Vol.5.Issue.2.2017 (April-June) ©KY PUBLICATIONS

http://www.bomsr.com Email:editorbomsr@gmail.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

On I_{θ} - Closedness and IH- Closedness in *I*-spaces

SWAPAN KUMAR DAS¹, SUBRATA MAJUMDAR², NASIMA AKHTER³

¹Dept. of Mathematics, University Of Development Alternative (UODA), Dhanmondi, Dhaka, Bangladesh E-mail: swapanuoda@yahoo.com (corresponding author)
²Dept. of Mathematics, University of Rajshahi, Rajshahi, Bangladesh E-mail: <u>subratamajumdar1729@gmail.com</u>
³Dept. of Mathematics, University of Rajshahi, Rajshahi, Bangladesh E-mail: nasima.math.ru@gmail.com

SWAPAN KUMAR DAS

ABSTRACT

This is the third in a series of papers on I-spaces. Here I_{θ} - closedness and IH- closedness have been introduced for I- spaces, and many topological theorems related to θ -closedness and H-closedness have been generalized to I- spaces, as an extension of study of infratopological spaces.

Key Words: I-space, I_{θ} - closedness, IH- closedness, I_{θ} compactness and I_{θ} connectedness, product I-structure, IH-continuum.

AMS Mathematics Subject Classification (2010): 54A40, 54D10, 54G12, 54D15

1. Introduction

In a previous paper [1] we have introduced I-spaces and studied some of their properties. In this paper we use the terminology of [1]. Some study of these spaces was done previously in [8], [9], [10], [11] in less general form. These spaces were called infratopological spaces. Anti-Hausdorff I-spaces, Anti-Hausdorff U-spaces, Anti-Hausdorff topological-spaces, Hausdorff and compact U – spaces were introduced and studied in [4], [5], [6] and [7] respectively. θ - closedness and H-closedness topological spaces were defined and studied in [2] and [3] respectively. In this paper the concept of I_{θ} - closedness, IH- closedness, I_{θ} - compactness, I_{θ} - connectedness, an IH-continuum in I-spaces have been introduced and a few important properties of such spaces have been studied. **Definition – 2.1**. Let (X, I) be an I- space and let A \subseteq X. **The closure of A** written

Icl A, is the subset of X consisting of the elements x such that for each I- open set G containing x, $G \cap A \neq \Phi$.i.e., $IclA = \{x \in X | for each \ G \in I, with \ x \in G, G \cap A \neq \Phi\}$ **Definition – 2.2.** The θ - closure of **A** in (X, I), written $I_{Cl_{\theta}}(A)$, is defined as

 $|cl_{\theta}(A) = \{ x \in X | \text{for each } G \in I, \text{ with } x \in G | \text{Icl } G \cap A \neq \Phi \}.$

A is said to be I_{θ} - closed if $Icl_{\theta}(A) = A$, and A is called I_{θ} - open if X – A is I_{θ} - closed. Thus,

A is $|_{\theta}$ - open if, $\forall x \in X$, $[\forall I - open set G in X with x \in G, IclG \cap (X - A) \neq \Phi]$ $\Leftrightarrow x \in X - A$(α)

Lemma-2.1 The intersection of a finite number of I_{μ} - open sets in X is I_{μ} -open.

Proof: Let G_1 , G_2 , G_3 ,..., G_n be I_{θ} - open sets in X. Now let $W \in I$ and $x \in W$. Also, let

 $\overline{W} \cap (G_1 \cap G_2 \cap \dots \cap G_n)^c \neq \Phi. \text{ Then } \overline{W} \cap (G_1^c \cup G_2^c \cup \dots \cup G_n^c) \neq \Phi,$ and so $(\overline{W} \cap G_1^c) \cup (\overline{W} \cap G_2^c) \cup \dots \cup (\overline{W} \cap G_n^c) \neq \Phi.$

Therfore $(\overline{W} \cap G_i^c) \neq \Phi$, for at least one $i, 1 \leq i \leq n, sayi_0, x \in G_{i_0}^c$, i.e. $x \notin G_{i_0}$.

By (α), since G_{i_0} is I $_{\theta}$ - open.

Hence $x \notin G_1 \cap G_2 \cap \cdots \cap G_n$ i.e., $x \in (G_1 \cap G_2 \cap \cdots \cap G_n)^c$ $\therefore G_1 \cap G_2 \cap \cdots \cap G_n$ is I_θ - open in X by (α).

