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1. Introduction

BCK and BCl algebras are two classes of logical algebras. They were introduced by Imai and
Iseki[7, 8] and have been extensively investigated by many researchers. BCl algebras are the
generalization of BCK algebras. In 1991 Xi[15] applied the concept of fuzzy set to BCK algebra. After
that Jun, Meng, Liu and several researchers investigated further properties of fuzzy BCK- algebras
and fuzzy ideals[2,5,6,12]. The concept of fuzzy set was introduced by zadeh[16] in 1965. Lee et. al
[10] discussed fuzzy translations in algebras. Gau. W. L and Bueher D. J[4] have initiated the study of
vague sets with the hope that they form a better tool to understand, interpret and solve real life
problems. RanjitBiswas[14] introduced the study of vague groups and Ramakrishna. N[13],T.
Eswarlal[3], have extended the study of vague algebra. The objective of this paper is to study the
concept of translate operators on H- ideals in BCK- algebra and investigate their properties.
2.Preliminaries:

“wy n
*

Definition 2.1:[6] An algebra X with a constant 0 and a binary operation satisfying the following

axioms forall X,y,z € X.:

() ((x*y)*(x*2))*(z*y)=0

(i) (xx(x*y))*y=0

(iii) Xx*X=0

(iv) X*y=0andy*X=0 implies x=y.
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We can define a partial ordering “<” by x<y ifandonlyif X*y=0.

If a BCI- algebra X satisfiesO* X =0, for all X € X, then we say that X is a BCK- algebra. Any BCK-
algebra X satisfies the following axioms :
() (xxy)*(x*z)<(z*Yy)
(i)  xx(x*xy)<y
(iii) X< X
(iv) 0<x
(v) X< Yyandy < X implies x=y. where x<y means x*y =0.
Definition 2.2:[5] A non empty subset S of X is called a subalgebra of X if X*y e S forany X,y €S.
Definition 2.3:[6] A non empty subset | of X is called an ideal of X if it satisfies
() Oel and (I) x*yel and yelimply xel.
Definition 2.4:[9] A non empty subset | of X is said to be an H- ideal of X if it satisfies(l,) and
() X*(y*2z)eland yelimply x*zel,forall X,y,ze X .
Definition 2.5: [2] A vague set A in the universe of discourse U is characterized by two membership
functions given by:

(i) Atrue membership function t, :U —[01] and

(i) Afalse membership function f, :U —[0]1]
where t,(X)is a lower bound on the grade of membership of x derived from the “evidence for x”,
fo(X)is a lower bound on the negation of x derived from the “evidence for x”, and
t,(X)+ f,(X) <1. Thus the grade of membership of u in the vague set A is bounded by a subinterval
[t,(x).1— f,(X)] of [0,1]. This indicates that if the actual grade of membership of x is p(x), then,
t,(X) < p(x) <1- f,(x) .The vague set A is written as A= {<X,[tA(X),1— fA(X)]>/u eU }where
the interval [t,(X),1— f,(X)]is called the vague value of x in A, denoted by V,(X) .
Definition 2.6:[2] Let A and B be VSs of the form A= {<X,[tA(X),l— fA(X)]>/X € X} and
B = {(x,[t; ()1~ f5 (\)])/x € X} Then

(i) Ac B ifandonlyif t,(X)<tg(x) and 1— f,(x) <1- f;(X) for all xe X

(if) A=Bifandonlyif Ac B and B A

(iii) A° = {(x, f,()1-t,(x))/x e X }

(iv) AN B = {(x, min(t, (x),ts (X)), min(L— ,(x)1— 5 (X)))/x e X }

(V) AUB = {(%,(t, () vt ()@= f, () v1- fo (X)) xe X |
For the sake of simplicity, we shall use the notation A= <X,tA,1— fA> instead of
A={x[ta()1- f. (0] /xe X},

Definition 2.7:[11] A vague set A on X is called a vague subalgebra of x if, for any X X , we have

ta(xy) 2 min{t, (x),t,(y)} and 1— f,(xy) = min{l - f,(x).1- f,(y)}
Definition 2.8:[11] A vague set A of a BCK- algebra X is called a vague ideal of X if the following
condition is true:

