Vol.5.Issue.3.2017 (July-Sept) ©KY PUBLICATIONS

http://www.bomsr.com Email:editorbomsr@gmail.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

PARTS OF A SET AND SUB-EXCEEDING FUNCTION : CODING AND DECODING

Luc RABEFIHAVANANA

Department of Mathematics and Computer Science, University of Antananarivo, Madagascar E-mail: <u>lucrabefihavanana@yahoo.fr</u>

ABSTRACT

Let *n* be an integer such that n > 0 and Ω set with cardinality n - 1. The goal of this paper is to present a new way to encoding all subset of the set Ω by sub-exceeding function on *n*.

After giving some proprieties of the set \mathcal{F}_n of sub-exceeding functions on [n], we present a particular subset which we denote by \mathcal{H}_n such that his cardinality is 2^{n-1} .

Since this subset \mathcal{H}_n has the same number of elements as the set of parts of Ω denoted $\mathcal{P}(\Omega)$, so we can construct a bijective map denoted ψ from the set \mathcal{H}_n to $\mathcal{P}(\Omega)$.

As results, given an arbitrary subset of Ω , we can encode it by using a sub-exceeding function in \mathcal{H}_n . Reciprocally, if we have a sub-exceeding function in \mathcal{H}_n , we can decode it and find the subset of Ω that it represents. Moreover, we can also define in \mathcal{H}_n the equivalent of the usual laws \cup , \cap and $\overline{A}(A \in \Omega)$ which operate in $\mathcal{P}(\Omega)$.

Keywords: Sub-exceeding function, Statistic permutation, Partition set

2010 Mathematics Subject Classification: 05A05; 05A18; 05A19; 18C35

1. Introduction

Let *n* be an integer such that n > 0. For any map $f : [n] \to [n]$ such that $0 < f(i) \le i$ for $i \in [n]$, D. Dumont and Viennot define this map by "sub-exceeding function on [n]". In this article, we denote by \mathcal{F}_n the set of this sub-exceeding function. So

 $\mathcal{F}_n = \{ f : [n] \to [n] \mid 0 < f(i) \le i \quad \forall i \in [n] \}$ (1.1) In 2001, Roberto Mantaci and Fanja Rakotondrajao [6] established a bijection between this set of sub-exceeding function on [n] and the set of permutation S_n . Following this results, we present a new way to encode all subset of any set Ω which is a set of n - 1 objects.

This code can be done by processing a peculiar subset of \mathcal{F}_n denoted by \mathcal{H}_n which regroups all sub-exceeding functions f such as the images f(i) form an quasi-increasing sequence, i.e:

$$f(1) \le f(2) \le \dots \le f(n).$$

Here the set \mathcal{H}_n can be written as

$$\mathcal{H}_n = \{ f \in \mathcal{F}_n \mid f(1) \le f(2) \le \dots \le f(n) \}$$

$$(1.2)$$

Given that an integer *n* such that n > 0 and any set Ω with cardinality n - 1, we can construct a bijection between $\mathcal{P}(\Omega)$ and the subset \mathcal{H}_n .

So, if we have a subset of Ω , it is possible to encode this set using one and only one subexceeding function in \mathcal{H}_n (*coding*) and vice versa, given a sub-exceeding function in \mathcal{H}_n , we can find the subset of Ω that it represents (*Decoding*).

Additionally, we can also define the corresponding in \mathcal{H}_n of the operation \cup , \cap and $\overline{A}(A \in \Omega)$ denoted by \cup_{Rab} , \cap_{Rab} and \overline{f} (the complement of f).

2. Notation and preliminary

For any integer *n* such that n > 0. We denote by

- [*n*] : the set {1; 2;; *n*};
- $\mathcal{P}(\Omega)$: the set of all subset of Ω where $\Omega = \{\omega_1; \omega_2; \dots; \omega_n\};$
- $\mathcal{P}^k(\Omega)$: the set of all parts of Ω which has k elements;
- S_n : the set of permutations on [n].

Recall that a function f said sub-exceeding function on [n] if and only if for all $i \in [n]$ we have $f(i) \leq i$. So, f can be represented by the word of n letters $f(1) f(2) \dots f(n)$. Thus we describe f by his images i.e. $f = f(1) f(2) \dots f(n)$ and we adopt in the whole continuation this annotation.

Example 2.1. For n = 1; 2; 3 we have:

$$\begin{array}{l} \mathcal{F}_1 \ = \{1\} \\ \\ \mathcal{F}_2 \ = \{11\,;\,12\} \\ \\ \mathcal{F}_3 \ = \{111\,;\,112\,;\,121\,;\,122\,;\,113\,;\,123\} \end{array}$$

2.1. Bijection between \mathcal{F}_n And S_n

Theorem 2.2. Let *n* be an integer such that n > 0, then the set \mathcal{F}_n has cardinality n! i.e. *Card* $\mathcal{F}_n = n!$

Proof.

Let f a sub-exceeding function in \mathcal{F}_n where n is an integer such that n > 0. So, we can write $f = f(1) f(2) \dots f(n)$ where $f(i) \le i$ for all $i \in [n]$. Them, take k an integer in [n + 1]and denote by f' the function such that

$$f' = f(1) f(2) \dots f(n) k$$

Now, write by \mathcal{F}'_n the set of this function f' i.e. $\mathcal{F'}_n = \{ f' = f(1)f(2) \dots f(n) \ k \ | \ f = f(1)f(2) \dots f(n) \in \mathcal{F}_n \ et \ k \in [n+1] \}$ (2.1)

Immediately, we see that $f' \in \mathcal{F}_{n+1}$ so,

$$\mathcal{F}'_n \subseteq \mathcal{F}_{n+1} \tag{2.2}$$

and

Card
$$\mathcal{F'}_n = (n+1)Card \mathcal{F}_n$$
 (2.3)

Let f be a sub-exceeding function in \mathcal{F}_{n+1} i.e. $f = f(1)f(2) \dots f(n)f(n+1)$. From (2.1), because $f(n + 1) \in [n + 1]$, we have $f \in \mathcal{F}'_n$. Then

$$_{n} \supseteq \mathcal{F}_{n+1} \tag{2.4}$$

Consequently, from (2.2) and (2.4), we have

(2.5)

$$\mathcal{F}_{n+1} = \mathcal{F}'_n \tag{2.5}$$
Finally, as *Card* $\mathcal{F}_1 = 1$, the equation (2.3) gives
Card $\mathcal{F}_n = n!$
(2.6)

$$\Box$$

Theorem 2.3 (Roberto Mantaci and Fanja Rakotondrajao). Let ϕ be the map from \mathcal{F}_n to S_n defined by

Then ϕ is bijective.

