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1. Introduction 

In 1859, G.F.B.Riemann published a most famous paper concerning the  distribution of prime  

numbers, with the title: “On the quantity of prime numbers below a given quantity”, where, for the 

first time were used the methods of complex variable functions in order to determine  π (x) : the 

quantity of prime numbers ≤  x. 

His starting formula was the product decomposition that Euler had found for the zeta function 

ζ (s)  =   

i.e. the formula 

ζ (s)  =   

where p stands for the prime numbers. (Riemann used the letter s to denote the variable, s   = ς + it ;  

and this way of notation was unanimously used after him) 

In the first part of the memoir, he proves the functional equation of the zeta function, and after this 

he deduces the formula 
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  =   

valid for  ς  > 1, and where 

f(x)  =   

This formula had been obtained formerly in 1848 by Chebysev (whose work on the subject very likely 

was known to Riemann). 

But he was unable to make the inversion of this formula, that Riemann succeeded to do, obtaining 

thus:  

f(x) =                ( a >1) 

The remaining part of Riemann’s paper is very obscure and confusing because of its excessive 

brevity. Fortunately some years ago E.C. Edwards published a wonderful book (ref. (1)) explaining 

and justifying step by step Riemann’s  reasoning. 

This required about 200 pages, and put in evidence that he performed six hypotheses before arriving 

at his final formula: 

1). There are infinitely many zeros of  ζ (s)  in the “critical strip”  0 ≤ ς  ≤ 1. 

2)  The quantity  N(T)  of  these  zeros  in the rectangle  0 ≤ ς  ≤ 1    0 < t < T   is 

N (T) =   

3)   The series  ∑   -2  is convergent, but  ∑    -1   diverges 

4) The entire function 

ξ (s)  =  ½ π –s/2 s (s-1) ζ  (s) Γ ( s/2) 

admits the product decomposition 

ξ (s)  =  a ebs es/ρ 

5)  All the imaginary zeros ρ  have real part  1/2 

6) Let  

                   

Then holds that 

π0 (x) = π (x)  + 1/2 π   +  1/3 π   +  ... 

 

where li(x)  denotes the logarithmic integral function;  π(x) is the quantity of primes ≤ x , and   ρ 

denotes the imaginary  zeros of the  zeta function. 

     The hypothesis 1), 3) and 4) were proved in 1892 and 1893 by Hadamard. The hypothesis 2), with 

error term 0(log T) was proved in 1894 by von Mangoldt, who also proved hypothesis 6) (but he used 

an alternative way). 

     There is besides a numerical and irrelevant mistake in the formula for π0 (x) , where Riemann 

writes ξ (½) instead of  -log 2. 

   Hence at present remains unproved only hypothesis 5). 
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    Remark that Riemann’s formula for N(T)  indeed gives the quantity of Gram points for  t  ≤  T, up to 

a difference of  π/8. 

2. How the hypothesis was not proved. 

Variant A) 

It is mentioned in §    10.1, p. 213-214 of Titchmarsh’s textbook.  (ref*2+)       

We have: 

ξ (1/2 + it)  = 2  cos ut dt 

    where 

Φ    (u)  =  2  

This series converges very rapidly and one might suppose that an approximation to the truth could 

be obtained by replacing it by their first terms. 

The author has performed the exact calculation, and he proved that we are thus led to the formula 
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where N =    and     denotes the incomplete gamma function. See ref. (3). 

It is evident now the slowness of convergence of both series at right, because are necessary  0( ) 

terms in order to obtain a satisfactory accuracy. Hence, it has not any special advantage over the use 

of the Riemann – Siegel  formula.  

Variant B) 

In other place of his book ref*2+ (Chapter III  §  3,1 p.38) Titchmarsh states that “The problem of the 

zero-free region” (of the zeta function) “appears to be a question of extending the sphere of 

influence of the Euler product beyond its actual region of convergence , ...In fact, the deepest 

theorems on the distribution of the zeros of  ζ(s) are obtained in the way suggested. 

But the problem of extending the sphere of influence of (the Euler product) ... to the left of  ς = 1 in  

any effective way appears to be of extreme difficulty” 

The “extremely difficulty problem” was solved in 1991 by the author (ref*4+), who proved the 

product formula 
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for integral positive  x ≥  2  and every  s.  Unfortunately enough, this does not give us any information 

concerning the zeros. In p.50 of the same reference, the author proved that there are infinitely many 

natural numbers x such that if 

 

there are not zeros for  ς > θ 
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3. How the hypothesis was proved 

In the Nº 10, January 2001 issue of the “Italian Journal of Pure and Applied Mathematics” was 

published a paper of the author entitled “The functions N(T) and  N0 (T) of the Riemann zeta 

function”, (ref.(5)). 

