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1. INTRODUCTION 

 The metric fixed point theory and its variations are far reaching developments of Banach’s 

contraction principle, where metric conditions on the underlying space and maps under 

consideration play a fundamental role. Let (X,d) be a metric space. A mapping 𝑇: 𝑋 → 𝑋 is a 

contraction if d (𝑇𝑥, 𝑇𝑦) ≤ 𝑘d (𝑥, 𝑦), for all 𝑥, 𝑦 𝜖 𝑋, where 0 ≤ 𝑘 < 1 . The Banach’s contraction 

mapping principle appeared in explicit form in Banach’s thesis in 1922 *1+. Since its simplicity and 

usefulness, it has become a very popular tool in  solving existence problems in many branches of 

mathematical analysis.  Banach  contraction  principle has been extended in many different 

directions, see [5, 14]. The notion of modular spaces, as a generalization of metric spaces, was 

introduced by Nakano [13] and was  intensively developed by Koshi and Shimogaki [6], Yamamuro 

[15] and others. We begin with a certain motivation of the definition of a (metric) modular, 

introduced axiomatically in [2, 3] .The main idea behind this new concept is  the  physical  

interpretation  of  the  modular.  Informally speaking  whereas  a  metric  on  a  set represent finite 

nonnegative distances between two points of the set, a modular on a set attributes a non-negative 

(possibly, infinite valued) ‘field of (generalized) velocities’: to each ‘time’ 𝜆 > 0 (the absolute value 
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of), an average velocity 𝜔𝜆(𝑥, 𝑦) is associated in such way that in order to cover the ‘distance’ 

between points 𝑥, 𝑦 𝜖 𝑋, it takes  time 𝜆 to  move  from  X  to  Y with velocity 𝜔 (𝑥, 𝑦). A lot of 

mathematicians are interested fixed points of modular spaces. Further the most complete 

development of these theories are due to Luxemburg [7], Mosielak, and Orlicz [8], Musielak and 

Orlicz [9], Mazur [12], Turpin [14] and there collaborators. 

 The notion of a (metric) modular on an arbitrary set and the corresponding modular space, 

more general than a metric space, were introduced and studied recently by Chistyakov [2, 3, 4]. In 

2008, Chistyakov [2] introduced the notion of modular metric spaces generated by F-modular and 

developed the theory of this space. In 2010 Chistyakov [3] defined the notion of modular on an 

arbitrary set and develop the theory of metric spaces generated by modular such that called  the 

modular metric spaces. 

2. Basic Definitions and Preliminaries. We will start with a brief recollection of basic concepts and 

facts in modular spaces and modular metric spaces (see [2, 3, 4]). 

Definition 2.1. Let X be a vector space over R (or C). A functional    𝑋 → [0,  ] is called a modular 

if for arbitrary x and y, elements of X satisfying the following three conditions: 

(A.1)   (𝑥)=0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥 = 0.  

(A.2)   (𝛼𝑥)=  (𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑐𝑎𝑙𝑎𝑟 𝛼 𝑤𝑖𝑡ℎ ∣𝛼∣=1;  

(A.3)   (𝛼𝑥+𝛽𝑦) ≤  (𝑥) +  (𝑦),𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 𝛼,𝛽 ≥ 0, 𝛼+𝛽=1.  

If we replace (A.3) by  

(A.4)  (𝛼𝑥+𝛽𝑦)≤ 𝛼𝑠  (𝑥)+𝛽𝑠  (𝑦),𝑓𝑜𝑟 𝛼,𝛽 ≥ 0,𝛼𝑠+𝛽𝑠=1 𝑤𝑖𝑡ℎ 𝑎𝑛 𝑠𝜖 (0,1], 

then the modular   is called s-convex modular, and if s = 1,   is called a convex modular.  

If   is modular in X, then the set defined by  

𝑋 ={𝑥 𝜖 𝑋   (𝜆𝑥)→0 𝑎𝑠 𝜆→0+}                                                                 (2.1) 

is called a modular space. 𝑋  is a vector subspace of X it can be equipped with an F - norm defined by 

setting                                                ‖x ‖ = inf {𝜆 > 0     
 

 
  ≤ 𝜆}, 𝑥𝜖𝑋 .                                                     (2.2)  

In addition, if   is convex, then the modular space 𝑋  coincides with  

𝑋* ={𝑥 𝜖 𝑋  ∃𝜆=𝜆(𝑥) > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  (𝜆𝑥)<  }                                            (2.3) 

and the functional ‖𝑥‖*
  = inf {𝜆 >0    (

 

 
) ≤ 1} is an ordinary norm on 𝑋*

  which is equivalence to 

‖x ‖  (see [8]).  

