
117 

Vol.5.Issue.3.2017 (July-Sept) 

©KY PUBLICATIONS  

 

 

  

 
    

 
 
 

POSITIVE DEFINITE SOLUTION OF NONLINEAR MATRIX EQUATIONS  
 

MINGHUI WANG*, YUNCUI ZHANG, LUPING XU 
Qingdao University of Science and Technology 

Qingdao, Shandong, China 
* Author for Correspondence  

 

 

ABSTRACT 

In this paper, we study the nonlinear matrix equations(1).First, we obtain 

the condition for the existence of positive definite solution for the 

equations. Secondly, we propose a fixed point iterative method for solving 

the equations. Finally, numerical example is given to demonstrate the 

efficiency of the iterative method. 

Keywords：Positive solution，fixed point iteration method，nonlinear 
matrix equations. 

 

1. INTRODUCTION 

In this paper, we consider the nonlinear matrix equation: 
* 1

* 1

X A Y A E

Y B X B F





  


 
                                                                                         (1) 

where ,A B are n order Hermitian positive definite matrix, , , ,E F X Y are n order positive definite 

matrix. 

Another form of promotion is as follows: 
1 2* *t tsX A X A B X B I

 
                                                                           (2) 

Nonlinear matrix equations with the form (2) have many applications in engineering, dynamic 

programming, ladder networks statistics and so on. Several authors have studied the necessary and 

sufficient conditions of the existence of Hermitian positive definite (HPD) solutions of similar kinds 

of nonlinear matrix equations. In [3], the case
1 2 1s t t   is considered and different itreative 

methods for computing the HPD solutions are proposed. In [4], the case
1 1,s t  20 1t  has been 

studied for computing the HPD solutions are proposed . In [5], author considered the matrix 

equation 1 1t t
X A X A B X B I

    
1 2(0 , 1)t t  and proposed three different kinds of iterative 

methods to compute the HPD solutions . In[6], the authors considered the matrix equation 
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X A X A I


  with 0,s  0 1it  and studied the existence and the uniqueness of the HPD 

solution. 

In this paper, we discuss 1 2* *t tsX A X A B X B I
 

   with
1 2, , 0s t t  . We propose necessary and 

sufficient conditions for the existence of HPD solutions. Based on the Banach fixed point theorem, 

the existence and the uniqueness of the Hermitian positive definite solution are studied. This paper 

is organized as follows: In Section 2, we give some lemmas and definition that will be needed to 

develop this work. Then in Section 3, we get some theorems of nonlinear matrix equations (1). 

Finally, numerical example is presented to illustrate the performance and the efficiency of the 

algorithm. 

2.PRELIMINARIES 

Lemma 2.1 [1] If 0A B  (or 0A B  ), then 0A B   (or 0A B   ) for all (0,1] , and

0B A   (or 0B A   )for all [ 1,0)  . 

Lemma 2.2[2] If P andQ are Hermitian matrices of the same order with PQ QP , then 0P Q  

for all (0, )  . 

Definition2.3[8]If n nA C  , A A  , then A is Hermitian matrix；If A A I  ，then A is unitary matrix. 

Definition2.4[8] If n nA C  is Hermitian matrix, for any nonzero vector x we have 0x Ax  (or

0x Ax  ), then A is positive definite matrix(or Semi - definite matrix).    

In this paper, for , ,n nA B C  0( 0)A  shows A is positive definite matrix(or Semi-definite matrix).

0( 0)A B A B    shows A B is positive definite matrix(or Semi-definite matrix). 

3.SOME RESULTS  

Theorem3.1 If ,X Y are the positive definite solution of nonlinear matrix equations(1), then: 

1 1 *F B E B AE A    ， 1 * 1E BF B A F A    . 

Proof: For * 1X A Y A E  , where X E , then from lemma 2.1 we can get 1 1X E  , 
1 1A X A A E A    .From the nonlinear matrix equations (1) we can get * 1Y F B X B   

* 1F B E B  , we have 1F B E B  becauseY is positive definite matrix.  

Similarly we haveY F ,and according to Lemma 2.1 we can get 1 1Y F  and 1 1A Y A A F A    . 

According to the nonlinear matrix equations (1) we can get * 1 * 1X E A Y A E A F A     ,Since X

is a positive definite matrix, we can get 1E A F A  . 

For * 1X A Y A E  , both sides left by Aand right by 1A at the same time, then we can get
1 1 1A XA Y A EA      , and then we get 1 1Y A EA   ，so we have 1 * * 1AE A Y F B E B   

； 

For * 1Y B X B F  , both sides left by Band right by 1B at the same time, then we get
1 1 1B YB X B FB      , and then we get 1 1X B FB   ，so we have 

1 * * 1BF B X E A F A    ； 

In summary, we can get： * 1 1 *F B E B AE A   ， * 1 1 *E A F A BF B   .             

