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ABSTRACT 

In his paper, we are concerned with partial convexity of smooth solutions to 

heat equation. We prove that partial convexity of these solutions to the 

heat equation are preserved in space forms with nonnegative sectional 

curvature. Consequently we give a proof that the convex cones of these 

solutions 
k  (see the definition in Section 2) are invariant cones.  
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1.  Introduction 

The convexity has been studied for a long time in partial differential equations and it is 

intimately related to geometric properties of solutions to partial differential equations. There are 

macroscopic and microscopic convexity principle in general to yield convex solutions. The 

macroscopic convexity principle developed from 1980s, which was obtained by Korevaar [12], 

Kennington [11] and for the general nonlinear partial differential equations by Alvarez-Lasry-

Lions[1]. However this method has difficulties in some geometric partial differential equations on 

compact manifold. The microscopic convexity principle concentrates on establishing the constant 

rank theorem for convex solutions to partial differential equations. It is a powerful tool in producing 

convex solutions to partial differential equations via the continuity methods. Caffarelli-Friedman [4] 

proved a constant rank theorem for convex solutions of quasilinear elliptic equations in 2R , a similar 

result was also discovered by Yau [16] at the same time. Korevaar-Lewis [13] generalized these 

results to nR . The microscopic convexity principle has been generalized to a variety of fully 

nonlinear differential equations. For the case of parabolic convexity, Svante-Johan [17] and Lions-

Musiela [14] independently found necessary and sufficient conditions for preservation of convexity 
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of parabolic equation. Convexity plays an important role in geometric flow. For example, Huisken [8] 

proved that the mean curvature flow deforms initial surface with positive curvature into a point, 

while the curvature remains positive along the mean curvature flow.  

In addition to convexity, partial convexity is also an interesting subject in analysis and 

geometry. So far as partial convexity of solution is concerned, there are usually two definitions of 

partial convexity of a function u : one is that the sum of the smallest k  eigenvalues of the Hessian 

matrix 2{ }D u  of u  is positive; the other is that there exists a positive integer k , such that 

2( ) 0(or 0)l D u    for 1 l k  , where 2( )l D u  is the l -th elementary symmetric function of 

the eigenvalues of 2D u . In the following we will use k  convexity to mean the former definition and 

partial k  convexity to mean the latter one. In this paper, we will mainly prove that these partial 

convexity properties are preserved for smooth solutions to the heat equation in space forms with 

nonnegative sectional curvature and therefore we will give a direct proof of the fact that these 

convex cones 2{ ( ) ( ) 0 1 }n

k lD u R l k             (see the detail definition in Section 2) 

are invariant cones along the heat equation.  

We first recall some results concerning partial convexity. A famous result is that in 1976, 

Brascamp-Lieb [3] established the logarithmic concavity of the fundamental solution of diffusion 

equation with convex potential in bounded convex domain in nR . As a consequence, they proved 

the logarithmic concavity of the first eigenfunction of Laplacian equation in convex domain. In 

geometry, the assumption on the curvature of surface, such as positive Ricci curvature or positive 

curvature operator in some sense can be interpreted as partial convexity conditions. For geometric 

evolution equation, invariant cones play important roles and hence geometric quantities satisfying 

partial convexity properties can be used to construct invariant cones. For example, Huisken-

Sinestrari [10] classified the compact 2-convex hypersurfaces in nR  using the technique of mean 

curvature flow. They proved that if 1

0

n nF M R    be a smooth immersion of a closed n - 

dimensional hypersurface, with 3n   and if 
0 0( )M F M  is two convex, i.e., 

1 2 0    

everywhere on 
0M ; then there exists a mean curvature flow with surgeries starting from 

0M  which 

terminates after a finite number of steps. As corollary, they classified all closed hypersurface with 

two positive curvature operator. For Ricci flow, there are plenty of such results. For example, 

Hamilton [6] ([7]) proved that if a compact 3-manifold (4-manifold) nM  admits a Riemannian metric 

0g  with positive Ricci curvature (positive curvature operator), then this metric can be deformed to a 

metric g  of constant positive sectional curvature. In addition to these, Chen [5] and B ohm-Wilking 

[2] studied the classification of compact Riemannian manifolds with 2-positive curvature operator 

via Ricci flow. They proved that if ( )nM g  has 2-positive curvature operator, then the normalized 

Ricci flow evolves the initial metric g  to a constant curvature limit metric. In their proof, they 

constructed a pinching family with initial cone being the cone of 2-positive curvature operator. With 

the existence of such pinching family, they could prove the convergence of the normalized Ricci flow 

to a constant curvature limit metric.  

