$$\begin{split} V_A(x*z) + \alpha &= (V_A)_{\alpha}^T(x*z) \ge \min\{(V_A)_{\alpha}^T(x*(y*z)), \ (V_A)_{\alpha}^T(y)\} \\ &= \min\{V_A(x*(y*z)) + \alpha, \ V_A(y) + \alpha\} \\ &= \min\{(V_A)(x*(y*z)), (V_A)(y)\} + \alpha \end{split}$$

which

implies that $V_A(x * z) \ge \min\{V_A(x * (y * z)), V_A(y)\}$ for all $x, y, z \in X$. Hence $V_A = [t_A, 1-f_A]$ is a vague H-ideal of X.

Theorem 3.6: If the vague α - translation $(V_A)^T_{\alpha} = [(t_A)^T_{\alpha}, (1 - f_A)^T_{\alpha}]$ of A is a vague H-ideal of X for all $\alpha \in [0,T]$ then it must be a vague sub algebra of X.

Proof:Let the vague α - translation $(V_A)^T_{\alpha} = [(t_A)^T_{\alpha}, (1 - f_A)^T_{\alpha}]$ of A be a vague H-ideal of X. Then we have $(V_A)^T_{\alpha}(x * z) \ge \min\{(V_A)^T_{\alpha}(x * (y * z)), (V_A)^T_{\alpha}(y)\}$ for all $x, y, z \in X$. Substituting y for z we get

$$(V_A)_{\alpha}^T (x * y) \ge \min\{(V_A)_{\alpha}^T (x * (y * y)), (V_A)_{\alpha}^T (y)\}$$

= min{ $(V_A)_{\alpha}^T (x * 0), (V_A)_{\alpha}^T (y)$ } = min{ $(V_A)_{\alpha}^T (x), (V_A)_{\alpha}^T (y)$ }

Therefore, $(V_A)^T_{\alpha}$ is a vague sub algebra of X.

Proposition 3.7: Let $V_A = [t_A, 1-f_A]$ be a vague subset of X such that a vague α -translation $(V_A)_{\alpha}^T = [(t_A)_{\alpha}^T, (1-f_A)_{\alpha}^T]$ of A is a vague ideal of X for $\alpha \in [0,T]$. If (x*a)*b = 0 for all $x, a, b \in X$, then $(V_A)_{\alpha}^T(x) \ge \min\{(V_A)_{\alpha}^T(a), (V_A)_{\alpha}^T(b)\}$.

Proof: Let
$$x, a, b \in X$$
 be such that $(x * a) * b = 0$. Then

$$\begin{aligned} (V_A)_{\alpha}^T(x) &\geq \min\{(V_A)_{\alpha}^T(x*a), (V_A)_{\alpha}^T(a)\} \geq \min\{\min\{(V_A)_{\alpha}^T((x*a)*b), (V_A)_{\alpha}^T(b)\}, (V_A)_{\alpha}^T(a)\} \\ &= \min\{(V_A)_{\alpha}^T(0), (V_A)_{\alpha}^T(b)\}, (V_A)_{\alpha}^T(a)\} \\ &= \min\{(V_A)_{\alpha}^T(b)\}, (V_A)_{\alpha}^T(a)\} \quad (sin \, ce \ (V_A)_{\alpha}^T(0)\} \geq (V_A)_{\alpha}^T(b)) \\ &= \min\{(V_A)_{\alpha}^T(a)\}, (V_A)_{\alpha}^T(b)\} \end{aligned}$$

Theorem 3.8: Let $V_A = [t_A, 1-f_A]$ be a vague subset of X such that a vague α -translation $(V_A)_{\alpha}^T = [(t_A)_{\alpha}^T, (1-f_A)_{\alpha}^T]$ of A is a vague ideal of X for $\alpha \in [0,T]$. If it satisfies the condition $(V_A)_{\alpha}^T(x * y) \ge (V_A)_{\alpha}^T(x)$ for all $x, y \in X$, then the vague α -translation $(V_A)_{\alpha}^T$ of A is a vague Hideal of x.

Proof: Let the vague α -translation $(V_A)^T_{\alpha}$ of A be a vague ideal of X. For any $x, y, z \in X$, we have $(V_A)^T_{\alpha}(x*z) \ge \min\{(V_A)^T_{\alpha}((x*z)*(y*z)), (V_A)^T_{\alpha}(y*z)\}$ $= \min\{(V_A)^T_{\alpha}((x*(y*z))*z), (V_A)^T_{\alpha}(y*z)\} \ge \min\{(V_A)^T_{\alpha}(x*(y*z)), (V_A)^T_{\alpha}(y)\}$

Hence the vague α -translation $(V_A)^T_{\alpha}$ of A is a vague H-ideal of X for some $\alpha \in [0,T]$.