Here (i f(i)) is the permutation which transforms i into f(i) and f(i) into i. Similarly (i f(i))(j f(j)) is the compose of two permutations (i f(i)) and (j f(j)). So

$$\sigma_f = (n f(n))(n - 1 f(n - 1)) \dots (1 f(1)) = (n f(n)) \circ (n - 1 f(n - 1)) \circ \dots \circ (1 f(1))$$
(2.8)

Example 2.4. For n = 3 and f = 122, we have $\phi(f) = (32)(2)(1) = 132$ where the permutation (i, i) is simplified by (i).

Proof of theorem 2.3.

Since the cardinality of \mathcal{F}_n and \mathcal{S}_n are the same and equal to n!, we have to prove that ϕ is injective.

Let f and g be two sub-exceeding functions such that $\phi(f) = \phi(g)$ i.e. $\sigma_f = \sigma_g$. these give us (n f (n))...(2 f (2))(1 f (1)) = (n g(n))...(2 g(2))(1 g(1))(2.9)

By calculating $\sigma_f(n)$ and $\sigma_g(n)$, we have $\sigma_f(n) = f(n)$ and $\sigma_g(n) = g(n)$. Therefore from the equality in (2.9) we see that f(n) = g(n).

Multiply both sides of the equation (2.9) by (n f(n)) at left and by (n g(n)) at right, thus we have a new equality of permutation in S_{n-1} :

$$(n f (n))(n f (n))...(2 f (2))(1 f (1)) = (n g(n))(n g(n))...(2 g(2))(1 g(1))$$
(2.10)

₩

 $S_{n-1} \ni (n-1 \ f \ (n-1)) \dots (2 \ f \ (2)) (1 \ f \ (1)) = (n-1 \ g(n-1)) \dots (2 \ g(2)) (1 \ g(1)) \in S_{n-1}$ (2.11)

Write

$$\sigma'_{f} = (n-1 \ f \ (n-1))...(2 \ f \ (2))(1 \ f \ (1))$$

And

 $\sigma'_{g} = (n-1 \ g \ (n-1)) \dots (2 \ g(2)) (1 \ g \ (1)).$

We have $\sigma'_f(n-1) = f(n-1)$ and $\sigma'_g(n-1) = g(n-1)$. Thus the equality in (2.11) gives f(n-1) = g(n-1).

Continuing this method, we finally have that

 $f(n) = g(n), f(n-1) = g(n-1), \dots, f(2) = g(2), f(1) = g(1).$

We have shown that the two sub-exceeding functions f and g are equal, Therefore the map ϕ is Injective from \mathcal{F}_n to S_n .

In sum, the map ϕ is bijective from \mathcal{F}_n to S_n .

 \cdot

2.2. Algorithm for the construction of $f \in \mathcal{F}_n$ from $\sigma \in S_n$

Let now σ be a permutation in S_n . We will construct the corresponding sub-exceeding function f i.e. $f = \phi^{-1}(\sigma)$ as described by the algorithm below:

Let be $\sigma = x_1 x_2 \dots x_n$ i.e. $\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ x_1 & x_2 & \dots & x_n \end{pmatrix}$. By the construction of ϕ , we have $f(n) = x_n$.

Now find *n* in $x_1 x_2 \dots x_n$ and permute the place of *n* and x_n . So we have a new permutation

$$\sigma' = \begin{pmatrix} 1 & 2 & \dots & n \\ x_1 & x_2 & \dots & x_n \end{pmatrix} = \begin{pmatrix} 1 & 2 & \dots & n \\ x'_1 & x'_2 & \dots & x'_n \end{pmatrix} \in S_{n-1}.$$

Therefore, we have $f(n-1) = x'_{n-1}$. Now find n-1 in $x'_1 x'_2 \dots x'_{n-1}$ and permute the place of n-1 and x'_{n-1} . We continue to adopt this method until all of f(i) are found.

Example 2.5. For n = 9, let be $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 1 & 4 & 3 & 7 & 6 & 9 & 8 & 5 \end{pmatrix}$. We immediately see that f(9) = 5. Now permute 9 and 5 in σ , so

 $\sigma' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 1 & 4 & 3 & 7 & 6 & 5 & 8 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 1 & 4 & 3 & 7 & 6 & 5 & 8 \end{pmatrix} \in S_8 \implies f(8) = 8.$ Using the same method, we find

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 1 & 4 & 3 & 7 & 6 & 5 \end{pmatrix} \implies f(7) = 5 \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 4 & 3 & 5 & 6 \end{pmatrix} \implies f(6) = 6 \text{ et } f(5) = 5 \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \implies f(4) = 3 \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \implies f(3) = 3 \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \implies f(2) = 1 \text{ et } f(1) = 1$$

Finally,

 $h = 113356585 \in \mathcal{F}_{9}$

3. The set \mathcal{H}_n And his proprieties

Definition 3.1. For positive integers *n* and *k* such that $1 \le k \le n$, we denote by \mathcal{H}_n^k the subset of \mathcal{F}_n such that

$$\mathcal{H}_{n}^{k} = \left\{ f \in \mathcal{F}_{n} \mid f(i) \le f(i+1) \text{ for all } i \in [n-1] \text{ and } \{f(i)\}_{i \in [n]} = [k] \right\}$$
(3.1)

Here, \mathcal{H}_n^k is the set of all sub-exceeding function of \mathcal{F}_n which have a quasi-increasing image formed by all elements of [k].

Example 3.1. Take n = 4 and k = 3. We have here $f = 1123 \in \mathcal{H}_4^3$ because $\{f(i)\}_{i \in [4]}$ is an quasi-inceasing sequence and all of the elements of [3] are there. Now take f = 1133, although the sequence $\{f(i)\}_{i \in [4]}$ is quasi-inceasing , $f = 1133 \notin \mathcal{H}_4^3$ because $\{f(i)\}_{i \in [n]} \neq [3]$ (*Without 2 among the* f(i))

From definition 3.1, we can write the set \mathcal{H}_n as

$$\mathcal{H}_n = \bigcup_{k=1}^n \mathcal{H}_n^k \tag{3.2}$$

3.1. Iterative construction of the set \mathcal{H}_n^k

Proposition 3.1. Let *n* and *k* be two integers such that $1 \le k \le n$.