As significance and broad applications of the partial convexity as illustrated in the above, the 

partial convexity property of solution to differential equations is well worth studying and hence we 

consider this subject in this paper. We consider a model of smooth solution to the heat equation in 

space form nM  with nonnegative sectional curvature:  
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We will prove some partial convexity results for solutions of this heat equation. The first main 

theorem is the following partial convexity result for an n-dimensional space form nM  with 

nonnegative sectional curvarture.  

Theorem 1.  Let nM  be a compact space form with nonnegative sectional curvature s  and u  be 

the smooth solution to the heat equation (1) on nM . If the initial data 
0u  is partially k  convex, i.e., 

for 1 l k  , 2

0( ) 0l D u  . Then the solution u  is also partially k  convex, i.e., for any  0t   and 

1 l k  , we have 2( ) 0l D u  .  

Concerning the relation of the two definitions of partial convexity for solutions to heat equation, 

we have the following corollary of Theorem 1.  

Corollary 1.  Let nM  and ( )u x t  satisfy the assumptions of Theorem 1. If the initial data 
0u  is 

partially k  convex, i.e., there exists a positive integer k , such that 2

0( ) 0l D u   for 1 l k  . 

Then for any 0t   the solution ( )u x t  is 
2

[ ]kn  convex, i.e., the sum of smallest 
2

[ ]kn  

eigenvalues of 2 ( )D u x t  is positive, where [ ]m  denotes the largest integer not exceeding m .  

The paper is organized as follows. We first recall the definitions and some fundamental facts on the 

elementary symmetric functions 
k  in Section 2. Then we prove partial convexity for the smooth 

solutions of heat equation is preserved in general space forms with nonnegative sectional curvature, 

i.e., we prove Theorem 1 and corollary 1 in Section 3. We finally give some concluding remarks in 

Section 4.  

2. Preliminary 

In this section, we recall the definition and some basic properties of the elementary 

symmetric functions of 
1( )n    .  

Definition 1. For any 1 2k n   , we set  

 
1 2

1 2

1 2

1

( ) ( )
k

k

n

k i i i n

i i i n

R        
   

          

We also set 
0( ) 1    and ( ) 0k    for k n .  

For a symmetric matrix W , we define by letting ( ) ( ( ))k kW W   , where 

1( ) ( ( ) ( ))nW W W     are the eigenvalues of the symmetric matrix.  

In addition, we define  

 
1 2{ ( ) 0 ( ) 0 ( ) 0}n

k kR                 

Obviously 
k  contains the positive cone 

1 2{ 0 0 0}n

n nR             . 
k  is 

symmetric in the sense that if 
k , then any permutation of   also lies in 

k .  

Let us denote by ( )k i    the sum of the terms of ( )k   not containing the factor 
i . We list 

some basic properties of elementary symmetric functions which will be frequently used in the 

following calculation.  

Proposition 1.  For any 0 1k n   , 1 2i n   , and nR , the following identities hold:  
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1 1( ) ( ) ( )k k i ki i            (3) 

 
1

( ) ( ) ( )
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                                                     (5) 

Proposition 2.  1. If 
k  for {1 2 }k n   , then we have ( ) 0h i    , for any 

{0 1 1}h k     and {1 2 }i n   .  

2. Let { }ijW W  be a symmetric matrix such that its eigenvalues belong to 
k , and set 

1

( ) ( )k

kF W W , that is  

 
2

1

( ) 0 for any{ }
n

n n

ij kl ij

i j k l ij kl

F
W R

W W
   

   


   

 
                              (6) 

3. Let { }ijW W  be a symmetric matrix such that its eigenvalues belong to 
1k , and set 

1

( ) ( )k

k

F W W


 

 , then F  is concave on 
1k , that is  

 
2

1

( ) 0 for any{ }
n

n n

ij kl ij

i j k l ij kl

F
W R

W W
   

   


   

 
                                 (7) 

 

Proposition 1 is standard which can be directly checked. For the proof of Proposition 2, the readers 

can consult [9] for example.  

3. Proof of Theorem 1 and Corollary 1 

In this section, we will prove Theorem 1 that partial k  convexity of smooth solutions to the heat 

equation (1) is preserved in general space forms with nonnegative sectional curvature.  

Since we are working in space forms and need to commute covariant derivatives, we first recall Ricci 

identities in Riemannian geometry. Let nM  be a Riemannian manifold with nonnegative constant 

sectional curvature and 
ijklR  be its Riemann curvature tensor. Let u  be a smooth function on nM . If 

we denote the first and second covariant derivatives of u  with respect to the frame { }ie  by 
iu  and 

iju  etc., then we have the following Ricci identities  

1

n

ijk ikj l likj

l

u u u R


    (8) 

and  

 
1 1

n n

ijkl ijlk im mjkl mj mikl

m m

u u u R u R
 

                               (9) 

For Riemannian manifold with constant sectional curvature s , we can see from the definition of 

Riemann curvature tensor that  

 ( ) ( )ijkl ik jl il jk ik jl il jkR s g g g g s            (10) 
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where we have chosen normal coordinates at a fix point such that the metric takes the form 

ij ijg  .  