Obviously, X and Φ are both I_{θ} - closed and I_{θ} - open. [:: $Icl_{\theta}(X) = X$, $Icl_{\theta}(\Phi) = \Phi$].

We thus have the following Theorem

Theorem- 2.1 The I $_{\theta}$ - open sets in X form an I- structure on X.

If I is an I-structure on X, denote by I $_{_{ heta}}$ the I- structure on X consisting of all I $_{_{ heta}}$ - open sets in X,

We then have

Theorem- 2.2 I $_{\theta} \subseteq$ I

Proof: Let A be a subset of X. Then $A \subseteq \overline{A} \subseteq Icl_{\theta}A$. Hence if A is I_{θ} - closed, then $Icl_{\theta}A = A, and so, \overline{A} = A, i.e.$, A is I- closed.

Therefore, for each $G \in I_{\theta}$, X - G is I_{θ} - closed; and so, X – G is I- closed. Thus $G \in I$

Lemma- 2.2: Any union of I_{θ} - open sets is I_{θ} - open.

Proof: Let $\{V_{\alpha}\}$ be a non-empty collection of I_{θ} - open sets. Let G be any I_{θ} - open set in X, and let $x \in G$ such that $\overline{G} \cap (\bigcup_{\alpha} V_{\alpha})^{c} \neq \Phi$. Then $\overline{G} \cap (\bigcap_{\alpha} V_{\alpha}^{c}) \neq \Phi$. Hence, $\overline{G} \cap V_{\alpha}^{c}) \neq \Phi$, for each α . Since each V_{α} is θ -open, $\forall \alpha, x \notin V_{\alpha}$, by (α). Hence $x \notin \bigcup_{\alpha} V_{\alpha}$, *i.e.*, $x \in (\bigcup_{\alpha} V_{\alpha})^{c}$. Hence $\bigcup_{\alpha} V_{\alpha}$ is I_{θ} - open, again by (α).

Theorem- 2.3: I $_{\theta}$ is a topology on X.

Proof: The proof follows from Lemmas 2.1 and 2.2.

Definition-2.3 Let (X, I_X), (Y, I_Y) be I- spaces. Let $G \in I_X$, $H \in I_Y$. The product I-structure on $X \times Y$ is the I- structure generated by all sets of the terms $\pi_X^{-1}(G_X)$ and $\pi_Y^{-1}(G_Y)$, where π_X and π_Y

are the projection maps from $X \times Y$ onto X and Y respectively. Thus the product I- structure is the smallest I- structure on $X \times Y$ such that the projection maps π_X and π_Y are I- continuous.

Lemma- 2.3 Let (X, I_X) , (Y, I_Y) be I- spaces and let $A \subseteq X, B \subseteq Y$. Then $Icl_{\theta}(A \times B) = Icl_{\theta}A \times Icl_{\theta}B$.

Proof: To see the truth of this statement, let $(x, y) \in Icl_{\theta}(A \times B)$. Then for each I- open set W in $X \times Y$ with $(x, y) \in W$, $\overline{W} \cap (A \times B) \neq \Phi$. Thus, by the definition of $I_{X \times Y}$, it follows that in particular, for each I- open G_x in X with $x \in G_x$ and for each I-open H_y in Y with $y \in H_y$, $\overline{G}_x \cap A \neq \Phi$, $\overline{H}_y \cap B \neq \Phi$, *i.e.*, $x \in Icl_{\theta}A$, $y \in Icl_{\theta}B$. Hence $(x, y) \in Icl_{\theta}A \times Icl_{\theta}B$. Thus, $Icl_{\theta}(A \times B) \subseteq Icl_{\theta}A \times Icl_{\theta}B$. It is now obvious that the converse is also true.

Theorem- 2.4 Let (X, I_x), (Y, I_y) be two I- spaces and let A and B be two I_{θ} -closed subsets of X and Y

respectively. Then $A \times B$ is I_{θ} -closed in ($X \times Y$, $I_X \times I_Y$).

Proof: Since A and B are I_{θ} - closed subsets of X and Y respectively, $A = Icl_{\theta}A$, and $B = Icl_{\theta}B$. Hence $A \times B = (Icl_{\theta}A) \times (Icl_{\theta}B) = Icl_{\theta}(A \times B)$, by lemma 2.2. Thus, $A \times B$ is I_{θ} - closed.

Theorem- 2.5 The product of two I_{θ} - open sets in I - spaces is I_{θ} - open in their product spaces.