Let X be a non-empty set, 𝜆 ∈(0,∞)and due to the disparity of the arguments, function 𝜔 (0,  )   X 

  X →*0,  ] will be written as 𝜔𝜆(𝑥,𝑦) = 𝜔(𝜆,𝑥,𝑦) for all 𝜆 > 0 and 𝑥,𝑦 𝜖 𝑋.  

Definition 2.2. Let X be a non-empty set. A function 𝜔   (0,  )   X   X →*0,  ] is said to be a metric 

modular on X if it satisfies the following three axioms:  

(i) given 𝑥,𝑦 𝜖 𝑋,𝜔𝜆(𝑥,𝑦)=0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜆>0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥=𝑦;  

(ii) 𝜔𝜆 (𝑥,𝑦) = 𝜔𝜆(𝑦,𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜆>0 and 𝑥,𝑦 𝜖 𝑋;  

(iii) 𝜔𝜆+𝜇(𝑥,𝑦) ≤ 𝜔𝜆(𝑥,𝑧) + 𝜔𝜇(𝑧,𝑦) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜆, 𝜇 > 0 and 𝑥,𝑦,𝑧 𝜖 𝑋.  

If instead of (i), we have only the condition  

(i’) 𝜔  𝑥 𝑥 =0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜆 >0 and 𝑥 𝜖 𝑋, then 𝜔 is said to be a (metric) pseudo modular on X and if 𝜔 

satisfies (i’) and  

(is) given x, y 𝜖 X, if there exists a number 𝜆>0, possibly depending on x and y, such that 𝜔𝜆(𝑥,𝑦)=0, 

then x = y, with this condition 𝜔 is called a strict modular on X.  

A modular (pseudo modular, strict modular) 𝜔 on X is said to be convex if, instead of (iii), we replace 

the following condition:  
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(iv) for all 𝜆 > 0, μ > 0 and x, y, z ∈ X it satisfies the inequality  

                  
Clearly, if 𝜔 is a strict modular, then 𝜔 is a modular, which in turn implies 𝜔 is a pseudo modular on 

X, and similar implications hold for convex 𝜔.  

The essential property of a (pseudo) modular 𝜔 on a set X is a following given 𝑥 𝑦 𝜖 𝑋  the function  

0 < 𝜆 → 𝜔𝜆(𝑥,𝑦) 𝜖[0,  ] is non increasing on (0,  ). In fact, if 0 < 𝜇 < 𝜆, then (iii), (i’) and (ii) imply  

𝜔𝜆(𝑥,𝑦) ≤ 𝜔𝜆−𝜇 (𝑥,𝑥)+𝜔𝜇(𝑥,𝑦)=𝜔𝜇(𝑥,𝑦)                                                                              (2.4) 

It follows that at each point 𝜆 > 0 the right limit 𝜔    𝑥 𝑦         𝜔    𝑥 𝑦 and the left 

limit 𝜔    𝑥 𝑦         𝜔    𝑥 𝑦  exist in [0,  ] and the following two inequalities hold:  

                     𝜔    𝑥 𝑦  𝜔  𝑥 𝑦  𝜔    𝑥 𝑦                                                               (2.5)                                                                              

From [2,3], we know that, if 𝑥0 ∈ 𝑋, the set  

                       𝑋   𝑥 ∈ 𝑋         𝜔  𝑥 𝑥      

is a metric space, called a modular space, whose metric is given by  

                      𝑑 
  𝑥 𝑦       𝜆     𝜔  𝑥 𝑦  𝜆 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑦 ∈ 𝑋 . 

Moreover, if 𝜔 is convex, the modular set 𝑋𝜔 is equal to  

                   𝑋 
   𝑥 ∈ 𝑋  ∃ 𝜆  𝜆 𝑥     such that 𝜔  𝑥 𝑥    }. 

and metrizable by 𝑑 
  𝑥 𝑦  = inf { 𝜆 > 0  𝜔𝜆(𝑥,𝑦) ≤ 1} 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝑋 

 .  