- 1. The set $\mathcal{H}_n^1 = \{f \mid f = 11 \dots .11_{n-fois}\}$ for all *n*.
- 2. For n > 1 and k > 1, we can construct all sub-exceeding functions in \mathcal{H}_n^k by adding the integer k at the end of the elements of \mathcal{H}_{n-1}^{k-1} and \mathcal{H}_{n-1}^k .

Example 3.2. Take n = 1; 2; 3.

$$\begin{aligned} \mathcal{H}_1^1 &= \{1\} \\ \mathcal{H}_2^1 &= \{11\} \text{ and } \mathcal{H}_2^2 &= \{12\} \\ \mathcal{H}_3^1 &= \{111\}, \qquad \mathcal{H}_3^2 &= \{112; 122\} \text{ and } \mathcal{H}_3^3 &= \{123\} \end{aligned}$$

Proof of proposition 3.1.

Let *n* and *k* be two integers such that $1 \le k \le n$.

1. Take $f \in \mathcal{H}_n^1$. Since \mathcal{H}_n^1 is the set of all sub-exceeding function in \mathcal{F}_n which have a quasi-increasing sequence of image formed by the element of [1], necessary f(i) = 1 for all $i \in [n]$. Then

$$\mathcal{H}_{n}^{1} = \{ f \mid f = 11 \dots .11_{n-fois} \}.$$

- 2. For n > 0 and k > 0, take f a sub-exceeding function in $\mathcal{H}_{n-1}^{k-1} \cup \mathcal{H}_{n-1}^{k}$ and denote by f' the sub-exceeding function such that $f' = f(1)f(2) \dots f(n-1) k$ i.e. adding the integer k at the end of f.
 - If $f \in \mathcal{H}_{n-1}^{k-1}$, the sequence $(f(i))_{i \in [n-1]}$ is formed by all elements of [k-1], then $(f'(i))_{i \in [n]}$ is formed by all the elements of [k]. So $f' \in \mathcal{H}_n^k$.

If $f \in \mathcal{H}_{n-1}^k$, the sequence $(f(i))_{i \in [n-1]}$ is formed by all elements of [k], then $(f'(i))_{i \in [n]}$ is also formed by all the elements of [k]. So $f' \in \mathcal{H}_n^k$.

Denote by $(\mathcal{H}_{n}^{k})'$ the set of this fuction f' i.e. $(\mathcal{H}_{n}^{k})' = \{f' = f(1)f(2) \dots f(n-1) \ k \ | \ f = f(1)f(2) \dots f(n-1) \in \mathcal{H}_{n-1}^{k-1} \cup \mathcal{H}_{n-1}^{k}\}.$ (3.3) Immediatemy, we see that

$$(\mathcal{H}_n^k)' \subseteq \mathcal{H}_n^k. \tag{3.4}$$

Now let f be a sub-exceeding function in \mathcal{H}_n^k i.e. $f = f(1)f(2) \dots f(n-1) f(n)$ where $f(i) \leq f(i+1)$ for all $i \in [n]$ and the sequence $(f(i))_{i \in [n]}$ is formed by all elements of [k]. Necessary, f(n) = k, so the sequence $(f(i))_{i \in [n-1]}$ is formed by all elements of [k-1] or [k]. Therefore

$$f = f(1)f(2) \dots f(n-1) k \in (\mathcal{H}_n^k)'.$$

Then

$$(\mathcal{H}_n^k)' \supseteq \mathcal{H}_n^k. \tag{3.5}$$

Consequently, from (3.4) and (3.5), we have $(\mathcal{H}_n^k)' = \mathcal{H}_n^k$.

Finally, by the construction of the set $(\mathcal{H}_n^k)'$ in the equation (3.3), we have all subexceeding functions of \mathcal{H}_n^k by adding the integer *k* at the end of the elements of $\mathcal{H}_{n-1}^{k-1} \cup \mathcal{H}_{n-1}^k$.

Now, we have the following iteration table of \mathcal{H}_n^k

n^{k}	1	2	3	4	5	
1	1					
2	11	12				
3		112				
	111	12 <mark>2</mark>	12 <mark>3</mark>			
4		111 <mark>2</mark>	112 <mark>3</mark>			
	1111	112 <mark>2</mark>	122 <mark>3</mark>	123 <mark>4</mark>		
		122 <mark>2</mark>	123 <mark>3</mark>			
5		1111 <mark>2</mark>	1112 <mark>3</mark>	1123 <mark>4</mark>		
		1112 <mark>2</mark>	1122 <mark>3</mark>	1223 <mark>4</mark>		
	11111	1122 <mark>2</mark>	1222 <mark>3</mark>	1233 <mark>4</mark>	1234 <mark>5</mark>	
		1222 <mark>2</mark>	1123 <mark>3</mark>	1234 <mark>4</mark>		
			1223 <mark>3</mark>			
			1233 <mark>3</mark>			

Proposition 3.2. Let *n* and *k* be two integers such that $1 \le k \le n$, so we have the following relations:

- 1. Card $\mathcal{H}_n^k = 1$ for all n,
- 2. For n > 1 and k > 1, we have Card $\mathcal{H}_n^k = \text{Card } \mathcal{H}_{n-1}^{k-1} + \text{Card } \mathcal{H}_{n-1}^k$,
- 3. Card $\mathcal{H}_n^k = \binom{n-1}{k-1}$ and Card $\mathcal{H}_n = 2^{n-1}$.

Proof.