) Va(@2V,a(x), (¥ xeX)
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(i) (Va()zimin{V, (x*y),V, ()} (VX yeX)
that is,
t,(0)>t,(x), 1-f,(0)>1-f,(x), and
(t () =min{t,(x*y),t,(V)} @—f,(x)=min{l—f,(x*y)1-f,(y)}forall x,ye X

Definition 2.9:[11] Let A be a vague set of a universe X with the true- membership function t, and

the false- membership function fa. The (a, B)- cut of the vague set A is a crisp subset A, gof the set X
given by A, ; ={xe X /V,(X) 2[a, B1}. Clearly Agg=X. The (a,)- cut of the vague set A are
also called vague cuts of A.

Definition 2.10:[11] The a- cut of the vague set A is a crisp subset A, of the set X given by A= Aga)
.ThusA,=X, and if a = B then Aﬂ c A, and A(a, B)= A, Equivalently, we define the a-cut as
A, ={x:xe X 1,(X) > a}.

3. Translation of vague H- ideal

In this paper, we take T = 1—sup{t, (X)/ X € X}for any vague set V, = [ta,1-fs] of X.

Definition 3.1: Let V, = [t,,1-f,] be a vague subset of X and let & €[0,T]. An object having the form
V)L =[(t)],@—f,)]] is called a vague a- translation of A if (V,)! (X)=V,(X)+a for all
X e X.where (i.e.,) (t,)L(X)=t,(X)+aand A- ) (X)=1-f,(X)+a.

Example 3.3: Let X = {0, 1, 2, 3} be a BCK- algebra with the following cayley table:

* 0 1 2 3
0 0 0 0 0
1 1 0 1 0
2 2 2 0 0
3 3 3 3 0
Define a vague set V=[ta,1-fa] in X as follows:
X 0 1 2 3
Va [0.4,0.8] | [0.3,0.7] | [0.3,0.6] | [0.3,0.6]

Then V, is a vague H- ideal of X and T = 0.6. If we take a = 0.12, then the vague a- translation
V)L =[(t)l, @ f,)] of Vais given by,

X 0 1 2 3

(v,)! |[0.52,0.92] | [0.42,0.82] | [0.42,0.72] | [0.42,0.72]

Then (V,). is also a Vague H-ideal of X.
Theorem 3.4:If V,=[tp,1-fs] is a vague H- ideal of X, then the vague a- translation of
VoI =[t)], @ )] 1of Ais avague H- ideal of X for all & €[0,T].
Proof: Let V,=[tp,1-fa] be a vague H- ideal of X and «a€[0,T], then
V)L =V,(0)+a >V, (X)+a=(,).(x)forall xe X.Now,
(Va)o (x*2) =V, (x* 2) + > min{V, (x* (Y ¥ 2)), V, ()} +e
=mindV, (x*(y*2)) + &, V,(y) + a}
=min{(V,), (x*(y*2)), Va). (N} X y,zeZ
Hence the vague a- translation of (V)] =[(t,)],(@— f,).]of Ais a vague H- ideal of X.
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Theorem 3.5: If V,=[ts,1-fa] is a vague subset of X such that a vague oa-translation
V)L =[(t)],@—f,).1of A is a vague H-ideal of X for some o €[0,T]. Then V,=[ts,1-f,] is a
vague H-ideal of X.

Proof: Assume that (V)] =[(t,)],@—f,)] is a vague H- ideal of X for some a €[0,T]. Let
X,y € X.We have V,(0)+a = (V). (0) > (V,)] (X) =V,(X) +a which implies V,(0) >V, (X).

Now we have

Va(x#2)+a =(V,); (x*z) 2 min{(V,));, (x* (y *2)), (V). (V)}
=min{V, (x*(y*2)) + a, V,(y) + o}
=min{(V,)(x*(y*2)), Va)(¥) }+a

which
implies that V,(X*2z) >min{V,(x*(y*2)),V,(y) }or all X,y,z € X.Hence Va=[ts,1-fs] is a
vague H-ideal of X.
Theorem 3.6: If the vague a- translation (V)] =[(t,)],(@— f,).]of A is a vague H-ideal of X for all
a €[0,T]then it must be a vague sub algebra of X.