We know that if X is a real linear space,   𝑋 →*0,  ] and  

                                                        (2.6)  

then   is modular (convex modular) on X in the sense of (A.1) - (A.4) if and only if 𝜔 is metric 

modular (convex metric modular, respectively) on X. On the other hand, if 𝜔 satisfy the following 

two conditions:  

(i) 𝜔  (𝜇𝑥,0)=𝜔𝜆/μ(𝑥,0) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜆,μ > 0 𝑎𝑛𝑑 𝑥 ∈ 𝑋,  

(ii) 𝜔  (𝑥+𝑧, 𝑦+𝑧)= 𝜔  (𝑥,𝑦)𝑓𝑜𝑟 𝑎𝑙𝑙 𝜆 > 0 𝑎𝑛𝑑 𝑥, 𝑦, 𝑧 ∈ 𝑋, if we set  

          𝑥  𝜔  𝑥    with (2.6) holds, where 𝑥 ∈ 𝑋, then  

(a) 𝑋 =𝑋𝜔 is a linear subspace of X and the functional ‖x ‖ =𝑑 
  (𝑥,0),𝑥 𝜖 𝑋 , is an F-norm on 𝑋 ;  

(b) If 𝜔 is convex, 𝑋 
  𝑋 

     𝑋 is a linear subspace of X and the functional ‖x ‖ =𝑑 
  (𝑥,0) ,  

𝑥 𝜖 𝑋 
 , is an norm on 𝑋 

 .  

Similar assertions hold if replace the word modular by pseudo modular. If 𝜔 is metric modular in X, 

we called the set 𝑋𝜔 is modular metric space.  

By the idea of property in metric spaces and modular spaces, we defined the following:  

Definition 2.3. [10] Let 𝑋𝜔 be a modular metric space.  

(1) The sequence  𝑥
𝑛 
  

𝑛𝜖 
 in 𝑋𝜔 is said to be convergent to 𝑥 𝜖 𝑋𝜔 if  

       𝜔 (𝑥𝑛,𝑥)→0 𝑎𝑠 𝑛→  𝑓𝑜𝑟 𝑎𝑙𝑙 𝜆 > 𝑜 .  

(2) The sequence  𝑥       in 𝑋𝜔 is said to be Cauchy if  

      𝜔  (𝑥𝑚,𝑥𝑛)→0 𝑎𝑠 𝑚,𝑛→  𝑓𝑜𝑟 𝑎𝑙𝑙 𝜆>𝑜 .  

(3) A subset C of 𝑋𝜔 is said to be closed if the limit of the convergent sequence of C always belong to    

C.  
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(4) A subset C of 𝑋𝜔 is said to be complete if any Cauchy sequence in C is a convergent sequence and 

its limit in C.  

(5) A subset C of 𝑋𝜔 is said to be bounded if for all 𝜆>𝑜  

                   𝜔  𝑥 𝑦  𝑥 𝑦 𝜖       

Recently, Mongkolkeha et al.[10,11] has introduced some notions and established some fixed point 

results in modular metric spaces. In this paper, we study and prove the existence of fixed point 

theorems for contraction mappings in modular metric spaces and generalize the result of 

Mongkolkeha et al. [10, 11] and Chistyakov [4].  

3. Main results 

Definition 3.1. Let 𝜔 be a metric modular on X and 𝑋𝜔 be a modular metric space induced by 𝜔 and 

𝑇: 𝑋𝜔 → 𝑋𝜔 be an arbitrary mapping. A mapping T is called a contraction if for each 𝑥,y 𝜖 𝑋  and for 

all 𝜆 > 𝑜 there exist 0 ≤ 𝑘 < 1 such that 𝜔  (𝑇𝑥,𝑇𝑦) ≤ 𝑘 𝜔  (𝑥,𝑦).  

Theorem 3.1. Let 𝜔 be a metric modular on X and 𝑋𝜔 be a modular metric space induced by 𝜔. If 𝑋𝜔 

is complete modular metric space and 𝑆,T   𝑋𝜔 → 𝑋𝜔 be mappings satisfying  

(i) T(𝑋𝜔) ⊂ S(𝑋𝜔), and the inequality  

(ii)  𝜔  (𝑇𝑥 𝑇𝑦) ≤ 𝑘 𝜔𝜆 (𝑆𝑥,𝑆𝑦),  

for all 𝑥,𝑦𝜖 𝑋𝜔, where k 𝜖 [0,1). Suppose that there exist x 𝜖 X such that  𝜔  (𝑥,𝑆𝑥)<∞ for all 𝜆 > 0. 

Then S and T have a unique fixed common point in 𝑋𝜔. Moreover, for any 𝑥 𝜖 𝑋 , iterative sequence 

{𝑆𝑛𝑥} and {𝑇𝑛𝑥} converges to x.  