1. From proposition 3.1. (1), we have immediately $\operatorname{Card} \mathcal{H}_n^1 = 1$ for all $n \ge 1$.

 \cdot

- 2. By the construction in the proposition 3.1. (2), we have all elements of \mathcal{H}_n^k by adding the integer k at the end of the elements of Card \mathcal{H}_{n-1}^{k-1} and Card \mathcal{H}_{n-1}^k . Which give us Card $\mathcal{H}_n^k = \text{Card } \mathcal{H}_{n-1}^{k-1} + \text{Card } \mathcal{H}_{n-1}^k$.
- 3. Morever, by the construction in proposition 3.1 too, we have the cardinal table of \mathcal{H}_n^k :

k	1	2	3	4	5	
1	1					
2	1	1				
3	1	2	1			
4	1	3	3	1		
5	1	4	6	4	1	

This table is a modified Pascal triangle. More precisely, it is shifted i.e. instead of $k \in \mathbb{N}$ We have $k \in \mathbb{N}^*$. Moreover, the values of the i^{th} line in this table is the value of $(i - 1)^{th}$ line of the Pascal triangle. Thus,

Card
$$\mathcal{H}_n = \sum_{k=1}^n \operatorname{Card} \mathcal{H}_n^k$$

= $\sum_{k=1}^n {n-1 \choose k-1}$
= 2^{n-1} .

•

3.2. Some properties of the set $\phi(\mathcal{H}_n^k)$

The set $\phi(\mathcal{H}_n)$ is none other than the image of $\mathcal{H}_n = \bigcup_{k=1}^n \mathcal{H}_n^k$ by the bijective mapping ϕ . Since $\mathcal{H}_n^i \cap \mathcal{H}_n^j = \phi$, this set can be written by

$$\phi(\mathcal{H}_n) = \phi\left(\bigcup_{k=1}^n \mathcal{H}_n^k\right) = \bigcup_{k=1}^n \phi(\mathcal{H}_n^k).$$
(3.6)

In this section we give some properties of the set $\phi(\mathcal{H}_n)$.

Proposition 3.3. Let *n* and *k* be two integers such that $1 \le k \le n$ and f a sub-exceeding function $i\mathcal{H}_{n-1}^{k-1} \cup \mathcal{H}_{n-1}^{k}$ n.

Denoting by σ_f the image of f by ϕ and by composing it with the permutation (n + 1 k), we have:

- 1. $\sigma'_f = (n+1) \sigma_f$ is a permutation in $\phi(\mathcal{H}_{n+1}^k)$.
- 2. For any integer $i \in [n]$, we have $\sigma'_f(i) = \sigma_f(i)$ excepted for $\sigma'_f(\sigma_f^{-1}(k)) = n + 1$.

This proposition describes the construction of the elements of $\phi(\mathcal{H}_{n+1}^k)$ as follows: the elements of $\phi(\mathcal{H}_{n+1}^k)$ are obtained by taking all elements of $\phi(\mathcal{H}_n^{k-1} \cup \mathcal{H}_n^k)$ and replacing the integer *k* of these permutations by n + 1 and add this integer *k* at the end. **Proof.**

1. Take
$$f \in \mathcal{H}_n^{k-1} \cup \mathcal{H}_n^k$$
 and σ_f his associated permutation in S_n such that

$$\sigma_f = (n \ f(n))(n-1 \ f(n-1)) \dots (1 \ f(1)).$$
(3.7)

Let us calculate the composition of (n + 1 k) with σ_f . So we have a new permutation

$$\sigma'_{f} = (n+1\,k) \circ \sigma_{f} = (n+1\,k) (n\,f(n)) (n-1\,f(n-1)) \dots (1\,f(1))$$
(3.8)

and that $\sigma'_f(n+1) = k$. So the last word of the permutaion σ'_f is k. Now, let $f' = f(1)f(2) \dots f(n)k$ i.e. f is the sub-exceeding function $f \in \mathcal{H}_n^{k-1} \cup \mathcal{H}_n^k$ by adding the integer k at the and. By the constuction the proposition 3.1, we see that this new function is in \mathcal{H}_{n+1}^k . Since the associated permutation of f' is none other than σ'_f , we have

$$\sigma'_f = (n+1 \ k)\sigma_f \in \phi(\mathcal{H}_{n+1}^k). \tag{3.9}$$

2. Let $\sigma_f = (n \ f(n))(n-1 \ f(n-1)) \dots (1 \ f(1)) = x_1 \ x_2 \dots \ x_n$ and *j* the integer such that $\sigma_f(j) = x_j = k$. Then, for any integer *i* such that $i \notin \{j; n+1\}$, we have

$$(n+1 \ k) \circ \sigma_f(i) = \sigma_f(i) = x_i$$
.

For the integers j and n + 1, we have

$$(n+1 \ k) \circ \sigma_f(n+1) = k,$$

 $(n+1 \ k) \circ \sigma_f(j) = (n+1 \ k)(k) = n+1$

Example 3.3.

Let f = 11122 in \mathcal{H}_5^2 . So $\sigma_f = (52)(42)(31)(21)(1) = 43152$. By composing σ_f with the permutation (62), we have

 $\sigma_{f}' = (62)(52)(42)(31)(21)(1) = 431562$

a permutation in \mathcal{H}_{6}^{2} . It's like replacing 2 by 6 in σ_{f} and add 2 at the end.

Definition 3.2. Let *n* and *k* be two integers such that $1 \le k \le n$.

- For any permutation σ in S_n and for any integer *i* such that $1 \le i \le n$, we define by pos(i) the position of *i* in σ .
- For any sub-exceedinf function f in \mathcal{H}_n^k and for any integer i below k, we define by dpos(i) the last position of i in f.

Example 3.4. In S_5 , let $\sigma = 13542$ which gives us

$$os(1) = 1$$
, $pos(2) = 5$, $pos(3) = 2$, $pos(4) = 4$ and $pos(5) = 3$.

In \mathcal{H}_{9}^{4} , let f = 111223334. Here

$$dpos(1) = 3$$
, $dpos(2) = 5$, $dpos(3) = 8$ and $pos(4) = 9$.

Proposition 3.4. Let *n* and *k* be two integers such that $1 \le k \le n$.

- 1. For any permutation σ_f of $\phi(\mathcal{H}_n^k)$ and for any integer *j* such that $1 \le j \le n$, we have $pos(j)|_{\sigma_f} = dpos(j)|_f$ where *f* is the associated sob-exceeding function of σ_f .
- 2. The integers 1; 2; 3; ...; k are always placed in ascending order in σ_f i.e.

$$os(1) \le pos(2) \le \dots \le pos(k).$$

3. Let σ_f and σ_g be two permutation in $\phi(\mathcal{H}_n^k)$ such that $pos(i)|_{\sigma_f} = pos(i)|_{\sigma_g}$ for all $i \in [k]$. Then

$$\sigma_f = \sigma_g$$

Proof.