Proof:Let the vague a- translation (V)] =[(t,)],(@— f,)]] of A be a vague H-ideal of X. Then we

have (V)1 (x*2) >min{(V,)] (x*(y*2)), (V,). (y) }Horall X,y,z e X.Substituting y for z we
get

(Va)a (x* y) Zmin{(V, ), (x* (y*¥)) . (Va)o (V) }
= ming(V,)] (*0), (V)1 () = ming(V,)L. 00, (V)L () }

Therefore, (V). is a vague sub algebra of X.
Proposition 3.7: Let V,=[ts,,1-f] be a vague subset of X such that a vague a-translation
V)L =[(t)],@—f).1of A is a vague ideal of X for a [0, T].If (x*a)*b=0for all
xa,be X, then (v,)] (x) = minf(V,)] a) , V,) ] () }.
Proof: Let X,a,b € X be such that (x*a)*b=0.Then
(Va)s (x) 2 min{(V,);, (x*a) , (V,); (@) } > min{min{(V,,); (x*@) *b) , (V,); (0) }, (V,.);, ()}

=min{min{(V,);, (0), (V)¢ (0) }, (V.. (@)}

=min{(V,); (0)}, (V). (@} (since (V,);(0)}=(V,); (b))

=min{(V,); (@)} (V,); (0)}

Theorem 3.8: Let V,= [t,, 1-fo] be a vague subset of X such that a vague a-translation
V)L =[(t,)],@— f,)] Jof Ais avague ideal of X for a €[0,T]. If it satisfies the condition

VI (x*y) > (V)] (x)forallx,y € X ,then the vague a-translation (V,)] of Ais a vague H-
ideal of x.

Proof: Let the vague a-translation (\/A); of A be a vague ideal of X. For any X,Yy,Z € X, we have
(V) (xx2) 2 min{(V,);, (x*2) * (y*2)) , (Va), (Y *2) }
=min{(V,), (x*(y#2))*2), (Vo) (y*2) }>min{(V,); (x*(y #2)), (V) (V) }

Hence the vague a-translation (V). of A is a vague H-ideal of X for some & €[0,T].
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Theorem 3.9: Let V,is a vague subset of associative BCK- algebra X such that the vague a translation

Vo =[t)l,@— f,)]]of Ais a vague ideal of X for o [0, T].then the vague a translation
(V,)! of V4 is a vague H-ideal of X.
Proof: Let the vague a translation (\/A)L of Vabe a vague ideal of X. For any X,y,z € X, we have
VOL(xx2) 2 min{(V)L((x*2)* y), (V)L (0} = min{(V,)T () +2), (V)T ()}

= min{(V,\);, (x*(y *2)),(V,); (")}
Hence the vague a translation (V,)! of V, is a vague H-ideal of X.

Theorem 3.10: Let Va=[ts,1-fA] be a vague subset of X such that a vague a-translation
V)L =[(t)l,@—f).1of A is a vague H- ideal of X for a€[0,T], then the sets

T, ={xe X /I (V)L (X)=(V,). (0)}are H-ideals of X.
Proof: Suppose that (V). =[(t,)],(@— f,).] is a vague ideal of X. Then (V,)], is a vague H-ideal
of X. ObviouslyOeT, . Let X,y,ze Xbe such that x*(y*z)eT, and yeT, . Then