Proof. Let 𝑥0 be an arbitrary point in 𝑋𝜔 and since T(𝑋𝜔) ⊂ S(𝑋𝜔) ∃ a point 𝑥1𝜖 𝑋𝜔 such that we write 

𝑥1=𝑇𝑥0=𝑆𝑥1, and for 𝑥2𝜖 𝑋𝜔 , 𝑥2=𝑇𝑥1=𝑆𝑥2, thus inductively we can define for all n 𝜖  , 𝑥𝑛=𝑇𝑥𝑛−1=𝑆𝑥𝑛.  

Consider, 𝜔   𝑥  𝑥    = 𝜔𝜆 (𝑇𝑥𝑛−1,𝑇𝑥𝑛) ≤ 𝑘𝜔𝜆(𝑆𝑥𝑛,𝑆𝑥𝑛+1). 

 
Therefore,       𝜔   𝑥  𝑥        for all 𝜆 > 0. So for each 𝜆 > 0, we have for all 𝜀 > 0 there  
exist  

𝑛0 𝜖   such that 𝜔𝜆 (𝑥𝑛, 𝑥𝑛+1) < ∈ for all n 𝜖   with n ≥ 𝑛0 . Without loss of generality, suppose m,n𝜖 
  and 𝑚 > 𝑛. Observe that, for 

 

   
 > 0 , there exists 𝑛  

     
 𝜖   such that 

              
Now, we have 

           

𝜔   𝑥  𝑥   𝜔  

   

 𝑥  𝑥     𝜔  

   

 𝑥    𝑥       𝜔  

   

 𝑥    𝑥   

                                      
 

   
 

 

   
   

 

   
 = 𝜀, for all m, n 𝑛  

     

.  

This implies  𝑥  n 𝜖   is a 𝜔 − cauchy sequence. By the completeness of (𝑥𝜔), there exist a point x 

∈ 𝑋𝜔 such that 𝑥𝑛→𝑥 as n→∞ and subsequently, 𝜔𝜆(𝑇𝑥 ,𝑥)→0 and 𝜔𝜆(𝑆𝑥 ,𝑥) → 0 as 𝑛→∞ for all  

𝜆 > 𝑜. By the notion of metric modular 𝜔 and by the inequality (ii), we get 
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                               𝑘 𝜔 

 

 𝑆𝑥  𝑆𝑥    𝑘 𝜔 

 

 𝑇𝑥  𝑥 ]                                                                      (3.1) 

Taking limit as n→∞ in (3.1), we get 

                𝜔   𝑇𝑥 𝑥  𝑘 𝜔 

 

 𝑆𝑥  𝑥  𝜔 

 

 𝑥 𝑥     

since 𝜔𝜆 (𝑥, 𝑆𝑥)   ∞ , and by the strictness of 𝜔, we have 𝜔𝜆 (𝑇𝑥,𝑥)=0 for all 𝜆 > 0 and thus 𝑇𝑥 = 𝑥. 

Hence x is a fixed point of T.  

Now we will show that 𝑥 is a common fixed point S and T. Suppose on the contrary that Sx ≠ x or 

 Tx ≠ x and put 𝑥 =𝑥𝑛 and 𝑦= 𝑥 𝑡ℎ𝑒𝑛 𝑏𝑦 (𝑖𝑖), we have  

               𝜔  (𝑇𝑥𝑛, 𝑇𝑥) ≤ 𝑘𝜔𝜆(𝑆𝑥𝑛,𝑆𝑥), taking limit 𝑛→∞ on both sides we get  

                𝜔𝜆 (𝑥, 𝑇𝑥) ≤ 𝑘𝜔𝜆(𝑥, 𝑆𝑥)  

Since 𝜔𝜆 (𝑥, 𝑆𝑥)<∞, therefore by the strictness of 𝜔, and 𝑘∈[0,1/2) , we get 𝜔𝜆(𝑥, 𝑇𝑥) ∞, a 

contradiction. Hence 𝑇𝑥 = 𝑥 = 𝑆𝑥.  

Uniqueness. Suppose z is another fixed point of S and T, we have by (ii) 

𝜔𝜆(𝑥,𝑧)=𝜔𝜆(𝑇𝑥 , 𝑇𝑧)  

                𝑘 𝜔𝜆(𝑆𝑥, 𝑆𝑧)  

                𝑘 𝜔𝜆 (𝑥 , 𝑧) 

for all 𝜆 > 0. Since 0 ≤ 𝑘 ≤ 1, and by the strictness of 𝜔, we get 𝜔𝜆 (𝑥 𝑧) = 0, hence for all 𝜆 > 0 implies 

that 𝑥 = 𝑧. Therefore, 𝑥 is a unique common fixed point of S and T.  