1. For any σ_f in $\phi(\mathcal{H}_n^k)$, the corresponding sub-exceeding function has the forme

$$f = 11 \dots 1_{i_1 - \text{fois}} 22 \dots 2_{i_2 - \text{fois}} \dots (k - 1)(k - 1) \dots (k - 1)_{i_{k-1} - \text{fois}} kk \dots k_{i_k - \text{fois}}$$

where for any integer $j \in [k]$,

dpos
$$(j) = \sum_{l=1}^{j} i_l$$
 and $\sum_{l=1}^{k} i_l = n$.

Then we have

 $\overline{}$

$$\sigma_{f} = \left[\left(\sum_{j=1}^{k} i_{j} \right) k \right] \left[\left(\left(\sum_{j=1}^{k} i_{j} \right) - 1 \right) k \right] \dots \left[1 + \left(\sum_{j=1}^{k-1} i_{j} \right) k \right] \left[\left(\sum_{j=1}^{k-1} i_{j} \right) k - 1 \right] \dots \left[1 + \left(\sum_{j=1}^{k-1} i_{j} \right) k - 1 \right] \dots \left[1 + \left(\sum_{j=1}^{k-1} i_{j} \right) k - 1 \right] \dots \left[(i_{1} + i_{2}) 2 \right) \dots \left((i_{1} + 1) 2 \right) (i_{1} 1) \dots (1) \right]$$

However, since dpos(j) is the las integer such that the image by f gives j, so we have

$$\sigma_{f}(\operatorname{dpos}(j)) = \left[\left(\sum_{l=1}^{k} i_{l} \right) k \right] \left[\left(\left(\sum_{l=1}^{k} i_{l} \right) - 1 \right) k \right] \dots \left[1 + \left(\sum_{l=1}^{k-1} i_{l} \right) k \right] \left[\left(\left(\sum_{l=1}^{k-1} i_{l} \right) k - 1 \right] \dots \left[1 + \left(\sum_{l=1}^{j} i_{l} \right) j + 1 \right] \left[\left(\sum_{l=1}^{j} i_{l} \right) j \right] \right] \dots \left[\left(\left(\sum_{l=1}^{j} i_{l} \right) - 1 \right) j \right] \dots \left((i_{1} + i_{2}) 2 \right) \dots \left((i_{1} + 1) 2 \right) (i_{1} 1) \dots (1) |_{\operatorname{dpos}(j)}.$$

Then,

$$\sigma_{f}(\operatorname{dpos}(j)) = \left[\left(\sum_{l=1}^{j} i_{l} \right) j \right] \left[\left(\left(\sum_{l=1}^{j} i_{l} \right) - 1 \right) j \right] \dots \left[\left(1 + \left(\sum_{l=1}^{j-1} i_{l} \right) \right) j - 1 \right] \left[\left(\sum_{l=1}^{j-1} i_{l} \right) j - 1 \right] \dots \left[\left(\left(\sum_{l=1}^{j-2} i_{l} \right) + 1 \right) j - 1 \right] \dots \left(\left(i_{1} + i_{2} \right) 2 \right) \dots \left(\left(i_{1} + 1 \right) 2 \right) (i_{1} \ 1) \dots (1) |_{\operatorname{dpos}(j)},$$

Which gives $\sigma_f(\operatorname{dpos}(j)) = j$, then $\operatorname{dpos}(j)|_f = \operatorname{pos}(j)|_{\sigma_f}$.

2. From the result in the item (1)

$$\sum_{l=1}^{j} i_l = pos(j)|_{\sigma_f}.$$

However in f, the sequence $(\sum_{l=1}^{j} i_l)_j$ is strictly increasing, so $pos(1) \le pos(2) \dots \le pos(k)$ which causes that the integers 1; 2; 3; ...; k are always placed in ascending order in σ_f .

$$pos(1) \le pos(2) \le \dots \le pos(k)$$

3. Let σ_f and σ_g be two permutation in $\phi(\mathcal{H}_n^k)$ such that $pos(i)|_{\sigma_f} = pos(i)|_{\sigma_g}$ for all $i \in [k]$. Now let $p_i = pos(i)|_{\sigma_f} = pos(i)|_{\sigma_g}$, then from the relation in (1), we have $p_i = dpos(i)|_f = dpos(i)|_g$. Thus, the corresponding sub-exceeding function are $f = 11 \dots 1_{p_i - fois} 22 \dots 2_{(p_2 - p_i) - fois} \dots (k - 1)(k - 1) \dots (k$

$$-1)_{(p_{k-1}-p_{k-2})-\text{fois }kk \dots k_{(n-p_{k-1})-\text{fois}}}$$

And similarly

$$\begin{split} g &= 11 \dots 1_{p_1 - \text{fois}} 22 \dots 2_{(p_2 - p_1) - \text{fois}} \dots (k-1)(k-1) \dots (k \\ &\quad -1)_{(p_{k-1} - p_{k-2}) - \text{fois}} kk \dots k_{(n-p_{k-1}) - \text{fois}}. \end{split}$$
 Since the mapping ϕ is bijective and that $f = g$, we have $\sigma_f = \sigma_g. \end{split}$

 $\overline{}$

nk	1	2	3	4	5	
1	1					
2	21	12				
3		312				
	321	13 <mark>2</mark>	12 <mark>3</mark>			
4		431 <mark>2</mark>	412 <mark>3</mark>			
	2341	314 <mark>2</mark>	142 <mark>3</mark>	123 <mark>4</mark>		
		134 <mark>2</mark>	124 <mark>3</mark>			
5		5341 <mark>2</mark>	4512 <mark>3</mark>	5123 <mark>4</mark>		
		4315 <mark>2</mark>	5142 <mark>3</mark>	1523 <mark>4</mark>		
	23451	3145 <mark>2</mark>	1542 <mark>3</mark>	1253 <mark>4</mark>	1234 <mark>5</mark>	
		1345 <mark>2</mark>	4125 <mark>3</mark>	1235 <mark>4</mark>		
			1425 <mark>3</mark>			
			1245 <mark>3</mark>			

Corollary 3.5. From Proposition 3.3 and Proposition 3.4, we can iterate the elements of $\phi(\mathcal{H}_n^k)$ for each $1 \le k \le n$ as shown in the following table:

As we have seen that $\operatorname{Card} \mathcal{H}_n^k = \binom{n-1}{k-1}$ and similarly $\operatorname{Card} \phi(\mathcal{H}_n^k) = \binom{n-1}{k-1}$, this value indicates the possible positions of the increasing sequence 1; 2; 3; ...; (k-1) among the n-1 places in σ^* where σ^* is the permutation σ by deleting the last integer k.