In this paper, we consider the iterative algorithm of nonlinear matrix equations (1) and give the 

convergence theorem.  
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Algorithm 3.1 

(1) we give the initial matrix
0

1

2
Y F ； 

(2) For 0 1 2k , , ，we do iteration on 1

1k kX E A Y A 

   , 1

1 1k kY F B X B 

   . 

(3) Then we check the convergence. 

Theorem 3.2 If    * 1 1 * * 1 1 *2 , 2F B E B AE A E A F A BF B       ,then the sequen-  

ce kX , kY  by Algorithm 3.1 converges to the minimal solution
s X of the nonlinear matrix 

equations (1). 

Proof：Then we prove it by mathematical induction method. 

When 0k  ，we have
0

1

2
Y F ,  * 1 1 *2E A F A BF B   ，then we can get  

* 1 * 1 1 * 1 *

1 0 2 2X E A Y A E A F A BF B BF B         ， 

We have * 1 * 1 * 1

1 0 2X E A Y A E A F A E A F A E         ，then 

1 * 1

1BF B X E A F A     . 

For 1 *

1BF B X E   ，we can get 1 1 1

1E X B FB     by Lemma2.1,  

So 

1 1

1 1

1

2
F Y F B X B F B E B F         . 

For  * 1 1 *2F B E B AE A   ，then we have 1 * 1 1

0

1

2
Y F AE A B E B AE A        . 

Thus we have： 

1 1 1

0 1 1

1

2
AE A Y F Y F B X B F B E B F             . 

When 1k  ，because
1

1

2
F Y F  ，so 

1 * * 1 * 1 * 1

1 2 12BF B X E A F A X E A Y A E A F A E            . 

For 1 *

1 2BF B X X E    ，we can get: 

1 1 1 1 1 1

1 1 2 2

1

2
AE A B E B AE A F Y F B X B Y F B X B F B E B F                      

1 1

1 2AE A Y Y F B E B       . 

If 1k n  ，we can get the following two inequalities： 
1 * * 1

1 2 1n nBF B X X X X E A F A E 

        ； 

1 1

0 1 2 1n nAE A Y Y Y Y Y F B E B F   

         . 

Then for k n , we can have  
1 * * 1 * 1 * 1

1 1n n n nBF B X E A Y A E A Y A X E A F A E   

          ； 

1 1 1 1

1 1n n n nAE A Y F B X B Y F B X B F B E B F       

          ； 

In summary, from the mathematical induction method we can get kX , kY is monotoni- 

cally increasing and has upper bound, so
k sX X ，

k sY Y .                                                                 
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4.NUMERICAL EXAMPLE 

In this section, we give numerical example to illustrate the efficiency of the Algorithm 3.1. All 

computations are performed on Intel(R) Core(TM) i53210M CPU @ 2.50GHz comput- 

er.All the tests are performed by MATLAB version 7.0.  

Example For nonlinear matrix equations 
* 1

* 1

X A Y A E

Y B X B F





  


 

， 

where

0.025  0.045 0.039 0.026 0.215 0.045 0.039 0.024

 0.019 0.057 0.038 0.039 0.015 0.127 0.038 0.007
 , =

0.044 0.073 0.093 0.034 0.024 0.027 0.293 0.034

  0.021 0.016 0.013 0.023 0.012 0.016  0.012 0.021

A B

 
 
 
 
 


 

   

   

  


 
 
 
 



0.2814  0.3094   0.0136 0.2646 1.3368 1.0514 0.1340  0.2622

0.4150 0.0842 0.6927 0.6872 0.5679  0.0185   0.9129    0.3605
 , =

0.4840 0.4657 0.7015 0.8033 0.8753 0.51

  0.7324 0.4582 0.2903  0.9779

F F

 
 
 
 
 
 

36 0.2795 0.4311

 0.8136 0.5252  0.4175 0.3085

 
 
 
 
 
   

Fig 4.1 is depicts 50n  of change curve between iteration steps k and residual y by 

Algorithm 3.1.   

 
Figure 4.1 the relationship of the iterative steps k and residual y  

Using algorithm 4.1 to solve the nonlinear matrix equations (4.1), we obtain the minimal solution.   

0.2859 0.3062 0.0147 0.2618

0.3941 0.1122 0.6641 0.7085

0.5030 0.4430 0.7241 0.7839

0.7220 0.4668 0.2816 0.9862

sX

 
 
 
 
 
 

, 

0.4733 0.8289 0.7181 0.0877

0.9028 0.1663 0.5692 0.4435

0.4511 0.3939 0.4608 0.3663

0.8045 0.5208 0.4453 0.3025

sY

 
 
 
 
 
 

. 

From the example, we can get that the Algorithm 3.1 solves the nonlinear matrix equations (1) and 

it is feasible and effective. 
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