The contents of the first two pages of the paper can be summarized in a few lines as follows: 

The function  

ξ (s)  =  1/2 s (s-1) π –s/2   Γ ( s/2 ) ζ (s) 

 

is real for  s = 1/2 +  it  and real t, as proved by Riemann. Hence, the same thing is true for 

 

(3.1)       F (s) = π –s/2 Γ ( s/2 ) ζ (s) 

 

Equating arguments of both sides in (3..1.)  we obtain: 

(.3..2)    arg  F ( 1/2  + it) = - t/2 log π + arg Γ  (1/4 + it/2)  + arg  ζ (1/2 + it)  ±  mπ 

 

As   F ( 1/2  + it) is a real quantity, must hold that  

 

(3.3)        arg F (1/2 + it)  =   ± π  ±   2kπ 

 

Replacing in (3.2.) we obtain: 

 

(3.4)       ± π  ±   2kπ = - t/2 log   + arg Γ  (1/4 + it/2)  + arg  ζ (1/2 + it)  ±  m π  

which is clearly equivalent to: 

 

 (3.5)          ± n π = - t/2 log π + arg Γ  (1/4 + it/2)  + arg  ζ (1/2 + it) 

     

This equation must hold identically for every real t.   

The preceding formula admits a double interpretation: 

A) It gives the quantity of zeros N0(T) in the critical line    ς =   ½  between  

coordinates  t=0 and  t =  ± T 

B) It enables us to evaluate arg ζ (1/2 + it) 

The validity of (3.5) can be checked in a variety of ways. 

1) By use of the Haselgrove-Miller tables (ref. (6)). This can be accomplished in two different ways. 

On the one hand the tables give separately the values of  R ζ (½ + it) and I  ζ (½ + it), so that one can 

evaluate. 

arg ζ (1/2 + it )  =  arc tg   ±  m π 

As  ζ(1/2) = - 1,460355, it seems a correct conventional thing to adopt above that 

arg ζ (1/2)  =   π 

This is the initial value used to draw the graph of arg ζ (½ + it) given in fig.1. 

On the other hand, the tables tabulate the values of θ = arg Γ (¼ + it/2) and thus provide an 

alternative way to calculate arg ζ (½ + it) thanks to (3..5). 

The numerical details of this checks were given in ref. (7) and the double agreement of the tables 

with (3.5) is perfect. 
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2)  Formula (3.5) can be deduced from the Cauchy-Riemann equations for analytic functions. See   

ref (7) 

3)  It can be deduced from the argument “principle” when applied to ξ (s). See § 8 below.      

4)  It can be deduced from the functional equation of the zeta function. See § 5 below. 

5)  It can be deduced from the approximate functional equation of the zeta function. See § 6 below. 

6)  It can be deduced from an observation made by Titchmarsh. See § 7 below. 

4. Comparison of No(t) with N(t) 

Once we feel fairly sure by these six checks about the  validity of (3.5) we compare it with the result 

of the contour integration performed by Stieltjes, von Mangoldt and Backlund in order to   

determine N(T), the  quantity of  zeros in the critical strip between ordinates t = 0  and  t = T. 

     In ref[2], Chapter IX,  §  9.3, line 13  p.179  we find the following.: 

Theorem 1. -  The positive ordinates of the zeros of the zeta function in the critical strip are defined 

by the condition 

nπ  = Δ   arg  s(s-1)  +  Δ arg   π-s/2    +  Δ   arg   Γ (s/2)  +  Δ   arg ζ  (s)  

(4.1) 

                                =  π –  t/2 log   π + arg  Γ (1/4 + it/2)  + arg  ζ (1/2 + it) 

 

     Stated in a slightly different form, there are zeros in the critical strip every time that 

 

(4.2)      ± m π  = -  t/2 log π + arg  Γ (1/4 + it/2)  + arg  ζ (1/2 + it) 

 

where we have replaced  n-1 by m. 

But (4.2) and  (3.5) coincide for every t. Hence 

                                                     N(t)  =   N0 (t) 

which is the Riemann hypothesis. 