Example 3.6. The elements of $\phi(\mathcal{H}_5^3)$ are (45123; 51423; 15423; 41253; 14253; 12453). By deleting the last integer 3 from all these permutations, we have:

 $\phi(\mathcal{H}_5^3)^* = (4512; 5142; 1542; 4125; 1425; 1245)$

This set presents all the possible positions of 1 and 2 in ascending order in the 4 existing places.

4. The bijection between \mathcal{H}_n and $\mathcal{P}(\Omega)$

The aim of this section is to construct a bijection between \mathcal{H}_n and $\mathcal{P}(\Omega)$. Given a subexceeding function in \mathcal{H}_n , we will specify the partition of Ω that it presents. Conversely, given a subset of Ω , we will give his corresponding sub-exceeding function.

4.1. Construction of the bijection

Recall that that $\mathcal{P}^{l}(\Omega)$ represents the set of the parts of Ω to *l* elements.

Theorem 4.1. let ψ be a map from \mathcal{H}_n^k to $\mathcal{P}^{k-1}(\Omega)$ such that

$$\begin{aligned} \psi &: \ \mathcal{H}_n^k & \longrightarrow \ \mathcal{P}^{k-1}(\Omega) \\ & & & \\ & & \\ & & f & \mapsto \ \psi(f) = \left\{ \omega_{\operatorname{dpos}(1)}; \ \omega_{\operatorname{dpos}(2)}; \dots; \ \omega_{\operatorname{dpos}(k-1)} \right\} \end{aligned}$$
(4.1)

where

$$\Omega = \{\omega_1; \, \omega_2; ...; \, \omega_{n-1}\}. \tag{4.2}$$

Then the mapping ψ is bijective.

From this theorem, \mathcal{H}_n^k represent the set of the parts of Ω to k-1 elements.

Proof.

Since Card \mathcal{H}_n^k is the same as Card $\mathcal{P}^{k-1}(\Omega)$:

Card
$$\mathcal{H}_n^k = \text{Card } \mathcal{P}^{k-1}(\Omega) = \binom{n-1}{k-1},$$
 (4.3)

we have to show that ψ is injective. Let f and g be two sub-exceeding function in \mathcal{H}_n^k such that $\psi(f) = \psi(g)$, i.e.

 $\{\omega_{dpos(1)|f}; \omega_{dpos(2)|f}; ...; \omega_{dpos(k-1)|f}\} = \{\omega_{dpos(1)|g}; \omega_{dpos(2)|g}; ...; \omega_{dpos(k-1)|g}\}.$ (4.4) We know that

$$dpos(1)|f \le dpos(2)|f \le \dots \le dpos(k-1)|f$$

and similarly

 $dpos(1)|g \le dpos(2)|g \le \dots \le dpos(k-1)|g.$

However, this two subset $\psi(f)$ and $\psi(g)$ are the same, necessarily dpos(1)|f = dpos(1)|g; dpos(2)|f = dpos(2)|g; ...; dpos(k-1)|f = dpos(k-1)|g. (4.5) Note that the equality (4.5) also means that

 $pos(1)|\sigma_f = pos(1)|\sigma_g; pos(2)|\sigma_f = pos(2)|\sigma_g; ...; pos(k-1)|\sigma_f = pos(k-1)|\sigma_g.$ Then according to the "Proposition (3.5) also means that

 $\sigma_f = \sigma_g.$

Thus, using the bijection of ϕ (see 2.1), we have f = g and the map ψ is injective from \mathcal{H}_n^k to $\mathcal{P}^{k-1}(\Omega)$, so bijective.

Corollary 4.2. The map ψ is also bijective from \mathcal{H}_n to $\mathcal{P}(\Omega)$. *Proof.*

As $\mathcal{H}_n = \bigcup_{k=1}^n \mathcal{H}_n^k$ and $\mathcal{H}_n^i \cap \mathcal{H}_n^j = \emptyset$, them the bijection of the map ψ from \mathcal{H}_n^k to $\mathcal{P}^{k-1}(\Omega)$ can be extand in \mathcal{H}_n to $\mathcal{P}(\Omega)$.

4.2. Algorithm for the construction of the sub-exceeding function f corresponding of a sub-set of Ω

Let *n* and *k* be two integers such that $1 \le k \le n$ and Ω the set of n - 1 objects such that $\Omega = \{\omega_1; \omega_2; ...; \omega_{n-1}\}.$

Now, let *A* be a subset of Ω such that $A = \{a_1; a_2; ...; a_k\}$. To construct the corresponding sub-exceeding function *f* in \mathcal{H}_n^k for this subset, we must order the element of *A* according to their position in Ω . thus we have $A = \{\omega_{j_1}; \omega_{j_2}; ...; \omega_{j_k}\}$ where j_i is the position of a_i in Ω and that $j_1 < j_2 < \cdots < j_k$. We can now write:

$$f = 11 \dots 1_{j_1 - \text{fois}} 22 \dots 2_{(j_2 - j_1) - \text{fois}} \dots (k - 1)(k - 1) \dots (k - 1)_{(j_{k-1} - j_{k-2}) - \text{fois}} kk \dots k_{(n - p_{k-1}) - \text{fois}}.$$
(4.6)

Example 4.3. Let $\Omega = \{a; b; c; d; e; f\}$. As $card(\Omega) = 6$, so the set of parts of this set is isomorphic to \mathcal{H}_7 .

Given f = 1122344 in \mathcal{H}_7^4 , we have here

 $\overline{}$

$$dpos(1) = 2$$
, $dpos(2) = 4$, $dpos(3) = 5$.