Combining (8)-(10), we can rewrite the Ricci identities in space form with sectional curvature s  in 

the following form  

 
1

( ) ( )
n

ijk ikj l lk ij lj ik j ik k ij

l

u u s u s u u     


           (11) 

and  

 1 1

( ) ( )

( )

n n

ijkl ijlk im mk jl ml jk mj mk il ml ik

m m

ik jl il jk jk il jl ik

u u u s u s

s u u u u

       

   

 

        

     

 
               (12) 

Now we can give the following  

Proof of Theorem 1. 

We prove by induction method. We need to make some simplifications. By perturbation 

argument,  

We first prove the case for 1k  . We calculate by using the heat equation (1) and obtain  

 ( ) ( ) ( )
u

u u
t t

 
      

 
 

From the above calculation and strong maximum principle we know that u  is positive along the 

heat equation (1).  

For the general case. Suppose 2( ) 0m D u   holds for 1m l   and therefore 2D u  lies in the 

convex cone 
1l . For the case m l .  

We consider the following auxiliary function  

 2 2

1( ) ( )l lP D u D u     

The Hessian quotient P  is concave on the convex cone 
1l , which we have indicated previously 

in Proposition 2.  

We compute the evolution equation for P . Noting that  

 
2

1 1

n n
s s

ij s kl s ij

s sij kl ij

P P
P u u u

u u u 

 
       

  
   

therefore we have  

 
2

1 1

( ( ))
n n

ij s

ij ij s kl

i j sij ij kl

uP P P
P u u u

t u t u u  

  
      

    
                (13) 

Since 2D u  lies in the convex cone 
1l , the auxiliary function P  is concave and therefore the last 

term in (13) 0 . We need to calculate the first term on the right hand side of (13). By adopting 

normal coordinates, we obtain from the Ricci identities (11) and (12) that  
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                               (14) 

Combining (13), (14) and the heat equation (1), we obtain  

 

2

1 1

1 1

1

( )

2 2

2 2

n n
s
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i j sij ij kl

n n
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 (15) 

where we have used the concavity of the Hessian quotient P  on the convex cone 
1l  and equality 

(5) in Proposition 1.  

If we denote the eigenvalues of the matrix 2D u  by 2( )D u  , we then calculate the second term 

in (15) as follows:  

 

1

1 1

2
1 1 2 1

1

2 2
1 2 1

2 1

( ( ) ( ))

( ) ( ) ( ) ( ) ( )

( 1) ( ) ( 2) ( ) ( ) ( )

( 1) ( 2) ( ) ( )

n n

l l i

i iii

n

l l l l l

i

l l l l

l l

P
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i i

n l n l

n l n l P

   

         

       

   



 

   



  

 






   

     

       

 

                   (16) 

where we have used equalities (2) and (4) in Proposition 1.  

Substituting (16) into (15), we get  

 
1 1 2 1

1 2 1

2 ( 1) ( ) 2( 2) ( ) ( ) ( ) 2

2 {( 2) ( ) ( ) ( ) }

l l

l l

P
P s n l n l s P snP

t

s n l n P

       

     

 

 


        



       

            (17) 

where in the last inequality we have used the assumption that the sectional curvature of nM s  is 

nonnegative.  

Since nM  is assumed to be a compact space form and the induction assumption that 
1( ) 0l    is 

preserved along the heat equation, we know there exists a constant 
0C , such that  

 
1 2 1 0( 2) ( ) ( ) ( )l ln l n C           

We take a new auxiliary function 02sC t
P e P . Then from the differential inequality (17), we 

compute  
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0
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2 [ (( 2) ( ) ( ) ( ) )] 0

sC t sC t

sC t

l l

P P
P e P sC e P

t t

se C n l n      

 
   

 

      




                   (18) 

Since 0P P   at the initial time 0t  , we conclude from the strong maximum principle for 

parabolic equation that for any 0t  , we have 0P   or equivalently 02
0

sC t
P e P


   and hence 

2( ) 0l D u  .   

In the following part of this section, we prove Corollary 1.  

Proof of Corollary 1. We divide the proof into 3 steps.  

Step 1.We claim that if 
1n     and ( ) 0(1 )l l k     , then we have 

2
1 [ ]

0kn
 


  . 