(V)i (x*(y % 2)) = (V,);, (0) = (V). (¥) and 50
(V)L (X% 2) 2 mIng(V,)L (x* (Y % 2)) s (V) (9) 3 = (V)T 0).Since (V,,)], is  vague H- ideal of
X. We conclude that (V,)] (x*2)=(V,). (0).This implies (V). (x*2)+a=(V,).(0)+a so
that X*Z € TvA . Therefore T\,A is a H- ideal of X.
Proposition 3.11: Let the vague a-translation (V,)! =[(t,)],(1— f,)]]of A be a vague H-ideal of X
for a €[0,T].1f X< y.Then (V) (X) > (V). (y), thatis (V,)] is order-reserving.
Proof: Let X,Y,Z € X be such that X<y .then X* Yy =0and hence
(Va)o () = (V)L (x%0) = min{(V,,), (x* (y ¥ 0)),(V,.), ()}

=min{(V,,); (x*¥),(V,);, (¥)}=min{(V,); (0),(V,); (¥)}= (V) (¥)

Theorem 3.12: let V, =[t,,1— f,]be a vague subset of X such that the vague a-translation

V)L =[(t)l, @ f,)]]of A be a vague ideal of X for o [0,T],then the following assertions
are equivalent:
(i) (V,). of A be a vague H-ideal of X,

(i) (Va)o (x¥y) 2 (V) (x*(0xy))forall x,y € X,

(i) (Va)g (x*y)*2)>(V,), (x*(y*2)) forall X,y,z e X
Proof: (i)=> (i) Let (V). =[(t,).,@— f,)]] be a vague H- ideal of X. Then for all X,y e X we
have  (V,); (x*y) = min{(V,); (x*(0%y)),(V,); (0)}= (V,); (x*(0*y)). Therefore, the

inequality (ii) is satisfied.
(if) = (iii)Assume that (ii) is satisfied. Forall X,y,z € X , we have

((xxy)*(@*2)* (xx(y*2)) = ((x*y) ¥ (x*(y*2)*(0%2) < ((y*2)*y)*(0*2)
= ((y*y)*2)*(0%2) = (0%2)*(0%2) =0

It follows from proposition 3.11 that (V)] ((x * y) * (0% 2)) * (x * (Y * 2)) > (V). (0) . Since

(V) are vague H- ideal of X, Therefore, we have
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(Va)z (x* y) * (0 2)) * (x* (y * 2)) = (V,,),, (0) . Using (ii)

Va)o (x*y) £ 2) 2 (V). (x* y) * (0% 2))
= min{(V,),, (x* y) * (0% 2)) * (x ¥ (y ¥ 2))),(Va), (x * (Y ¥ 2))}
= min{(V,,);, (0), (V) (x* (y ¥ 2))}= (V,);, (x % (y ¥ 2))

Therefore, inequality (iii) is also satisfied .
(iii) = (i) Assume that (iii) is valid. For all X,Yy,Z € X , we have

(Va)o ((x*2) 2 min{(V,));, (x*2) * ¥),(V,);, ()} = min{(V,)), (x* y) ¥ 2), (V). ()}
=min{(V,); (x*(y *2)),(V4); (¥)}

Therefore, (V,)! =[(t,)],(1— f,)]] is a vague H-ideal of X. Hence, the assertion (i) holds.

Theorem3.13: Let V, =[t,,1— f,]be a vague subset of X such that the vague a-translation

VI =[t)], @ f,)]1of A be a vague ideal of X for & €[0,T],then the following assertions
are equivalent:
(i) (V,). of A be a vague H-ideal of X,

() (V)L(*2)xy) = (V)] ((x2) = (0% y))forall x,y,z€ X,
(i) (V)L Ocey) = min{(V,)l (xx2) = (0% y)), (V)] (2)} forall X, y,z € X

Proof: (i) = (ii) is obvious.
(ii) = (iii) Assume that (ii) is valid. For all X, Y,z € X ,we have

VL ((x y) = min{(V,)L (X y) * 2), (V)] ()3 = min(V,) L (k% 2) * ¥), (V)L ()}
>min{(V,). ((x*2)*(0*y)),(V,)] (2)} Therefore, (iii)is satisfied.
(iii) = (i) Assume that (iii) is valid. Therefore, for all X,y,zZ € X , we have
(Va)z (x*y) 2 min{(V,,);, (x*2) * (0% Y)),(V,); (2)} Putting Z=0 we get
Va)o (xxy) 2 min{(V,,);, (x % 0) (0% )),(V,x),, (0)} = min{((V,,),, (x* (0 ¥)),(V,x).. (0)}
= (Va); (x* (0% y))

Hence the proof.
Theorem3.14: Let V, =[t,,1— f,]be a vague subset of X and «a €[0,T], then the vague a-

translation (V,). =[(t,)},(L— f,)] ]of V4 be a vague H ideal of X if and only if A is a H- ideal of
X, forall t € Im(V,) with t > a.