So the part of Ω which it represents is formed by the second element, the fourth element and the fifth element.

$$\Omega_f = \{b, d, e\}.$$

Now, let $\Omega_1 = \{f, a, e, d\}$ and $\Omega_2 = \{f, a, b\}$ be two subset of Ω . After ordering Ω_1 depending on their place in Ω , we have

$$\Omega_1 = \{a, d, e, f\} = \{\omega_1, \omega_4, \omega_5, \omega_6\}.$$

The corresponding sub-exceeding function of Ω_1 is in \mathcal{H}_7^5 such that

$$dpos(1) = 1$$
, $dpos(2) = 4$, $dpos(3) = 5$ and $dpos(4) = 6$.

So

 $f = 1 \ 2 \ 2 \ 2 \ 3 \ 4 \ 5 \ .$

After ordering Ω_2 depending on their place in Ω , we have

$$\Omega_1 = \{a, b, f\} = \{\omega_1, \omega_2, \omega_6\}.$$

Then, the corresponding sub-exceeding function of Ω_2 is in \mathcal{H}_7^4 such that

$$dpos(1) = 1$$
, $dpos(2) = 2$ and $dpos(3) = 6$.

So

$$f = 123334.$$

Corollary 4.4. from the construction of ψ , we find that the sub-exceeding function $f = 11 \dots 11$ always represent the empty set (\emptyset) and the function $f = 123 \dots n$ always represent the set Ω where Card $\Omega = n - 1$.

5. The operations $\bigcup_{rab} \cap_{rab}$ and \overline{f} in \mathcal{H}_n

As $\mathcal{P}(\Omega)$ is stable by the operations \bigcup , \bigcap and by passing to the complement, then we present in this section the equivalent of these operations in \mathcal{H}_n .

Definition 5.1. Let *f* be a sub exceeding function in \mathcal{H}_n^k , we define the indicator of *f* the set I_f such that

 $I_{f} = \{dpos(1); dpos(2); ...; dpos(k-1)\}.$ Example 5.1. In \mathcal{H}_{9} , take $f = 112223445 \in \mathcal{H}_{9}^{5}$, then the set I_{f} is $I_{f} = \{2; 5; 6; 8\}.$

5.1. The operation \cup_{rab} in \mathcal{H}_n

Definition 5.2. Let f and g be two sub-exceeding functions who belong respectively in \mathcal{H}_n^k and \mathcal{H}_n^l . We denote by $(f \cup_{rab} g)$ the sub-exceeding function h such that

$$h = (f \cup_{rab} g) \in \mathcal{H}_n^{m+1}$$
 with $I_h = I_f \cup I_g$ and $m = card I_h$.

Example 5.2. Let f and g be two sub-exceeding functions such that $f = 1122344 \in \mathcal{H}_7^4$ and $g = 1222345 \in \mathcal{H}_7^5$. We have here $I_f = \{2; 4; 5\}$ and $I_g = \{1; 4; 5; 6\}$. Then, the subexceeding function $h = (f \cup_{rab} g)$ has his indicator the set $I_h = \{1; 2; 4; 5; 6\}$. From this indicator, we have $h \in \mathcal{H}_7^6$ such that

$$h = 1233456.$$

Theorem 5.3. Let f and g be two sub-exceeding functions in \mathcal{H}_n which respectively represents Ω_f and Ω_g (*two parts of* Ω). Then, \mathcal{H}_n is stable by \cup_{rab} and $(f \cup_{rab} g)$ represent $\Omega_f \cup \Omega_g$.

Proof.

Set

$$I_f = \{ dpos(1)|_f; dpos(2)|_f ...; dpos(k-1)|_f \}$$

and

 $I_f = \{ dpos(1)|_g; dpos(2)|_g ...; dpos(l-1)|_g \}.$

After ordering, we may write $I_f \cup I_g$ as follows:

 $I_f \cup I_q = \{ dpos(1); dpos(2); \dots; dpos(m) \}.$

From this form, this set of m elements is the indicator of the sub-exceeding function $(f \cup_{rab} g)$. Thus \mathcal{H}_n is stable by \cup_{rab} .

Moreover, the set $\Omega_f \cup \Omega_g$ is such that

 $\Omega_f \cup \Omega_g = \{ \omega_{dpos(1)}; \ \omega_{dpos(2)}; \dots; \ \omega_{dpos(m)} \}$

By the construction of the bijective mapping ψ , the sub-exceeding function $h = (f \cup_{rab} g)$ with his indicator $I_f \cup I_g$ represent $\Omega_f \cup \Omega_g$.

Example 5.4. Let f and g be two sub-exceeding functions such that $f = 1122344 \in \mathcal{H}_7^4$ and $g = 1222345 \in \mathcal{H}_7^5$. We have here $I_f = \{2; 4; 5\}$ and $I_g = \{1; 4; 5; 6\}$. Then, the subexceeding function $h = (f \cup_{rab} g)$ has his indicator the set $I_h = \{1; 2; 4; 5; 6\}$. From this indicator, we have $h \in \mathcal{H}_7^6$ such that

$$h = 1233456.$$

Moreover, the two parts of Ω such that these two functions f and g represents are

$$\Omega_f = \{\omega_2; \omega_4; \omega_5\}$$
 and $\Omega_g = \{\omega_1; \omega_4; \omega_5; \omega_6\}$

Thus

$$\Omega_f \cup \Omega_g = \{\omega_1; \ \omega_2; \ \omega_4; \ \omega_5; \ \omega_6\}$$

Therefore, h = 1233456 represent $\Omega_f \cup \Omega_q$.

5.1. The operation \cap_{rab} in \mathcal{H}_n

Definition 5.3. Let f and g be two sub-exceeding functions who belong respectively in \mathcal{H}_n^k and \mathcal{H}_n^l . We denote by $(f \cap_{rab} g)$ the sub-exceeding function h such that

$$h = (f \cap_{rab} g) \in \mathcal{H}_n^{m+1}$$
 with $I_h = I_f \cap I_g$ and $m = card I_h$.

Example 5.5. Let f and g be two sub-exceeding functions such that $f = 1122344 \in \mathcal{H}_7^4$ and $g = 1222345 \in \mathcal{H}_7^5$. We have here $I_f = \{2; 4; 5\}$ and $I_g = \{1; 4; 5; 6\}$. Then, the subexceeding function $h = (f \cup_{rab} g)$ has his indicator the set $I_h = \{4; 5\}$. From this indicator, we have $h \in \mathcal{H}_7^3$ such that

$$h = 1111233.$$

Theorem 5.6. Let f and g be two sub-exceeding functions in \mathcal{H}_n which respectively represents Ω_f and Ω_g (*two parts of* Ω). Then, \mathcal{H}_n is stable by \cap_{rab} and $(f \cap_{rab} g)$ represent $\Omega_f \cap \Omega_g$.