     As a further check, Prof. Gerd Faltings, after having read ref[5] said he had been unable to find 

any mistake in it. (except the typographical ones, of course)  

5. Development of alternative 4) 

Here we develop alternative 4), mentioned above. 

 In the functional equation of the zeta function, which we write as: 

ζ (s)  Γ (s/2)   =   π s-½ Γ ( (1 – s) /2)  ζ (1 – s) 

we choose  s =  ½ + it, and equate the arguments of both members. We obtain: 

(4.1) arg ζ ( ½ + it )  +  arg Γ ( ¼  +  i t/2 )  =  t log π  +  arg Γ ( ¼ – i t/2 )  + 

                                                +  arg ζ (½  –  it )  ± 2nπ 

But 

                               arg ζ ( ½ + it )  =  – arg ζ (½  –  it ) 

 

                               arg Γ ( ¼ – i t/2 )  =  – arg Γ ( ¼ – i t/2 ) 

 

     Replacing these values in (4.1) we obtain: 

(4.2)      2 arg  ζ (½ + it)  +  2 arg  Γ (¼ + it/2)  =  t log π  ±  2 n π  

which is again (3.5) 

6. Development of alternative 5) 

Here we develop alternative 5) mentioned above. 

As known (see for instance ref (2)), the approximate functional equation of the zeta function can be 

written (when we choose  s =  (½ + it ) as:  
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(6.1)            ζ (½ + it)  =  =                                       

where: 

m  =      Rm=  

θ  =  -  t/2  log π + arg  Γ (¼ + it/2)   

As far as  the form of the functions  Φr, it can be consulted in ref. (2), but it is irrelevant for what 

follows. 

We remark now that  e–iθ  Rm  can be  written as : 

                                  e–iθ  Rm  =  M eiα
m

  +  e–i2θ  M e–iα
m 

In fact, this is the same that 

                        Rm  = Me i (θ + αm) +  M e –i (θ + αm)   =  2M cos (θ + αm) 

and plainly: 

2

mR
M                        Cos (θ + αm)  =

 

m

m

R

R
 

These equations determine both M and αm. Hence we can write that                                       

          

(6.2)     ζ (1/2 + it )  =   

and the zeros of   ζ (½ + it)  are given by the formula  

(6.3)  

If t ≠  tν, with  tν = a  zero of the right bracket, we can divide both numbers by this bracket obtaining 

thus: 

(6.4)     

We observe now that the quotient at  right is formed by two conjugate complex numbers, so that its 

modulus is exactly one : 

Let     

(6.5)     

Then the above quotient has argument 2  β, and the former equation adopts this simple form: 

e –2iθ     =  – e 2iβ 

the roots of which are 

(6.6)                            2 (θ + β)  =  ±  π   ± 2k π 

Now we evaluate β in terms of   αζ   =  arg ζ (½ + it). 

(6.2) can be written as      ζ (½ + it) =   M1 e
iβ   + e -i2θ M1 e

-iβ 

(6.7)                              =  M1     
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Let us put:  

(6.8)                                  ζ (½ + it) =  Mζ e iαζ
 

Replacing in (6.7))  we get: 

                                            Mζ e iαζ
  =   M1  

and 

   

 Taking logarithms: 

 

Equating imaginary parts : 

(6.9)  

But according to (6.6) 

                                       sin 2 ( β +  θ )  =  sin  (± π)  =  0 

                                       cos 2 ( β + θ ) =  cos ( ± π)  =  -1 

so that the quotient 

                                        

is of the type 0/0. Once the indetermination is saved by L’Hopital rule, we find -∞ as its true value. 

Hence we deduce 

(6.10)                   arc tg.   ±  π/2   ±  r π 

   Thus (6.9) transforms itself to 

(6.11)                                         αζ  -  β  =  ±  π/2   ±  mπ 

 

 Replacing this value of    in (6.6), we obtain that there are zeros on the critical line every time that 

(6.12)                                 2 (θ  + αζ )  =  ± 2k π 

or 

                                                       θ  + αζ      =   ± kπ 

which is again (3.5). 

7.Titchmarsh’s observation. 

In p.181 § 9.4 of ref. (2), he states: 

 “The behaviour of the function S (t)   =  1/π  arg ζ (½ + it) ) appears to be very complicated. It must 

have a discontinuity k where t   passes through the ordinate of a zero of ζ (s) of order k ... Between 

the zeros, N(t) is constant, so that the variation of  S(t)  must just neutralize that of the other terms” 

(in   the expression of N(t)). 