Proof: Let (X, I_X) , (Y, I_Y) be two I- spaces and let A and B be two I_{θ} -closed subsets of X and Y respectively. Then X – A and Y – B are I_{θ} - closed in X and Y respectively. Now $(X \times Y) - (A \times B) = [(X - A) \times Y] \cup [X \times (Y - B)]$. X and Y are are I_{θ} - closed in X and Y respectively.

Hence $(X - A) \times Y$ and $X \times (Y - B)$ are I_{θ}-closed in $X \times Y$.i.e.,

 $(X - A) \times Y = Icl_{\theta}[(X - A) \times Y]$ and $X \times (Y - B) = Icl_{\theta}[X \times (Y - B)]$

 $\therefore [(X-A) \times Y] \cup [X \times (Y-B)] = Icl_{\theta}[(X-A) \times Y] \cup Icl_{\theta}[X \times (Y-B)]$

 $\Rightarrow [(X - A) \times Y] \cup [X \times (Y - B)] = Icl_{\theta}[\{(X - A) \times Y\} \cup \{X \times (Y - B)\}].$

Hence $(X \times Y) - (A \times B)$ is I_{θ} - closed, and so, $(A \times B)$ is I-open.

Definition-2.4 I_{θ} - compactness and I_{θ} - connectedness: Since I_{θ} is an I- structure for every Istructure I on X, I_{θ} - compactness and I_{θ} - connectedness are defined in the usual manner. Since $I_{\theta} \subseteq I$, X is compact \Rightarrow X is I_{θ} - compact and X is connected \Rightarrow X is I_{θ} - connected.

A pair (P, Q) of non-empty subsets of X is called I_{θ} - separation relative to X if $(P \cap Icl_{\theta}Q) \cup (Q \cap Icl_{\theta}P) = \Phi$.

A subset A of X is called I_{θ} - connected if $A \neq P \cup Q$, where (P,Q) is a I_{θ} -separation relative to X. **Theorem- 2.6** X is connected \Rightarrow X is I_{θ} - connected \Rightarrow X is I_{θ} - connected.

Proof: Suppose X is connected. If possible, let X be I $_{\theta}$ - disconnected.

Then X = P \cup Q, where P, Q are non-empty and $P \cap Icl_{\theta}Q = \Phi and Q \cap Icl_{\theta}P = \Phi$ $Clearly P \cap Q = \Phi$. Let $x \in P$. Then $x \notin Icl_{\theta} Q$, and so, there exists an open set G in X such that $x \in G$ and $Q \cap \overline{G} = \Phi$. Then $\overline{G} \subset X - Q = P$ and so $G \subseteq P$. Hence P is open.

Similarly, we can show that Q is open. Therefore X is disconnected. The contradiction proves that X is I_{ρ} - connected.

Next let X be I_{θ} - connected. Suppose X is not I_{θ} connected. Then X = P \cup Q for disjoint non- empty I _{θ} - open sets P and Q. Since X is I_{θ} - connected,

either $P \cap Icl_{\theta}Q \neq \Phi$ or, $Q \cap Icl_{\theta}P \neq \Phi$. i.e., either $Icl_{\theta}Q \not\subset X - P = Q$ or $Icl_{\theta} \not\subset X - Q = P$. i.e., either Q is not I_{θ} - closed or P is not I_{θ} - closed. But this is a contradiction to the hypothesis. Hence X is I_{θ} - connected.

Comment: 2.1 While connectedness implies I_{θ} - connectedness, the converse is not true.

Theorem- 2.7 Sum of two I_{θ} - connected spaces is also I_{θ} - connected.

Proof: Let X and Y be two I_{θ} - connected spaces. If possible suppose X + Y is not I_{θ} -connected. Then there exists two non- empty subsets P, Q of X + Y such that

