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ABSTRACT 

The D-distance between vertices of a graph is obtained by considering the 

path lengths and as well as the degrees of vertices present on the path. In 

this article, we study some  relations  between edge-to-vertex and edge-edge 

D-distances. 
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1.  Introduction 

In the study of graph theory the concept of distance is one of the important concepts in 

study of graphs. Distance is the basis of many concepts of symmetry in graphs. We refer [1]  for 

basics. 

In an earlier article authors have introduced the concept of  D-distance  between vertices     

(see [2]), by considering  path length between vertices as well as the degrees of all vertices present 

in a path while defining the D-distance. This concept has been extended to D-distance between 

vertices and edges etc. in a natural way (see [3]). 

In this  article, we study inequalities similar to triangular inequalities.  

2.  Preliminaries 

Throughout this article, by a graph G(V, E) or simply G, we mean a non-trivial, finite, 

undirected graph, connected graph without multiple edges and loops.   

We begin with some definitions. 

Definition 2.1: If u, v are vertices of a connected graph G the D-length of a u−v path s is defined as 

)deg()deg()deg()()( wvuslsl D   where sum runs over all intermediate vertices w of the 

path  s. 
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Definition 2.2: (D-distance). The D distance, ),( vud D , between two vertices vu,  of a connected 

graph G  is defined as  ( , ) min ( )D Dd u v l s  if vu,  are distinct and 0),( vud D if ,vu   where 

the minimum is taken over all vu   aths s inG  (see[2] ). 

Definition 2.3: If  v  is a vertex in a graph G and e xy is any edge we define the D-distance 

between vertex-to-edge as  ( , ) min ( , ), ( , ) .D D Dd v e d v x d v y  (See[3] ) 

Similarly we can defin 

Definition 2.4:If  e xy  is an  edge in a graph G and v   is  any vertex  we define the edge-to-vertex 

D-distance as  ( , ) min ( , ), ( , ) .D D Dd e v d x v d y v   

Definition 2.5: Let G be a connected graph and  ,e xy f uv   be two edges of G .Then the edge-

to-edge D-distance is defined as  ( , ) min ( , ), ( , ), ( , ), ( , ) .D D D D Dd e f d x u d x v d y u d y v   

3. Inequalities 

In this section we prove some inequalities between vertex-to-vertex, vertex-to-edge, edge-to-vertex 

and edge-edge D-distances.  These are similar to triangular inequality. 

Theorem 3.1: For any two edges ,e f  in a connected graph G  we have

( , ) ( , ) ( , )D D Dd e f d e g d g f   for any edge g G . 

Proof: Let e be any edge with end vertices a  and b , let f  be any edge with end vertices c  and  d . 

Then by definition of edge-to-edge D-distance ( , )Dd e f    

 min ( , ), ( , ), ( , ), ( , ) .D D D Dd a c d a d d b c d b d   Further for any arbitrary edge g xy G   we have 

( , )Dd e g   min ( , ), ( , ), ( , ), ( , )D D D Dd a x d a y d b x d b y  and ( , )Dd g f 

 min ( , ), ( , ), ( , ), ( , ) .D D D Dd x c d x d d y c d y d  

To prove the required inequality, we need to consider sixty four cases. Below we prove one case. 

The remaining cases can be proved similarly. Without lose of generality let us assume that 

( , ) ( , ), ( , ) ( , )and ( , ) ( , ).D D D D D Dd e f d a d d e g d a x d g f d x d   Then  

( , ) ( , ) ( , ) ( , )

( , ) (bytriangular inequality)

( , )

D D D D

D

D

d e g d g f d a x d x d

d a d

d e f

  





 

Thus ( , ) ( , ) ( , ).D D Dd e f d e g d g f   

Theorem 3.2: For any two edges ,e f  in a connected graph G  we have ( , )Dd e f   

( , ) ( , )D Dd e v d v f  for any vertex ( ).v V G  

Proof:  Let  e be any edge with end vertices x  and y and f f be any edge with end vertices a  and 

b  . Then by definition of vertex-to-edge  D-distance we have ( , )Dd v f   min ( , ), ( , )D Dd v a d v b  

and edge-to-vertex D-distance  ( , ) min ( , ), ( , )D D Dd e v d x v d y v . Further, by definition of edge-

to-edge D-distance we have  ( , )Dd e f   min ( , ), ( , ), ( , ), ( , ) .D D D Dd x a d x b d y a d y b  

To prove the required inequality, we need to consider sixteen cases. Below we prove   one case. The 

remaining cases can be proved in a similar fashion.Without loss of generality, let us assume that 

( , ) ( , ), ( , ) ( , )and ( , ) ( , ).D D D D D Dd e v d x v d v f d v a d e f d x a    
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( , ) ( , ) ( , ) ( , )

( , ) (bytriangular inequality)

( , )

D D D D

D

D

d e v d v f d x v d v a

d x a

d e f

  





 

Thus ( , ) ( , ) ( , ).D D Dd e f d e v d v f   

Theorem 3.3: Let ( ) and ( )v V G e E G   of a connected graph G  then ( , )Dd e v 

( , ) ( , ) foranyedge ( ).D Dd e f d f v f E G   

Proof:   Assume that e xy be any edge with end vertices a  and b .  Then by definition of edge-to-

vertex D-distance we have  ( , ) min ( , ), ( , )D D Dd e v d x v d y v  and ( , )Dd f v 

 min ( , ), ( , ) .D Dd a v d b v  Further, by definition of edge-to-edge D-distance 

 ( , ) min ( , ), ( , ), ( , ), ( , ) .D D D D Dd e f d x a d x b d y a d y b To prove the required inequality, we need 

to consider sixteen cases. Below we prove in one case. The remaining cases can be proved similarly. 

 Without loss of generality, let us assume that 

( , ) ( , ), ( , ) ( , )and ( , ) ( , ).D D D D D Dd e v d x v d f v d a v d e f d x a   Then 

( , ) ( , )and ( , ) ( , ).D D D Dd x v d y v d a v d b v   

( , ) ( , ) ( , ) ( , )

( , ) (bytriangular inequality)

( , )

D D D D

D

D

d e f d f v d x a d a v

d x v

d e v

  





 

Thus ( , ) ( , ) ( , ).D D Dd e v d e f d f v   
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