Proof: Suppose that (V)] is a vague H- ideal of Xand t € Im(V,) with t > a. Since

V)L (0)> (V) (x), forall xe X, we have

V,(0) +a =V, 0)> V)l (X) =V, (X) +a >t for xe A, .Hence 0 A, .Let X,y,Z € X
suchthat X*(y*2z),ye A, .ThenV,(X*(y*2))>t—a and V,(y) 2t-aLE,
(V)L O (y#2)) =V, (x (y #2) +a = tand (V)] (¥) =V, (¥) +@ > . Since (V, ), is a vague
H- ideal. So, we have V, (X *2) + & = (V)| (x*2) > min{(V,)] (x* (y * 2)), (V). (Y)} >t that
is, Vo(X*2) >t — sothat X*Z € A .Therefore, A, is a H- ideal of X.

Conversely, suppose that A is a H-ideal of X, forall t € Im(VA) with t > a. If there exist a € X
such that (V,)! (0) <A< (V,)L(X),thenV, (@) > —a butV,(0) <A —a. This shows that
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ae A,and 0 ¢ A, .This s a contradiction, and (V). (0) > (V,).(X), forall xe X . Now we
assume that there exist a,b, ¢ € X such that

(V)L (a%c) < & <min{(V,)] (a* (b+C)),(V,)], (B)} . Then V, (a* (b*C)) > f—a and

V,(b) = p—abutV,(a*c)< f—a.Hence, a*(b*c)e A and be A but a*Cc¢g A whichisa
contradiction. Thus, (\/A)L (a*c)> min{(VA)L (ax*(b= C)),(\/A)L (b)}, forall a,b,ce X .
Consequently, (VA)(TZ is a vague H- ideal of X.

Definition 3.15: Let V, =[t,,1— f,]be a vague subset of X and A €[01]. An object having the
form (V,)5 =[(t,)5,@— f,)5]is called a vague A multiplication of V, if (V)5 (X) =V, (X) - A for
all xe X.

Example 3.16: Let X = {0, 1, 2, 3} be a BCK- algebra which is given in example 3.3 and consider a fuzzy
subalgebra V, of X that is defined in example 3.3. If we take A = 0.1, then the vague A- multiplication
(V)5 of Va is given by,

X 0 1 2 3

(\/A)g1 [0.04,0.08] | [0.03,0.07] | [0.03,0.06] | [0.03,0.06]

Therefore, clearly (V,);, is a Vague H- ideal of X.

Theorem 3.17: If V, is a vague H-ideal of X, then the vague A- multiplication of V, is a vague
H- ideal of X, for all 2 €[0,1].

Proof: Straightforward.

Theorem 3.18: Let V, be a vague subset of X. Then V, is a vague H- ideal of X if and only if the

vague A- multiplication (V)3 of V, is a vague H- ideal of X, forall 1 €[0].
Proof: Necessity follows from the above theorem. Let 1 €[0,1] be such that (V,); be a vague
H-ideal of X. Then V,(0) - 2 = (V)5 (0) > (V,.)5 (X) =V, (X) - A which implies that V , (0) >V, (x)

,forall X e X . Also, for X,y,Z € X, we have,

Vo (xx2) - 2= (V,); (x*2) 2min{(V,); (x*(y *2)),(V,)5 ()}
=min{V, (x*(y *2)) - 1,V (y) - A} =min{V, (x* (y * 7)),V (y)}- 4

which implies that V,(x*z)>min{V,(x*(y*2)),V,(y)}, for allx,y,ze X . Hence, V,is a

vague H- ideal of X.
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