 $\begin{aligned} \mathsf{X}+\mathsf{Y}=\mathsf{P}\cup\mathsf{Q} \text{ with } P\cap Icl_{\theta}Q=\Phi\cdots\cdots(1) \text{ and } Q\cap Icl_{\theta}P=\Phi\cdots\cdots(2) \\ \text{Let } P_{1}=P\cap X, \ Q_{1}=Q\cap X\cdots\cdots(3) \text{ and } P_{2}=P\cap Y, \ Q_{2}=Q\cap Y\cdots\cdots(4) \\ \text{Then } X=P_{1}\cup Q_{1}, \ Y=P_{2}\cup Q_{2} \text{ . Since } \mathsf{X} \text{ and } \mathsf{Y} \text{ are } \mathsf{I}_{\theta}\text{ - connected}, \\ P_{1}\cap Icl_{\theta}Q_{1}\neq\Phi \text{ or, } Q_{1}\cap Icl_{\theta}P_{1}\neq\Phi\cdots\cdots(5) \\ P_{2}\cap Icl_{\theta}Q_{2}\neq\Phi \text{ or, } Q_{2}\cap Icl_{\theta}P_{2}\neq\Phi\cdots\cdots(6) \\ \text{Now } P\cap Icl_{\theta}Q=(P_{1}\cup P_{2})\cap Icl_{\theta}(Q_{1}\cup Q_{2})=(P_{1}\cup P_{2})\cap (Icl_{\theta}Q_{1}\cup Icl_{\theta}Q_{2}) \\ =(P_{1}\cap Icl_{\theta}Q_{1})\cup (P_{1}\cap Icl_{\theta}Q_{2})\cup (P_{2}\cap Icl_{\theta}Q_{1})\cup (P_{2}\cap Icl_{\theta}Q_{2})\neq\Phi \text{ by (5) and (6)} \\ [\text{By } (1) P_{1}\cap Icl_{\theta}Q_{1}=\Phi \text{ and } P_{2}\cap Icl_{\theta}Q_{2}=\Phi \text{ . So from (5) and (6)} \\ Q_{1}\cap Icl_{\theta}P_{1}\neq\Phi \text{ and } Q_{2}\cap Icl_{\theta}P_{1}\neq\Phi \text{]} \\ \text{Similarly, } Q\cap Icl_{\theta}P=(Q_{1}\cap Icl_{\theta}P_{1})\cup (Q_{1}\cap Icl_{\theta}P_{2})\cup (Q_{2}\cap Icl_{\theta}P_{1})\cup (Q_{2}\cap Icl_{\theta}P_{2})\neq\Phi \\ \text{This is contradicts (1) and (2). Hence, X+Y is I_{\theta}-connected.} \end{aligned}$

Definition-2.5 Velicko [12] defined a space X to be **H-closed** if every open cover $\{V_{\alpha}\}$ of X has a finite sub collection $\{V_{\alpha_1}, V_{\alpha_2}, \dots, V_{\alpha_n}\}$ such that $X = \overline{V_{\alpha_1}} \cup \dots \cup \overline{V_{\alpha_n}}$.

Ganguly and Bandyopadhyaya [3] defined and studied H-continua. An **H-continum** is a topological space which is both connected and H- closed.

Definition-2.6 IH-closed sets: An I-space X will be called an **IH-closed** if for every I-open cover U = $\{V_{\alpha}\}$ of X , there exists a finite subcollection $\{V_{\alpha_1}, V_{\alpha_2}, \dots, V_{\alpha_n}\}$ of U such that $X \subseteq \overline{V_{\alpha_1}} \cup \dots \cup \overline{V_{\alpha_n}}$.

Definition-2.7 IH-continum: An I-space X will be called an **IH-continuum** if X is I_{θ} -connected and H θ -closed.

Similar definitions for topological spaces were introduced by Velicko [12] and Ganguly and Bandyopadhyaya [3] respectively.

The following theorems for IH-closed and IH-continua hold:

Theorem- 2.8 The product of two IH-closed spaces is IH-closed.

Theorem- 2.9 The product of two IH-continua spaces is also IH-continuum.

Theorem- 2.10 If X and Y are IH-continua, then X + Y will be an IH- continuum iff $X \cap Y \neq \Phi$.

Theorem- 2.11 Let X be an IH-continuum and Y an I – spaces and let $f: X \rightarrow Y$ be both continuous and open. Then f(X) is an IH- continuum.

Proof: The proofs of these theorems are exactly the same as those for Theorems 4.1, 4.2, 4.3, and 4.4 respectively of [2] M. Mitra and S. Majumdar.

Lemma- 2.4 If X and Y are compatible IH-closed spaces then X + Y is IH-closed.