A glance at fig.1 shows that the behaviour of   π S(t) is very simple: it  consists of the curve     t/2 log 

π  -  arg Γ (¼ + it/2) broken at the points t = γi. But Titchmarsh did not dispose of  Haselgrove’s tables 

when writing his book. 

The last statement is particularly interesting:  between zeros, the variation of S(t)  must neutralize 

that of the other terms in the formula of N(t). 
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    That is to say, that according to (3.5), between consecutive zeros must hold that: 

                                   Δ t/2 log π  - Δ arg Γ  (1/4 + it/2)   =  Δ arg ζ (1/2 + it) 

or                   

       (t1 – t2 ) log π -   

                                =   arg ζ                                                                                                                                          

If we regard t1 as a variable and t2 = constant, then we have:                                           

(7.1)                 t log π  –  arg Γ  (1/4 + it/2) = arg ζ (1/2 + it) + constant 

Due to the fact that   arg  ζ  (1/2 + it)  has jumps of rπ  at each zero of multiplicity r, it is easily seen 

that the constant must be ± m π.  

But then (7.1) is nothing but (3.5)! 

8. Application of the argument principle 

As known, the “argument principle”states that the quantity N of zeros of an analytic function f(s) 

inside a contour C where it has no poles, is equal to the variation of arg f(s) along C divided by 2π. 

When applied to the function 

                                                     

with functional equation 

                                                     

it gives 

                                             N  =    

 

Next, we choose as contour C a thin strip of width δ surrounding the critical line between ordinates t  

=  ± T, and after we let  δ→0,. Then we obtain for the quantity N0 of zeros along the critical line:   

N0=  

                                                =    

                        =   

which is again (3.5) 

9. Answer to some objections 

Objection 1: The fact that N0(T) be equal to N(T) does not prove the Riemann hypothesis. It could 

happen that for a given T = γi could exist two zeros at this level: one on ς = ½ and other in ς = 1/3, for 

instance. 

Answer – When in the expression for N(T), the variable T changes from  

T = γ i  -  0  to  T = γ i   +  0,  N(T) changes exactly in the same quantity than  N0(T)does

Hence due to this very special form of  N(T) and N0(T), such a possibility is entirely excluded. 

Objection 2: In the proof of § .6 it is assumed that ζ (1/2 + it) = 0 which is the thing that must be 

proved. 

 Answer - When one wishes to find the zeros of a polynomial P(x)  at some stage of the reasoning 

one must put P(x) =0,  or one is solving other problem.  

It is obvious then that if one wishes to find the zeros of the zeta function on the critical line, one 

must put in some place that   ζ (1/2 + it) = 0, as was put in (§.6) 
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Objection 3:  In equality (3.5) it is not proved that n be a bounded quantity. 

Answer – It makes no sense to determine if n is bounded or not; in every case, equality (3.5) holds. 

Objection 4:  The same objection that 3.- , with the quantity  r of (6.10) 

Answer – In any case, (6.11) is valid. 

Objection 5:  Concerning the β of (6.5), it seems that lots of ordinates of zeros could give rise to the 

same β. 

Answer - Who denies such a thing? And what importance has this fact in relation to the calculation 

that is performed after (6.5)? 

Objection 6:  One γ i could make in (6.4)  

                               +  M eαm   =  0                                (ρi = β0 + γi) 

in which case it is not counting at all, it seems. 

Answer – When passing from (6.3) to (6.4) it was clearly stated that  

t ≠ ti  =  zero of the above expression. We can not assume a case that was discarded beforehand. 

10. Proof using the Z(t) function 

In connection with  paragraph.6, it is well known (ref.[2]) that Hardy's zeta function Z(t), defined as: 

(10.1) ( ) (1/ 2 )iZ t e it 

 where 

  )2/4/1(arglog
2

it
t

 
 

has the remarkable feature of being real for real t. This enables us to reduce the problem of finding 

the imaginary zeros of the ζ-function to the more easy of determination of the real roots of the Z-

function. 

