Vol.5.Issue.1.2017 (Jan.-Mar)

BULLETIN OF MATHEMATICS
AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

Email:editorbomsr@gmail.com

htto://www.bomsr.com
RESEARCH ARTICLE
0580

ISSN:2348

CONNECTED TWO-OUT DEGREE EQUITABLE DOMINATION NUMBER FOR TREES

M.S.MAHESH?, P.NAMASIVAYAM?
1Department of Mathematics,Francis Xavier Engineering College,
Tirunelveli, Tamil Nadu
Email: maheshthulasimuthu@gmail.com
PG and Research Department of Mathematics, The M.D.T. Hindu College, Tirunelveli, India

ABSTRACT
Let G be a simple graph. Let D be dominating set in a graph G is called

$< connected two out degree equitable dominating set if for any two vertices
(‘3 u,v€ D,such that |odp(u) — odp(v)| < 2, and the induced sub graph <D> is
\ connected The minimum cardinality of a connected two-out degree
equitable dominating set is called connected two-out degree equitable
domination number, and it is denoted by y¢,0e(G). In this paper we obtain

M.S.MAHESH some bounds of connected two-out degree equitable domination number for

trees.
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1. INTRODUCTION

By a graph G=(V,E). we mean a finite, undirected with neither loops nor multiple edges. The
order and size of G are denoted by p and q respectively. For graph theoretic terminology we refer to
Chartand and Lenisk[4].

Let G=(V,E) be a graph For any vertex v€ V then open neighborhood of v is the set N(v)= { ue V;
uv € E(G)} and closed neighborhood of v is the set N[v]= N(v) U v. A set DC V of vertices in a graph
G is a dominating set if for every vertex v € V — D, there exists a vertex u € Dsuch that v is adjacent
to u. . The minimum cardinality of a dominating set is called domination number is denoted by
y(G). An excellent treatment of the fundamentals of domination is given in the book by Haynes et al
[7]. Various types of domination have defined and studied by several authors and more than 75
models of domination are listed in the appendix of Haynes et at [6]. Sampath Kumar and Waliker [3]
introduced the concept of connected domination in graph. A dominating set D of G is called a
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connected dominating set if the induced sub graph <D> is connected. The minimum cardinality of
connected dominating set is called connected domination number and it is denoted Y 5,(G)

The out degree of v with respect to D denoted by odp(v), and is defined as odp(v) = |N(v)Nn
(V — D)]. Ali Sahal and Veena Mathad [2] are define two out degree equitable dominating set. A
dominating set D in a graph G is called a two-out degree equitable dominating set if for any two
vertices u,v€ D,such that |odp(u) — odp(v)| < 2. The minimum cardinality of a two-out degree
equitable dominating set is called the two-out degree equitable domination number of G, and is
denoted by y,,.(G). A graph is acyclic if it has no cycles. A tree is a connected acyclic graph. A graph
G is a tree if and only if every two distinct vertices of G are joined by a unique path of G.A caterpillar
is a tree T for which the removal of the end vertices leaves a path, which called a spine of G.A
Wonderedspider is the graph formed by subdividing at most n-1 of the edges of a star K;,, for p=
0.Any path with a pendant edge attached at each vertex is called Hoffmantree and is denoted by.
P,*

Result [1.1] choe(kl,p) =p—2

2. CONNECTED TWO OUT DEGREE EQUITABLE DOMINATION NUMBER

Definition: 2.1
Let G be a connected graph. A non empty set D of G is called connected two-out degree
equitable dominating set if D is dominating set, then for any two vertices

u,v € D such that |odp(u) —odp(v)| < 2 the and induced sub graph <D> is connected . The
minimum cardinality of a connected two-out degree equitable domination number of G and is
denoted by y5,(G)
Example: 2.2

From the below figure 1, we can find connected two out degree equitable domination
number.

2 1 G

Figure 1: Graph to find connected two out degree equitable domination number
From the above figure {2, 3, 5}and {2,3,4,5} is connected two-out degree equitable dominating set
and {2,3,5} is connected two-out degree equitable dominating set with minimum cardinality so
Yc20e(G) =3.
3. CONNECTED TWO- OUT DEGREE EQUITABLE DOMINATION NUMBER OF TREES
Theorem: 3.1
Let T be a tree with two pendent vertices and two support vertices then y ,,.(T) = p — 2.

Proof:
Let T be any tree of order at least two.
LetV(T)={v, v, —————— Up}

If there exists two pendent vertices {vl,vp} which is adjacent to two support vertices {vz,vp_l}
respectively

Let D={v,,v3 ——— — — — vp—1}and V-D={v;, v, }

Clam D is connected two out degree equitable dominating set.