Theorem 3.9: Let V_A is a vague subset of associative BCK- algebra X such that the vague α translation $(V_A)_{\alpha}^T = [(t_A)_{\alpha}^T, (1 - f_A)_{\alpha}^T]$ of A is a vague ideal of X for $\alpha \in [0,T]$.then the vague α translation $(V_A)_{\alpha}^T$ of V_A is a vague H-ideal of X.

Proof: Let the vague α translation $(V_A)^T_{\alpha}$ of V_A be a vague ideal of X. For any $x, y, z \in X$, we have $(V_A)^T_{\alpha}(x*z) \ge \min\{(V_A)^T_{\alpha}((x*z)*y), (V_A)^T_{\alpha}(y)\} = \min\{(V_A)^T_{\alpha}((x*y)*z), (V_A)^T_{\alpha}(y)\}$ $= \min\{(V_A)^T_{\alpha}(x*(y*z)), (V_A)^T_{\alpha}(y)\}$

Hence the vague α translation $(V_A)^T_{\alpha}$ of V_A is a vague H-ideal of X.

Theorem 3.10: Let $V_A = [t_A, 1-f_A]$ be a vague subset of X such that a vague α -translation $(V_A)^T_{\alpha} = [(t_A)^T_{\alpha}, (1-f_A)^T_{\alpha}]$ of A is a vague H- ideal of X for $\alpha \in [0,T]$, then the sets $T_{V_A} = \{x \in X \ / \ (V_A)^T_{\alpha}(x) = (V_A)^T_{\alpha}(0)\}$ are H-ideals of X.

Proof: Suppose that $(V_A)_{\alpha}^T = [(t_A)_{\alpha}^T, (1 - f_A)_{\alpha}^T]$ is a vague ideal of X. Then $(V_A)_{\alpha}^T$ is a vague H-ideal of X. Obviously $0 \in T_{V_A}$. Let $x, y, z \in X$ be such that $x * (y * z) \in T_{V_A}$ and $y \in T_{V_A}$. Then $(V_A)_{\alpha}^T (x * (y * z)) = (V_A)_{\alpha}^T (0) = (V_A)_{\alpha}^T (y)$ and so

 $(V_A)_{\alpha}^T(x*z) \ge \min\{(V_A)_{\alpha}^T(x*(y*z)), (V_A)_{\alpha}^T(y)\} = (V_A)_{\alpha}^T(0). \text{ Since } (V_A)_{\alpha}^T \text{ is a vague H- ideal of } X. \text{ We conclude that } (V_A)_{\alpha}^T(x*z) = (V_A)_{\alpha}^T(0). \text{ This implies } (V_A)_{\alpha}^T(x*z) + \alpha = (V_A)_{\alpha}^T(0) + \alpha \text{ so that } x*z \in T_{V_A}. \text{ Therefore } T_{V_A} \text{ is a H- ideal of } X.$

Proposition 3.11: Let the vague α -translation $(V_A)_{\alpha}^T = [(t_A)_{\alpha}^T, (1 - f_A)_{\alpha}^T]$ of A be a vague H-ideal of X for $\alpha \in [0,T]$. If $x \leq y$. Then $(V_A)_{\alpha}^T(x) \geq (V_A)_{\alpha}^T(y)$, that is $(V_A)_{\alpha}^T$ is order-reserving.

Proof: Let $x, y, z \in X$ be such that $x \le y$. then x * y = 0 and hence

$$(V_A)^T_{\alpha}(x) = (V_A)^T_{\alpha}(x*0) \ge \min\{(V_A)^T_{\alpha}(x*(y*0)), (V_A)^T_{\alpha}(y)\}$$

= min{ $(V_A)^T_{\alpha}(x*y), (V_A)^T_{\alpha}(y)$ } = min{ $(V_A)^T_{\alpha}(0), (V_A)^T_{\alpha}(y)$ } = $(V_A)^T_{\alpha}(y)$

Theorem 3.12: Let $V_A = [t_A, 1 - f_A]$ be a vague subset of X such that the vague α -translation $(V_A)^T_{\alpha} = [(t_A)^T_{\alpha}, (1 - f_A)^T_{\alpha}]$ of A be a vague ideal of X for $\alpha \in [0, T]$, then the following assertions are equivalent:

- (i) $(V_A)_{\alpha}^T$ of A be a vague H-ideal of X,
- (ii) $(V_A)^T_{\alpha}(x*y) \ge (V_A)^T_{\alpha}(x*(0*y))$ for all $x, y \in X$,