It is obvious from (10.1) that Z(t) has the same zeros than )2/1( it , and that 

(10.2)                                 ( ) (1/ 2 ) .Z t it 

 
Besides, we can write (10.1) as: 

(10.3) ( ) (1/ 2 )
iiZ t e it e   

 
where 

  arg (1/ 2 ).it  

 
Now, (10.3) can be expressed as: 

(10.4) ( )
( ) (1/ 2 ) .

i
Z t e it 




 

 
But as Z(t) is a real quantity, necessarily must hold: 

  ( ) cos( ) (1/ 2 ) .Z t it    

 
Now, if Z(t) vanishes, one or two of the factors at right must also vanish. Namely, must hold at least 

one of the following alternatives: 

 (A) cos( ) 0  

 
or 

 (B) (1/ 2 ) 0.it  

 
Any zero of (A) must be also a zero of (B), because, in contrary, we are led to a contradiction. 

In fact, assume that a zero in (A) is not in (B), then, according to (10.4), it is a zero of Z(t), and so, of 

ζ(1/2+it), against was assumed. 

1/ 2 it
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Does it mean that, due to (10.4) the zeros of Z(t) are double ones? Not at all. 

The zeros of (A) are given at the points where θ+αζ has discontinuities of the second kind (jumps), 

while the zeros of (B) occur where there are discontinuities of the first kind (abrupt changes in the 

derivative of the continuous curve |ζ(1/2+it)|. 

We conclude that the zeros of the ζ-function are given at least by the equation: 

2
n


        (n = 0, 1, 2, 3, . . .)

 
Replacing values: 

(10.5) log arg (1/ 4 / 2) arg (1/ 2 )
2 2

t
it it n


          

 
or 

(10.6) log 2arg (1/ 4 / 2) 2arg (1/ 2 ) 2t it it n          

 
Now, we remark that, as indicated by fig. 1, the function ζ(1/2+it) has a jump of value π when t = γζ = 

imaginary part of a zero. 

In other words 

arg (1/ 2 ( 0)) arg (1/ 2 ( 0))i i          

 
if γζ is a simple zero: so that the π/2 that appears in (.5) is half of the jump. 

We arrive finally to the following theorem: 

The Z(t) function has zeros at least every time that (10.5) is fulfilled. 

If t = γζ, then the ± π/2 quantity there represents half of the jump there. If t = γζ ± 0, the term can be 

suppressed. Then (10.5) coincides with our former (3.5). 

11. The graph of arg  1 / 2 it   

This graph (Fig.1) was published for the first time in a paper I wrote in 1984 entitled “The argument 

of the zeta function into the critical line” in “Bulletin of Number theory” Vol. VIII, aug. 1984 Nro. 2 

p.6-29. For the  sake of completeness I reproduce here how I constructed it, step by step, with the 

help of Haselgrove´s tables (ref [6]). 

Besides, at the final part of the paper (also reproduced here), I show how the formula (3.5) can be 

obtained also starting with the Cauchy Riemann equations for analytic functions (variant 2) 

mentioned in §1.3 

In table I of his tables. Haselgrove gives us the values of    1/ 2 1/ 2R it and I it  

in the interval 0 100t  By using the formula 

 arg 1/ 2 it   are tg 
 

 

1/ 2

1/ 2

I it
n
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we can draw the graph of  arg 1/ 2 it  in that interval, without any trouble, (at least in principle). 
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12. Construction of the graph of arg.  1/ 2 it  using Haselgrove´s tables. 

However  some cares must be kept in this job. 

First of all, we must agree about he value of  arg 1/ 2 it  . As  1/ 2 1,460355    (this value is 

already taken form Table I), we agree to choose arg  1/ 2   Hence we admit the following. 

CONVENTION:  arg  1/ 2   

If we adopt any other consistent convention,  for instance  

arg    1/ 2 2 1m     this merely implies that the graph is displaced upwards or downward, 

without any change on its form. 

For  t = 0,5, we have   1/ 2 0,459303R it       and  1/ 2 0,961254I it    . 

Hence the angle of the argument lies is the third quadrant and we have. 

 
0,961254

arg 1/ 2 0,5
0,459303

i arc tg
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2,09285 1,12505 4,26664arc tg      

When  0,85t  the real part vanishes, and arc tg passes from  , hence we asign to the angle 

the value 3 / 2 . 

In the interval 0,85 3, 45t  the argument lies in the fourth quadrant. For 3, 45t  the argument lies 

in the first quadrant reaching a máximum about t = 6,3. Then it decreases and when t = 9,667,    I = 0 

and we are again in arg 2 . In the interval 
19,667< < 14,134725t      (

1  ordinate of the first 

zero), the argument lies in the fourth quadrant. 