Since G is a tree and V-D={vy, v,} are pendent vertices then D is connected
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Since D is connected and {v,, v,_1} is support vertex to {vy, 1, } then D is dominating set

Let v; € D such that v; is support vertex and each support vertex adjust vertex then odp(v;) =
INwv;)nV-=D|=1

Let v; € D such that v; is not support vertex so

odp(vy) = IN(v))nV =D |=0

lodp(u) — odp (V)| < 2

So D is connected two out degree equitable dominating set and D is minimal connected dominating
set

Hence yc20e(T) =p — 2.

Theorem: 3.2

For any tree T, V¢20e(T) = p — 3, such that almost two pendent vertex which is adjacent to a
support vertex of degree three.

Proof:

Let V={vy,v, — —— — — — — v, } be set of vertices in G.

Since Tis a tree so {v;, v;,1} be a support vertices and it is adjacent to some pendent vertices. Let
{vp_z, Vp_1, vp} be the pendent vertices.

Given degree of any support vertices is 3. Let deg(v;)=3

So {v,_3,Vp—1} are adjacent to v; and v, is adjacent to v;44

Let D={vy,v; — — =V}, Vipg — — — —Vp_3}

Claim D is connected two out degree equitable dominating set

Since T is tree and D doesn’t contains pendent vertices

So D is connected and dominating set

odp(vy) = IN(v;)) NV —D |=2

odp(Viy1) = IN(vy4) NV =D |=1

lodp(w) —odp(v)| =1

So D is connected two out degree equitable dominating set and D is connected minimal dominating
set

D is minimal connected two out degree equitable dominating set

Ye20e(T) =p—3

Corollary : 3.3

For any tree T, V¢20e(T) = p — A(T) , such that almost two pendent vertex which is adjacent to a
support vertex of degree three.

Proof:

Since Tis a tree so {v;, v;,1} be a support vertices and it is adjacent to some pendent vertices. Let
{vp_z, Vp_1, vp} be the pendent vertices.

Given degree of any support vertices is 3. Let deg(v;)=3

By theorem 3.2 ¥.50,.(T) =p —3

Here A(T) =3

Yc20e (T) = p —A(T)

Theorem: 3.4

Let T be a tree in which every non-pendent vertex is either a support or adjacent to a support and
every non-pendent vertex is support is adjacent to two pendent vertices. Then Y ,,.(T) =p — e,
where e is number of pendent vertex.

Proof:

Let T be any tree of order p.
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LetV(T)={v, vy ————— — Up}
Let D={v;, vj; ———— — — v} are set all non pendant vertices and |D|=p — e where e is the
number of pendant vertices. V — D={v;, vj ; —— — — — — v, } are set of pendent vertices

Clearly D is a connected set.

Clam D is two out degree equitable dominating set

Let u €D ,v is non pendant vertex and u is support vertex

Since every support vertex is adjacent to two pendent vertex then N (u) =2

Soodp(u) =|Nu)nV—-D |=2

Let v €D ,vis non pendant vertex and v is adjacent support vertex then N(v)c D

Soodp(v) = |IN(v)NV—-D |=0

lodp(u) —odp (V)| = 2

Hence yc20e(T) =p —e.

Theorem 3.5

For any tree T, Y20 (T) = p — e if and only if T=P,;or every non pendent vertices of T is either a
support or adjacent to a support and each support vertex is adjacent to at most two pendent

vertices.

Proof:

Let T be any tree of order p.

Let V(T) ={v,v,—————— vp} and each support vertex is adjacent to at least two pendent
vertices

Let assume Y20 (T) =p — e

ThenD={v;, vy, ——— — — — Vp_e} b€ V206 (T) set.

To prove T=P,;or every non pendent vertices of T is either a support or adjacent to a support and
each support vertex is adjacent to at most two pendent vertices.

By the definition it is clear that T=F,

Suppose each support vertex is adjacent to at least two pendent vertices

Let u,ve D,if u is not support vertex the odp(u) =0

v is support vertex then odp (v)>2

lodp (W) — odp (V)| > 2

Then D is not two out degree equitable dominating set.

This is contradiction so support vertex is adjacent to at most two pendent vertices.

Conversely

Suppose T=F,;or every non pendent vertices of T is either a support or adjacent to a support and
each support vertex is adjacent to at most two pendent vertices.

By theorem 3.4 y.5,.(T) =p—e

Let T be any tree of order at least two.

LetD={v;, vy — — — — — — Vp_e} be non pendent vertices

Clam D is connected two out degree equitable dominating set.

Every non pendent vertices of T is either a support or adjacent to a support and each support vertex
is adjacent to at most two pendent vertices.

Let v; € D, is non pendent vertex and which is adjacent to support vertex then

odp (v;) =0,

Let v; € D, is support vertex and it is adjacent to almost two vertex

odp(v;) <2,

Then |odp(u) — odp (V)| < 2
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D is two out degree equitable domination set and D is connected

So D connected two out degree equitable domination set

Yezoe(T) =p —e.