Proof: Let $\{W_{\alpha}\}$ be an I-open cover of X + Y. Then each $W_{\alpha} = U_{\alpha} \cup V_{\alpha}$, for some U_{α}, V_{α} I-open in X and Y respectively. Then $\{U_{\alpha}\}$ and $\{V_{\alpha}\}$ are I- open covers of X and Y respectively. Since X and Y are IH-closed, $X = \overline{U}_{\alpha_1} \cup \overline{U}_{\alpha_2} \cup \dots \cup \overline{U}_{\alpha_m}$ and $Y = \overline{V}_{\beta_1} \cup \overline{V}_{\beta_2} \cup \dots \cup \overline{V}_{\beta_n}$ for some $\alpha_1, \alpha_2, \dots, \alpha_m, \beta_1, \beta_2, \dots, \beta_n$. Then X + Y = $\overline{W}_{\alpha_1} \cup \overline{W}_{\alpha_2} \cup \dots \cup \overline{W}_{\alpha_m} \cup \overline{W}_{\beta_1} \cup \overline{W}_{\beta_2} \cup \dots \cup \overline{W}_{\beta_n}$. Hence X + Y is IH- closed.

Comment: 2.2 A subspace of an IH-continuum space need not be so.

For [0,1] is an IH- continuum, but the subspace {0,1} is not IH- continuum as it is not I_{θ} - connected. The property of being an IH- continuum does not hold for intersection.

If
$$C = \{(x, y) | x^2 + y^2 = 1\}, C_1 = \{(x, y) \in C | x \le 0\} \text{ and } C_2 = \{(x, y) \in C | x \ge 0\},$$
 then $C \cap C_1 \cap C_2 = \{(0, 1), (0, -1)\}$ is not IH- continuum as it is not I_{θ} - connected.

Comment: 2.3 If f is only I-open or only I- continuous, then f(X) need not be an IH-continuum.

For, if (X, I) is a IH- continuum and X has at least two elements and $f:(X, I) \rightarrow (X,D)$ is the identity map on X where D is the discrete I- space, then f is I- open but f(X) is not an IH- continuum because it is I_{ρ} - disconnected.

If for the above IH- continuum (X, I), $f:(X, I) \rightarrow (X, I_0)$ is the identity map on X where I_0 denotes the indiscrete I- space, then f is I- continuous, but f(X) = X is not an IH-continuum since f(X) is not I-Hausdorff.

Comment: 2.4 If X is an IH- continuum and R an equivalence relation on X, then the identification space X/R is an IH- continuum as the projection map $X \rightarrow X/R$ is onto and both I- continuous and I-open.

REFERENCES

- [1]. Das S. K., Akhter N. and Majumdar S (2014), Generalizations of topological spaces, *Bulletin of mathematics and Statistics research*, Vol.2, Issue.4, 439 446.
- [2]. M. Mitra and S. Majumdar, On θ Closedness and H- Closedness, *Bulletin of mathematics and statistics research*, Vol.3.Issue.3.2015(July-Sept.), p- 216 221.
- [3]. Ganguly S. and Bandayopadhayay T. (1993): On H-Continum, Bull.Cal.Math.Soc., 85, 311-318.
- [4]. S.K.Das, S. Majumdar and N.Akhter, Anti-Hausdorff I-Spaces, *Journal of Mathematics and Statistics Science*, Volume 2016, p-240-248, Science Signpost Publishing.
- [5]. S.Majumdar, N.Akhter and S.K.Das, Anti-Hausdorff U-Spaces, *Bulletin of mathematics and statistics research*, Vol.2.Issue.4.2014, p- 425 428.
- [6]. S. Majumdar and M. Mitra, Anti- Hausdorff spaces, *Journal of Physical Sciences* Vol.16, 2012, 117-123. ISSN: 0972 8791, 31 December 2012.

- [7]. N. Akhter, S.K. Das and S. Majumdar, On Hausdorff and compact U- spaces, *Annals of Pure and Applied Mathematics*, Vol.5, No. 2, 2014, 168-182.
- [8]. D. Andrijevic, On b- open sets, *Mat. Vesnik*, 48(1996), 59-64.
- [9]. R. Devi, S. Sampathkumar and M. Caldas, On supra α open sets and S α continuous functions, *General Mathematics*, Vol. 16, Nr. 2(2008), 77-84.
- [10]. A. S. Mashhour, A. A. Allam, F. S. Mahmoud and F. H. Khedr, On supratopological spaces, Indian J. pure appl, Math, 14(4), (1983) 502-510
- [11]. O. R. Sayed and Takashi Noiri, On supra b- open sets and supra b- continuity on topological spaces, *European Journal of pure and applied Mathematics*, Vol. 3, No. 2(2010) 295-302.
- [12]. Velicko, N.V., H-closed Topological spaces, Mat, Sb., Vol. 70, 1966.