All this can be conveniently tabulated, and we have: 

Table A – Values of arg  1/ 2 it   in the range 
10 <t   

t                                I/R                             ar / arg 1/ 2c tg I R it   

0 

0,5 

0,85 

1,00 

1,5 

2,0 

2,5 

3,0 

3,45 

5,04 

7,0 

9,0 

9,667 

10,0 

12,0 

14,10 

 

0 

2,09285 

+00, 

-5,0168 

-1,3790 

-0,7074 

0,3713 

0,1481 

0 

+0,3292 

+0,3879 

+0,1325 

0 

-0,07465 

-0,7334 

-5,759 

+  

4,2666 

3 /2 

4,9092 

5,3420 

5,6675 

5,9277 

6,1362 

2 = 6,2832 

6,6002 

6,652 

6,4149 

2  

6,2076 

5,6512 

4,8833 

When 1́t  due to the presence of the zero, we must expect a jump of height  , because 1  is a 

simple zero. (Were 1 a doublé zero, the jump would be of  2 and so on. 

 These are consequences of the argument principle). Let us see if this can be checked 

numerically. When 14,10t  as shown in the above table, arg 4,883 and the angle is situated in the 

fourth quadrant, because I is negative and R is positive. 

When 114,20>t   the angle is situated in the second quadrant, because I is positive and R is 

negative, and we have: 

   
0,051597

arg 1/ 2 14,2 7,570 7,985
0,06816

i arc tg arc tg


    


 

We have then: 

   arg 1/ 2 14,2 arg 1/ 2 14,1 7,985 4,883 3,102i i          

Once we have surpassed 1 , we can go on in the same way than before, taking account that 

2 3 4   …are in every case simple zeros. 

We have then the following table: 
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Table B – Values of   arg 1/ 2 it  in the range 
1 12< t < 56,446    

                                    t                                         I/R                           / 1/ 2arctg I R it   

15 

 

16 

 

17 

4,7906 

 

1,2963 

 

0,4600 

7,6482 

 

7,1969 

 

6,7143 

 

                                    t                                           I / R                             arg 1/ 2 it   

0 17,846g   0  2  

18,5 -0,3621 5,9358 

19,5 -1,2617 5,3826 

20,0 -2,4756 5,0963 

20,65      3 / 2  

21,00 4,7553 4,5051 

2 21,022   Jump of    

21,5 1,7797 7,3421 

23,0 0,1112 6,3939 

1 23, 2g   0 2  

24,9 2,2963 5,1332 

3 25,010   Jump of    

25,2 -4,8782 8,0550 

25,5      5 / 2  

26,0 2,6684 7,4942 

2 27,670g   0 2  

28,0 -0,2505 6,038 

29,75      3 / 2  

4 30, 425   Jump of    

30,5 1,4721 7,2577 

3 31,75g   0 2  

32,9 -1,4520 5,3155 

5 32,935   Jump of    

33,0 -1,7456 8,4168 

33,65   5 / 2  

4 35, 48g   0 2  

37,25      3 / 2  

37,4 7,7924 4,5848 

6 36,586   Jump of    

38,0 1,2749 7,1888 

5 38,999g   0 2  

40,7 331,406 3 / 2  

7 40,919   Jump of    
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41,0 3,4672 7,5732 

6 42,364g   0 2  

43,2 -1,0343 5,481 

8 43,327   Jump of    

44,0 158,75 7,847 

7 45,593g   0 2  

47,5 2,8401 4,3739 

9 48,005   Jump of    

48,2 0,5748 6,8049 

8 48,711g   0 2  

10 49,774   Jump of    

49,5 -1,0533 5,4719 

50,0 -4,0483 8,097 

9 51,734g   0 2  

52,7 1,6383 5,2602 

11 52,970   Jump of    

53,1 -8,1712 7,9758 

10 54,675g   0 2  

12 56,446   Jump of    

11 57,545g   0 2  

13 59,347   Jump of    

12 60,352g   0 2  

14 60,832   Jump of    

13 63,102g   0 2  

Between these values there are certain remarkable points, which can serve us as reference points. 