Theorem 3.2. Let 𝜔 be a metric modular on X, 𝑋𝜔 be a complete modular metric space induced by 𝜔 

and S, T: 𝑋𝜔 → 𝑋𝜔 satisfying T(𝑋𝜔) ⊂ S(𝑋𝜔), and  

                 𝜔  𝑇𝑥 𝑇𝑦  𝑘 𝜔   𝑇𝑥 𝑆𝑥  𝜔   𝑇𝑦 𝑆𝑦                                                   (3.2) 

For all 𝑥,y 𝜖 𝑋𝜔 and for all 𝜆 >0 where k ∈[0,1/2), suppose that 𝑓𝑜𝑟 𝑥,𝑦 𝜖 𝑋𝜔 such that  

𝜔  𝑆𝑥 𝑇𝑦    for all 𝜆 > 0. Then S, T have a unique common fixed point in 𝑋𝜔.  

Moreover for any 𝑥 𝜖 𝑋𝜔 iterative sequence   𝑆 𝑥  and  𝑇 𝑥  converges to the fixed point.  

Proof. Let 𝑥0 be an arbitrary point in 𝑋𝜔 and since T(𝑋𝜔) ⊂ S(𝑋𝜔), there exists a point 𝑥1𝜖 𝑋𝜔 such that 

𝑥1=𝑇𝑥0=𝑆𝑥1, 𝑥2=𝑇𝑥1=𝑆𝑥2=𝑇 𝑥  in general 𝑥𝑛=𝑇𝑥𝑛−1=𝑆𝑥𝑛=𝑇 𝑥  for all 𝑛 ∈  .We have consider for 

 x =𝑥𝑛 𝑎𝑛𝑑 𝑦=𝑥𝑛−1, then by (3.2), we get  

             𝜔   𝑥    𝑥   𝜔   𝑇𝑥  𝑇𝑥     

                                          ≤*𝜔   (𝑇𝑥𝑛,𝑆𝑥𝑛)+ 𝜔   (𝑇𝑥𝑛−1,𝑆𝑥𝑛−1)]  

                                         ≤*𝜔   (𝑥𝑛+1,𝑥𝑛)+ 𝜔   (𝑥𝑛,𝑥𝑛−1)]  

                                        ≤𝑘𝜔   (𝑥𝑛+1,𝑥𝑛)+𝑘𝜔   (𝑥𝑛,𝑥𝑛−1)  

𝑖.𝑒. (1−𝑘) 𝜔  (𝑥𝑛+1,𝑥𝑛) ≤ 𝑘𝜔   (𝑥𝑛,𝑥𝑛−1) for all 𝜆 >0 and for all 𝑛 ∈  .  

Hence 𝜔   𝑥    𝑥  ≤ 
 

   
𝜔    𝑥  𝑥     for all 𝜆 > 0 and for all 𝑛 ∈  .  

Put 𝛼  
 

   
, since 𝑘∈[0,1/2) , we get 𝛼 ∈ [0,1)  

and thus 𝜔𝜆 (𝑥𝑛+1,𝑥𝑛) ≤ 𝛼𝜔2𝜆 (𝑥𝑛,𝑥𝑛−1,)  

                                    𝛼 𝜔   𝑥    𝑥    …  𝛼 𝜔   𝑥  𝑥   

for all 𝜆 > 0 and for all 𝑛 ∈ .We conclude that {𝑥𝑛} is a Cauchy sequence and by the completeness of 

𝑋𝜔, there exist a point x ∈ 𝑋𝜔 such that 𝑥𝑛→𝑥 as n→∞ and subsequently, 𝜔𝜆(𝑇𝑥𝑛,𝑥)→0 and  

𝜔𝜆(𝑆𝑥𝑛,𝑥) → 0 as 𝑛 → ∞ for all 𝜆 > 𝑜.  