(iii)
$$(V_A)^T_{\alpha}((x*y)*z) \ge (V_A)^T_{\alpha}(x*(y*z))$$
 for all $x, y, z \in X$

Proof: (i) \Rightarrow (ii) Let $(V_A)^T_{\alpha} = [(t_A)^T_{\alpha}, (1 - f_A)^T_{\alpha}]$ be a vague H- ideal of X. Then for all $x, y \in X$ we have $(V_A)^T_{\alpha}(x * y) \ge \min\{(V_A)^T_{\alpha}(x * (0 * y)), (V_A)^T_{\alpha}(0)\} = (V_A)^T_{\alpha}(x * (0 * y))$. Therefore, the inequality (ii) is satisfied.

(ii) \Rightarrow (iii)Assume that (ii) is satisfied. For all $x, y, z \in X$, we have

$$\begin{aligned} ((x*y)*(0*z))*(x*(y*z)) &= ((x*y)*(x*(y*z)))*(0*z) \le ((y*z)*y)*(0*z) \\ &= ((y*y)*z)*(0*z) = (0*z)*(0*z) = 0 \end{aligned}$$

It follows from proposition 3.11 that $(V_A)^T_{\alpha}((x * y) * (0 * z)) * (x * (y * z)) \ge (V_A)^T_{\alpha}(0)$. Since

 $\left(V_{A}
ight)_{lpha}^{T}$ are vague H- ideal of X, Therefore, we have

 $\begin{aligned} (V_A)_{\alpha}^{T}((x*y)*(0*z))*(x*(y*z)) &= (V_A)_{\alpha}^{T}(0). \text{ Using (ii)} \\ (V_A)_{\alpha}^{T}((x*y)*z) &\geq (V_A)_{\alpha}^{T}((x*y)*(0*z)) \\ &= \min\{(V_A)_{\alpha}^{T}(((x*y)*(0*z))*(x*(y*z))), (V_A)_{\alpha}^{T}(x*(y*z)))\} \\ &= \min\{(V_A)_{\alpha}^{T}(0), (V_A)_{\alpha}^{T}(x*(y*z))\} = (V_A)_{\alpha}^{T}(x*(y*z)) \end{aligned}$

Therefore, inequality (iii) is also satisfied.

(iii) \Rightarrow (i) Assume that (iii) is valid. For all $x, y, z \in X$, we have

$$(V_A)_{\alpha}^{T}((x*z) \ge \min\{(V_A)_{\alpha}^{T}((x*z)*y), (V_A)_{\alpha}^{T}(y)\} = \min\{(V_A)_{\alpha}^{T}((x*y)*z), (V_A)_{\alpha}^{T}(y)\}$$

= min{(V_A)_{\alpha}^{T}(x*(y*z)), (V_A)_{\alpha}^{T}(y)}

Therefore, $(V_A)_{\alpha}^T = [(t_A)_{\alpha}^T, (1 - f_A)_{\alpha}^T]$ is a vague H-ideal of X. Hence, the assertion (i) holds.

Theorem3.13: Let $V_A = [t_A, 1 - f_A]$ be a vague subset of X such that the vague α -translation $(V_A)_{\alpha}^T = [(t_A)_{\alpha}^T, (1 - f_A)_{\alpha}^T]$ of A be a vague ideal of X for $\alpha \in [0, T]$, then the following assertions are equivalent:

(i) $(V_A)_{\alpha}^T$ of A be a vague H-ideal of X,

(ii)
$$(V_A)^T_{\alpha}((x*z)*y) \ge (V_A)^T_{\alpha}((x*z)*(0*y))$$
 for all $x, y, z \in X$,

(iii)
$$(V_A)^T_{\alpha}(x*y) \ge \min\{(V_A)^T_{\alpha}((x*z)*(0*y)), (V_A)^T_{\alpha}(z)\} \text{ for all } x, y, z \in X$$

Proof: (i) \Rightarrow (ii) is obvious.

(ii) \Rightarrow (iii) Assume that (ii) is valid. For all $x, y, z \in X$, we have $(V_A)^T_{\alpha}((x * y) \ge \min\{(V_A)^T_{\alpha}((x * y) * z), (V_A)^T_{\alpha}(z)\} = \min\{(V_A)^T_{\alpha}((x * z) * y), (V_A)^T_{\alpha}(z)\}$ $\ge \min\{(V_A)^T_{\alpha}((x * z) * (0 * y)), (V_A)^T_{\alpha}(z)\}.$ Therefore, (iii) is satisfied.