Theorem: 3.6

Let T be a tree it contains one support vertex and it is adjacent to m pendent vertices

then Yez0e(T) =p — 2.

Proof:

LetV(T)={v;, v ————— — vy, V;} be vertex of a tree

Since T be a tree it contains one support vertex and it is adjacent to m pendent vertices it forms a
star kq p

By result [1.1] choe(kl,p) =p—2

Theorem: 3.7

Let T be a wounded spider obtained from the star k;,_;; n=5 by subdividing m edges exactly
p ifqa=p-1

once.Thenyezpe(T) = 3p—1ifq=p—2;
p—2 if q<p-—-3

Proof:

Let V={v;, vy, v, — — — —p} be the vertices of kq ,,_4

Case-lletg=p —1

k1 p—1is sub divided into p — 1 edges.

{vi,v1}, v, v}, vy, 3}, —————— — — — {vi,vp_l} Be the subdivision of k;,_;. Clearly each
subdivision are connected, and each subdivision is two out degree equitable dominating set.
Therefore V={v;, v;,v;, — — — —vp_4} of kq,_1 is connected two out degree equitable dominating
set

Then choe(T)zp-

Case-2 letg=p — 2

k1 ,—1is sub divided into p — 2 edges.

{vi,v, v} vy, v3 ) vy, v}, ———————— — {vi,vp_l} Be the subdivision of k;,_;. Since by
definition star {v;, v,}or {v;,v,} are connected two out degree equitable domination set, and
{vi,v3} {vi, v}, ————————— {vi, vp_l} clearly subdivisions are connected, and each
subdivision is two out degree equitable dominating set.

Therefore V={v;, v, v3 — — — —v,_1} or V={v;, V1, v3 — — — —v,_10f kq ;1 is minimum connected
two out degree equitable dominating set

Then ¥cz0e(T)=p — 1.

Case-3letg<p-—3

k1 —1is sub divided into at most p — 3 edges.

Each sub division forms a star and connected two out degree equitable domination number for star

isp—2
Yc20e (T) =p—2
Theorem: 3.8

Let T be a centre pillar with ‘p’ vertices in central path, and vertices of center path is adjacent to at
most two pendent vertices then y5,.(T) = p

Proof:
Let V={vy, V3, V3 — — — =V, Vpy1, Vpyos — — — — — v} and
{v1,v,,v3 — — — —vp} are the vertices of central path.
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Let us take D={vq, v, v3 — — — —V,} . By the definition of centre pillar D is connected

Now we want to prove D are two out degree equitable dominating set

If vertices of center path is u and v adjacent to at most two pendent vertices then the out degree of
u,odp(u) <2andodp(v) <2

lodp (w) — odp (V)| < 0

If vertices of center path is u and v adjacent to at most two pendent vertices then the out degree of
u, odp(u) < 2 other wise odp(v) <0

lodp (W) — odp (V)| < 2

Therefore D is connected two out degree equitable dominating set

Yc20e (T) = p

Theorem: 3.9

For any Hoffman treeyczOe(Pp+) =p

Proof:

Let V(Pp+) = {vl,v2v3 —————— Vp, Up1, Vp2, Vp3, — — — — — vpp}

Here {vy,v,v3 — — — — — — vp} be the vertices of the path, { vy, Vp,, Vp3, — — — — — Vpp} be the
pendant edge attached at each vertex of the path.

Let D= {vl,v2v3 —————— vp} be minimal dominating set and V — D= {vpl,vpz,vm,— - ——
~Upp}

Each vertices of path vi have a neighborhood in D and other V — D

odp(v;) = [N(v;)NV — D|=1 for all i=1,2,3------n

lodp(v;) — odD(vj)l <2

Then D is two out degree equitable dominating set and<D> form a path, D is minimal dominating
set

Then D is minimal connected two out degree equitable dominating set

Then VcZoe(Pp+) =|D|=p

Theorem: 3.10

For any tree T with p vertices and maximum degree A(T) then Y 5,(T) = p — A(T) if and if only if
Tis a spider

Proof:

Let v be a vertex with maximum degree A(T) in a tree T.

If T is a spider with v as a root, then we see that the tree T has exactly § (T") branches from v. [since
vertices in each of these branches has a degree less than 3 and T is tree]

Thus no of leaves in the tree is 6 (T).

Hence connected two out equitable domination number of spider is p — A(T)

Figure 2: Spider
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Conversely

Suppose T is not a spider

There exists a vertex other than v with degree not less than 3in T

Therefore the tree T has a branch with more than one leaf in it.
This shows that the tree T has more than A(T) leaves which is contradiction
Then T is not a spider
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