We prove the claim by induction on n  and k . For the case 3n  , when 1k  , it is obvious; when 

2k  , it is by Proposition 2 that 
1( 3) 0    , i.e.,

1 2 0   , the claim follows for 3n  . Suppose 

the claim holds for the case of dimension 1n  and 1k  . Then for the case of ( ) 0(1 )l l k     , 

we use proposition 2 once more to obtain that 
1( ) 0(1 )l n l k      . This means that 

1 1n    satisfy the assumption of the claim and by induction hypothesis, we therefore obtain  

 1
2

1 1 [ ]
0kn

   
                                                           (19) 

We divide k  into two cases:  

Case 1: k  is an even integer, then 1 2
2 2 2 2

1 [ ] 1 [ ]k k k kn n n n           and the claim follows;  

Case 2: k  is an odd integer, then 1 1 1
2 2 2

1 [ ] 1k k kn n n          whereas 1
2 2

[ ]k kn n    . The 

induction hypothesis (19) and 
1n     immediately lead to 

2
1 [ ]

0kn
 


  . Therefore the 

claim also follows.  

Step 2. To finish the proof of Corollary 1, we first prove the following Lemma 1.  

Lemma 1.  Let ( )u x t  be a smooth solution to the heat equation (1) in [0 )nR T  . We denote by 

2D u  the Hessian matrix { }iju  of the solution u  and assume 
2

expD u C . If the initial data 
0u  is k  

convex, i.e., the sum of smallest k  eigenvalues of the matrix 2

0D u  is nonnegative (positive), then k  

convexity will be preserved for solutions by the heat equation, i.e., for any 0t  , the sum of 

smallest k  eigenvalues of 2 ( )D u x t  is nonnegative (positive).  

Sketch of the Proof of Lemma 1. We need to make some simplifications. By perturbation argument, 

we may assume the sum of smallest k  eigenvalues of Hessian for 2

0D u  of the initial data 
0u  is 

positive, otherwise we may consider 2( ) ( 2 )u x t x n t      instead and let 0  .  

We may assume the sum of smallest k  eigenvalues of 2 ( )D u x t  vanishes at some space-time point, 

otherwise we are done. We may assume 
0t  be the first vanishing time and assume the vanishing 

point be attained at 
0 0( )x t . we can also rotate the coordinates such that the matrix 2D u  is 

diagonal and its eigenvalues satisfy 
1 1 11nn n nu u u      at this point.  

Therefore at the space-time point 
0 0( )x t , we have  
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where we have used the heat equation (1).  

From the above calculation and maximum principle we know that the sum of the smallest k  

eigenvalues of 2D u  is nonnegative along the heat equation (1). From the strict parabolic maximum 

principle, the case of strict inequality in Lemma 1 follows. 

Step 3. We use Lemma 1 in step 2 to finish the proof. If the initial data 
0u  is partially k  convex, then 

from Theorem 1, we know that for any 0t  , ( )u x t  is partially k  convex, i.e., 

2( ) 0(1 )l D u l k    . From step 1, we know that the sum of smallest 
2

[ ]kn  eigenvalues of 

Hessian matrix 2D u  is positive. We can also use Lemma 1 in step 2 to finish the proof: we first use 

Step 1 to see that the sum of smallest 
2

[ ]kn  eigenvalues of the matrix 2

0D u  is positive and then 

use Lemma 1 in step 2 to conclude the corollary.  

As another consequence of the concavity of Hessian quotient, we give an estimate of 2( )l D u  in 

terms of u  and 2

1( )l D u 
 for solution of heat equation in Euclidean space.  

Theorem 1.Suppose ( )u x t  is a smooth solution to heat equation (1) with initial data 
0u  in nR . If 

for any 2 l k  , there exists a positive constant 
l , such that 

0u  satisfies  

 2 2

0 1 0( ) ( )l l o lD u u D u       

then for any [0 )t T  , the same inequality holds true for u .  

Proof. The proof is similar to that of Theorem 1. Consider the auxiliary function  

 2 2 2

1 1( ) ( ) ( )l l l lh P u D u D u D u           

then what we need is to calculate the evolution equation for this auxiliary function.  

 
2

1 1

( ) ( )

( ) ( ( ) ( ))

( )

0

l l

l

n n
s

ij ij s kl

i j sij ij kl

h
h P u P u

t t

P P u u
t t

P u P
u u u

u t u u

 



  

 
      

 

 
     

 

  
    

   

 

 

                (20) 

where we have used the heat equation (1) and the concavity of Hessian quotient 
2 2

1( ) ( )l lP D u D u    on the convex cone 
1l . The result is then a direct consequence of the 

parabolic maximum principle.  

4. Concluding Remarks 

In the present paper, we only prove partial convexity of heat equation in space form. We will 

use the concavity property of the Hessian operator and Hessian quotient operator in Proposition 2 

to study the general case in arbitrary Riemanian manifold in the future.  
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