(iii) \Rightarrow (i) Assume that (iii) is valid. Therefore, for all $x, y, z \in X$, we have $(V_A)^T_{\alpha}(x * y) \ge \min\{(V_A)^T_{\alpha}((x * z) * (0 * y)), (V_A)^T_{\alpha}(z)\}$ Putting Z=0 we get $(V_A)^T_{\alpha}(x * y) \ge \min\{(V_A)^T_{\alpha}((x * 0) * (0 * y)), (V_A)^T_{\alpha}(0)\} = \min\{((V_A)^T_{\alpha}(x * (0 * y)), (V_A)^T_{\alpha}(0)\}$ $= (V_A)^T_{\alpha}(x * (0 * y))$

Hence the proof.

Theorem3.14: Let $V_A = [t_A, 1 - f_A]$ be a vague subset of X and $\alpha \in [0, T]$, then the vague α -translation $(V_A)_{\alpha}^T = [(t_A)_{\alpha}^T, (1 - f_A)_{\alpha}^T]$ of V_A be a vague H ideal of X if and only if A_{α} is a H- ideal of X, for all $t \in \text{Im}(V_A)$ with t > α .

Proof: Suppose that $(V_A)_{\alpha}^T$ is a vague H- ideal of X and $t \in \text{Im}(V_A)$ with t > α . Since

$$(V_A)^T_{\alpha}(0) \ge (V_A)^T_{\alpha}(x)$$
, for all $x \in X$, we have

$$\begin{split} V_A(0) + \alpha &= (V_A)_{\alpha}^T(0) \geq (V_A)_{\alpha}^T(x) \geq V_A(x) + \alpha \geq t \ \text{for} \ x \in A_{\alpha}. \text{Hence} \ 0 \in A_{\alpha} \text{. Let} \ x, y, z \in X \\ \text{such that} \ x * (y * z), \ y \in A_{\alpha} \text{. Then} \ V_A(x * (y * z)) \geq t - \alpha \ \text{and} \ V_A(y) \geq t - \alpha \text{ I.E.}, \end{split}$$

 $(V_A)_{\alpha}^T(x*(y*z)) = V_A(x*(y*z)) + \alpha \ge t \text{ and } (V_A)_{\alpha}^T(y) = V_A(y) + \alpha \ge t. \text{ Since } (V_A)_{\alpha}^T \text{ is a vague}$ H- ideal. So, we have $V_A(x*z) + \alpha = (V_A)_{\alpha}^T(x*z) \ge \min\{(V_A)_{\alpha}^T(x*(y*z)), (V_A)_{\alpha}^T(y)\} \ge t$ that is, $V_A(x*z) \ge t - \alpha$ so that $x*z \in A_{\alpha}$. Therefore, A_{α} is a H- ideal of X.

Conversely, suppose that A_{α} is a H- ideal of X, for all $t \in \text{Im}(V_A)$ with t > α . If there exist $a \in X$ such that $(V_A)^T_{\alpha}(0) < \lambda \leq (V_A)^T_{\alpha}(x)$, then $V_A(a) \geq \lambda - \alpha$ but $V_A(0) < \lambda - \alpha$. This shows that

 $a \in A_{\alpha}$ and $0 \notin A_{\alpha}$. This is a contradiction, and $(V_A)_{\alpha}^T(0) \ge (V_A)_{\alpha}^T(x)$, for all $x \in X$. Now we assume that there exist $a, b, c \in X$ such that

$$\begin{split} & (V_A)_{\alpha}^T(a*c) < \xi \leq \min\{(V_A)_{\alpha}^T(a*(b*c)), (V_A)_{\alpha}^T(b)\}. \text{ Then } V_A(a*(b*c)) \geq \beta - \alpha \text{ and} \\ & V_A(b) \geq \beta - \alpha \text{ but } V_A(a*c) < \beta - \alpha \text{ . Hence, } a*(b*c) \in A_{\alpha} \text{ and } b \in A_{\alpha} \text{ but } a*c \notin A_{\alpha} \text{ which is a contradiction. Thus, } (V_A)_{\alpha}^T(a*c) \geq \min\{(V_A)_{\alpha}^T(a*(b*c)), (V_A)_{\alpha}^T(b)\}, \text{ for all } a, b, c \in X \text{ . Consequently, } (V_A)_{\alpha}^T \text{ is a vague H- ideal of X.} \end{split}$$

Definition 3.15: Let $V_A = [t_A, 1 - f_A]$ be a vague subset of X and $\lambda \in [0,1]$. An object having the form $(V_A)^S_{\lambda} = [(t_A)^S_{\lambda}, (1 - f_A)^S_{\lambda}]$ is called a vague λ multiplication of V_A if $(V_A)^S_{\lambda}(x) = V_A(x) \cdot \lambda$ for all $x \in X$.