By the notion of metric modular 𝜔 and by the inequality (3.2), we get  
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𝜔   𝑇𝑥 𝑥  𝜔 

 

 𝑇𝑥  𝑇𝑥   𝜔 

 

 𝑇𝑥  𝑥  

                                   𝑘 𝜔  𝑇𝑥  𝑆𝑥   𝜔  𝑇𝑥   𝑆𝑥    𝜔 

 

 𝑇𝑥  𝑥   (3.2.1) 

Taking limit as n→∞ in (3.2.1), we get  𝜔   𝑇𝑥 𝑥  𝑘 𝜔  𝑇𝑥  𝑥   

Since 𝑘 ∈    
 

 
 , by the strictness of 𝜔, we have 𝜔   𝑇𝑥 𝑥    for all 𝜆 > 0 and thus 𝑇𝑥 =𝑥.  

Now we will show that 𝑥 is a common fixed point S and T. Suppose on the contrary that Sx ≠ x or  

Tx ≠ x and put 𝑥 =𝑥𝑛 and 𝑦= 𝑥 𝑡ℎ𝑒𝑛 𝑏𝑦 (3.2), we have  

                  𝜔 (𝑇𝑥𝑛,𝑇𝑥) ≤ 𝑘 [𝜔2𝜆(𝑇𝑥𝑛𝑆𝑥𝑛) + 𝜔2𝜆(𝑇𝑥 𝑆𝑥)],  

taking limit 𝑛→∞ on both sides we get  

                𝜔  (𝑥,𝑇) ≤ 𝑘[𝜔   (𝑥,𝑥) + 𝜔   (𝑇𝑥,𝑆𝑥)]  

Since 𝜔𝜆(𝑇𝑥, 𝑆𝑥)<∞, therefore by the strictness of 𝜔, and 𝑘 ∈ [0,1/2), we get 𝜔𝜆 (𝑥, 𝑇𝑥)   ∞, a 

contradiction.  

Hence 𝑇𝑥 =𝑥= 𝑆𝑥.  

Uniqueness. Suppose that z be another common fixed point of S and T. Thus by (3.1) we get  

             𝜔  (𝑥,𝑧)= 𝜔   (𝑇𝑥 𝑇𝑧) ≤ 𝑘 𝜔 

 

 𝑇𝑥  𝑆𝑥  𝜔 

 

 𝑇𝑧 𝑆𝑧   = 0  

for all 𝜆 > 0. Hence 𝜔𝜆 (𝑥, 𝑧)= 0. Thus 𝑥 = 𝑧 is a unique common fixed point of S and T.  

Remark (3.1). By taking the mapping S in Theorem 3.1 as  𝑥  where  𝑥  is an identity mapping on 

𝑋𝜔, we have the following corollary 3.1, which is the main result Theorem 2.1, Theorem 3.2 of 

Mongkolkeha et al [10,11].  

Corollary 3.1. Let 𝜔 be a metric modular on X and 𝑋𝜔 be a modular metric space induced by 𝜔. If 𝑋𝜔 

is complete modular metric space and 𝑇   𝑋𝜔 → 𝑋𝜔 be a self mapping satisfying the inequality 

𝜔  𝑇𝑥 𝑇𝑦  ≤ 𝑘𝜔𝜆 (𝑥,𝑦), for all 𝑥,𝑦 𝜖 𝑋𝜔, where k 𝜖 [0, 1). Suppose that there exist x 𝜖 𝑋  such that 

𝜔  (𝑥, 𝑇𝑥) < ∞ for all 𝜆 > 0. Then T has a unique fixed point in 𝑋 . Moreover, for any 𝑥 𝜖 𝑋  , 

sequence  𝑇 𝑥  convergses to x .  

Remark (3.2). By taking the mapping S in Theorem 3.2 as  𝑥  where  𝑥𝜔 is an identity mapping on 

𝑋𝜔, we have the following corollary 3.2, which is the main result Theorem 2.2, Theorem 3.6 of 

Mongkolkeha et al [10,11]. 

Corollary 3.2. Let 𝜔 be a metric modular on X and 𝑋𝜔 be a modular metric space induced by 𝜔. If 

𝑋  is complete modular metric space and 𝑇  𝑋    𝑋  be a self mapping satisfying the 

inequality 𝜔  𝑇𝑥 𝑇𝑦  𝑘 𝜔   𝑇𝑥 𝑥  𝜔   𝑇𝑦 𝑦    for all 𝑥 , 𝑦 𝜖 𝑋𝜔, where k 𝜖 [0,1). 

Suppose that there exist x 𝜖 X such that 𝜔(𝑥,𝑇𝑥)<∞ for all 𝜆 > 0. Then T has a unique fixed 

point in 𝑋 . Moreover, for any 𝑥 𝜖 𝑋 , sequence  𝑇 𝑥 converges to x. 
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