 1/ 2I it  vanishes, of course, at the i abscisas; but it also wanishes at interme-diate points, the 

so called “Gram points” ng  defined by: 

2
1

arg
4 2

it
t

i n 
  
    
  

 

At these points: 

1
arg 0

2
n

I
ig arc tg

R

 

   
 

 

So that the argument must be  2 or a  mutiple of it: In the range of the graph, al-ways holds:

1
arg 2

2
nig 

 
  

 
but this needs not to be true for larger values of ng  

3- Comments about the graph (Fig.1) 

At first glance, the most impressive feature of the graph is its saw-tooth appearance. 

A second remarkable feature is that the derivatives at both sides of the jumps have the same value. 

In other words, the argument curve consists of a single “smooth” curve broken just at the jumps. 

The sequence of the arcs centered about the ng  allows for the form of the curve. 
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 It follows that it would be very convenient if we could find the equation of the continuous 

smooth curve, or at least, of its slope. 

This problem is solved in the following paragraph. 

4- An equation for  arg 1/ 2 it   

 As is well known, the  s function 

       2
1

1 / 2
2

s

s s s s s  


    

is real when 1/ 2s it  . (t: real number) 

Now, if a product of complex numbers equals a real number then  we must have: 

arg of product  = 2 k                            k = 0,1,2,3,… 

if the real number is positive; or 

arg of product = 2 k   

if the real number is negative. 

So we can write: 

arg of product 2 m                          m = 0,1,2,3,… 

When this is applied to   
1

2
it

 
 

 
, we obtain that: 

    /2arg 1/ 4 / 2 1/ 2it it it m         

From which follows: 

 A                               /2arg 1/ 2 arg arg 1/ 4 / 2itit it m         

 

 A                                    arg 1/ 2 it t m       

 

(by formula 3,31 of Haselgrove´s introduction to his Tables) 

This equation  A is very clearly the piecewise equation for  1/ 2 it  . 

The  t function can be numerically evaluated from its asymptotic expansion 

 
 
 

1 2

2 1
*1

1 21 1
log

2 2 2 2 2 2 1

r

r

r
r

Bt t t B
t

r r t










  


  

(this is Haselgrove´s formula 3,32, and   0o  as he points out) 

But we can dispense of this calculus as he gives (Table I) in the same range <100t the quantity 

   
1

t t 


 . 

This circumstance enables us to perform a quantity of checks in connection with the former 

calculations, in order to verify the truth of  A and our own tables 1 and 2.  

We have, for instance, that  t reaches its máximum in the range  

10 < <t    when  t = 6,3. 

When  t = 14,1  t has the value -0,5547. Hence  

   . 0554726 1,7427t      

The value of  arg 1/ 2 14,1i  was given in our Table A. above, as 4,883. Hence: 

   arg 1/ 2 14,1 14,1 4,8833 1,7427 3,1406i         
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in accordance with equation  A  

We choose now (at random) t = 20 

From our table B above 2,4756
I

R
  so that  arg 1/ 2 20 5,0963i    

On the other hand, from Haselgrove´s table we obtain: 

  0,3778t                                          .0,3778 1,1869t    

   arg 1/ 2 20 20 5,0963 1,1869 6,2832 2i         

The interested reader can perform as many numerical checks as he wish in order to convince himself 

of the truth of equation  A and of our graph of  arg 1/ 2 it   

5. The meaning of equation  A  

 From the analytical standpoint, we can summaryze the preceding numerical-theoretical 

results as follows: 

 

- In the range   
10 < <t            we have 

   arg 1/ 2 it t       

 

- In the range   
1 2< <t   we have 

 

   arg 1/ 2 2it t       

- In the range  
2 3< <t   we have 

 

   arg 1/ 2 3it t       

- In the range   
1< <n nt  
 we have 

 

     arg 1/ 2 1it t n        

 

 These statements can he interpreted or presented under other forms, for instance: 

- The number of different zeros N0  T in the critical line in the interval 0 < <t T  is:    

      0

1
arg 1/ 2n N T it T 



 
    

 
 

where  U is the greatest integer function. 

 - There are zeros on the critical line every time that 

   arg 1/ 2 it t n      

(independently of the multiplicity of each zero, which is given by the height ot the jump of 

 arg 1/ 2 it  ). 

12.- All the imaginary zeros of the zeta function are simple ones 

We have seen that 

 

in the range  

 

 

     arg 1 / 2 1 1,2,3,...ni t n n        

1< <n nt  
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Then we have: 

 

But according to Haselgrove´s formula 3.32 reproduced above, is a continuous function, and 

then  lim   so that we get finally that the jump of the argument at  is 

always equal to , whatever be n. 
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