Example 3.16: Let X = {0, 1, 2, 3} be a BCK- algebra which is given in example 3.3 and consider a fuzzy subalgebra V_A of X that is defined in example 3.3. If we take $\lambda = 0.1$, then the vague λ - multiplication $(V_A)_{0.1}^S$ of V_A is given by,

Х	0	1	2	3
$(V_A)_{0.1}^S$	[0.04,0.08]	[0.03,0.07]	[0.03,0.06]	[0.03,0.06]

Therefore, clearly $\left(V_{A}\right)_{0.1}^{S}$ is a Vague H- ideal of X.

Theorem 3.17: If V_A is a vague H-ideal of X, then the vague λ - multiplication of V_A is a vague H- ideal of X, for all $\lambda \in [0,1]$.

Proof: Straightforward.

Theorem 3.18: Let V_A be a vague subset of X. Then V_A is a vague H- ideal of X if and only if the vague λ - multiplication $(V_A)_{\lambda}^{S}$ of V_A is a vague H- ideal of X, for all $\lambda \in [0,1]$.

Proof: Necessity follows from the above theorem. Let $\lambda \in [0,1]$ be such that $(V_A)^s_{\lambda}$ be a vague H-ideal of X. Then $V_A(0) \cdot \lambda = (V_A)^s_{\lambda}(0) \ge (V_A)^s_{\lambda}(x) = V_A(x) \cdot \lambda$ which implies that $V_A(0) \ge V_A(x)$, for all $x \in X$. Also, for $x, y, z \in X$, we have,

 $V_A(x*z) \cdot \lambda = (V_A)^S_\lambda(x*z) \ge \min\{(V_A)^S_\lambda(x*(y*z)), (V_A)^S_\lambda(y)\}$

 $= \min\{V_A(x \ast (y \ast z)) \cdot \lambda, V_A(y) \cdot \lambda\} = \min\{V_A(x \ast (y \ast z)), V_A(y)\} \cdot \lambda$

which implies that $V_A(x * z) \ge \min\{V_A(x * (y * z)), V_A(y)\}$, for all $x, y, z \in X$. Hence, V_A is a vague H- ideal of X.

Acknowledgement: The author is greatful to Dr. Sr. I Arockiarani for her valuable suggestions and discussions on this work.

References

- [1] Borumandsaeid. A and Zarandi. A., Vague set theory applied to BM- Algebras. International journal of algebra, 5, 5 (2011), 207-222.
- [2] Dudek. W. A., On group- like BCI- algebras, Demonstration Math. 21(1998), 369-376.
- [3] Eswarlal. T, Vague ideals and normal vague ideals in semirings, Int. journal of computational congnition, 6(3)(2008).
- [4] Gau. W. L, Buehrer. D. J., Vague sets, IEEE Trans, Systems Man and Cybernet, 23 (2) (1993), 610-614.
- [5] Huang. W. P., On the BCI- algebras in which every subalgebras is an ideal, Math. Japonica 37(1992), 645-647.
- [6] Huang. Y and Chen. Z., On ideals in BCK- algebras, Math. Japonica, 50(1999), 211-226.

- [7] Imai. Y and Iseki. K., on axiom system of propositional calculi, Proc. Japan Academy, 42(1966), 19-22.
- [8] Iseki. K., An introduction to theory of BCK- algebra, Math Japan, (1973), 1-26.
- [9] Khalid. H. M and Ahmad. B., Fuzzy H- ideals in BCI- algebras, Fuzzt sets and systems, 101 (1999), 153-158.
- [10] Lee. K. J, Jun. Y. B and Doh. M. I., Fuzzy translations and fuzzy multiplications of BCK/BCI algebras, Commun. Korean math. Soc. 24(2009), 353-360.
- [11] Lee. K. J, So. K. S and Bang. K. S, Vague BCK/BCI- algebras, J. Korean Soc. Math. Educ. Ser. B: pure Appl. Math., 15(2008), 297-308.
- [12] Lele. C, and et al., Fuzzy ideals and weak ideals in BCK- algebras, Sci. Math. Japonicae 54(2001), 323-336.
- [13] Ramakrishna. N, A characterization of cyclic in terms of vague groups, Int. journal of computation cognition, 66 (1) 92009), 913-916.
- [14] RanjitBiswas, Vague groups, Int. journal of computational cognition, 4(2)(2006).
- [15] Xi. O., Fuzzy BCK- algebras, Math Japonica 36(1991) 935-942.
- [16] Zadeh. L. A, Fuzzy sets, Information and control, 8 (1965), 338-353.