Proof.

Set

$$I_f = \{ dpos(1)|_f; dpos(2)|_f ...; dpos(k-1)|_f \}$$

and

 $I_f = \{ dpos(1)|_g; dpos(2)|_g ...; dpos(l-1)|_g \}.$

After ordering, we may write $I_f \cap I_g$ as follows:

 $I_f \cap I_q = \{ dpos(1); dpos(2); \dots; dpos(m) \}.$

From this form, this set of *m* elements is the indicator of the sub-exceeding function $(f \cup_{rab} g)$. Thus \mathcal{H}_n is stable by \bigcap_{rab} .

Moreover, the set $\Omega_f \cap \Omega_g$ is such that

 $\Omega_f \cap \Omega_g = \{ \omega_{\operatorname{dpos}(1)}; \ \omega_{\operatorname{dpos}(2)}; \dots; \ \omega_{\operatorname{dpos}(m)} \}$

By the construction of the bijective mapping ψ , the sub-exceeding function $h = (f \cap_{rab} g)$ with his indicator $I_f \cap I_g$ represent $\Omega_f \cap \Omega_g$.

Example 4.4. Let f and g be two sub-exceeding functions such that $f = 1122344 \in \mathcal{H}_7^4$ and $g = 1222345 \in \mathcal{H}_7^5$. We have here $I_f = \{2; 4; 5\}$ and $I_g = \{1; 4; 5; 6\}$. Then, the subexceeding function $h = (f \cap_{rab} g)$ has his indicator the set $I_h = \{4; 5\}$. From this indicator, we have $h \in \mathcal{H}_7^3$ such that

$$h = 1111233$$

Moreover, the two parts of Ω such that these two functions f and g represents are

 $\Omega_f = \{\omega_2; \omega_4; \omega_5\}$ and $\Omega_g = \{\omega_1; \omega_4; \omega_5; \omega_6\}$

Thus

$$\Omega_f \cap \Omega_g = \{ \, \omega_4; \, \omega_5 \}$$

Therefore, h = 1111233. represent $\Omega_f \cap \Omega_g$.

5.3. The operation \overline{f} complementary to f in \mathcal{H}_n

Definition 5.4. Let f be a sub exceeding function in \mathcal{H}_n^k . We define by \overline{f} the complementary sub-exceeding of f such that $\overline{f} \in \mathcal{H}_n^{n-k+1}$ with indicator the set $I_{\overline{f}} = \overline{I_f}$. Here, $\overline{I_f}$ is the complementary set of I_f in [n-1].

Example 5.9. Let f be a sub-exceeding function in \mathcal{H}_7^4 such that f = 1122344. We have here $I_f = \{2; 4; 5\}$ and $\overline{I_f} = \{1; 3; 6\}$. The complementary sub-exceeding function of f denoted by \overline{f} is then

$$\bar{f} = 1223334 \in \mathcal{H}_7^4$$

Theorem 5.10. Let *f* be a sub-exceeding function in \mathcal{H}_n which represent Ω_f . Then \overline{f} represent the set $\overline{\Omega_f}$ the complementary of Ω_f in Ω .

Proof.

Let $f \in \mathcal{H}_n^k$ and $\Omega = \{\omega_1; \omega_2; ...; \omega_{n-1}\}$. So $I_f = \{dpos(1)|_f; dpos(2)|_f; ...; dpos(k-1)|_f\}$ and $\overline{I_f} = [n-1] \setminus \{dpos(1)|_f; dpos(2)|_f; ...; dpos(k-1)|_f\}$. After ordering the elements of $\overline{I_f}$, we can write

$$\overline{I_f} = \left\{ \operatorname{dpos}(1)|_{\overline{f}}; \operatorname{dpos}(2)|_{\overline{f}}; \dots; \operatorname{dpos}(n-k)|_{\overline{f}} \right\}$$

Then, the sub-exceeding function \overline{f} with his indicator $\overline{I_f}$ represent

$$\Omega_{\bar{f}} = \left\{ \omega_{\mathrm{dpos}(1)|_{\bar{f}}}; \, \omega_{\mathrm{dpos}(2)|_{\bar{f}}}; \dots; \, \omega_{\mathrm{dpos}(n-k)|_{\bar{f}}} \right\}$$

Since

$$\left\{\omega_{\operatorname{dpos}(1)|_{\overline{f}}}; \, \omega_{\operatorname{dpos}(2)|_{\overline{f}}}; \dots; \, \omega_{\operatorname{dpos}(n-k)|_{\overline{f}}}\right\} \cap \Omega_{f} = \emptyset$$

and

$$\left\{\omega_{\operatorname{dpos}(1)|_{\overline{f}}}; \ \omega_{\operatorname{dpos}(2)|_{\overline{f}}}; \dots; \ \omega_{\operatorname{dpos}(n-k)|_{\overline{f}}}\right\} \cup \Omega_{f} = \Omega,$$

then we find that

$$\overline{\Omega_f} = \Omega_{\bar{f}} = \left\{ \omega_{\operatorname{dpos}(1)|_{\bar{f}}}; \ \omega_{\operatorname{dpos}(2)|_{\bar{f}}}; \dots; \ \omega_{\operatorname{dpos}(n-k)|_{\bar{f}}} \right\}.$$

So, \bar{f} represent the complement of Ω_f in Ω .

Г		1
	٠	l
L		L

6. Conclusion

After recalling that the set \mathcal{F}_n of sub-exceeding functions on [n] and the permutation set S_n are isomorphic by a map denoted ϕ (see section 2). So, we can construct an algorithm to transform any permutation $\sigma \in S_n$ in to a sub-exceeding function on [n].

After that, we define a particular subset of \mathcal{F}_n denoted \mathcal{H}_n in the section (3) and construct there elements by iterations on [*n*]. Recall that

$$\mathcal{H}_{n}^{k} = \left\{ f \in \mathcal{F}_{n} \mid f(i) \le f(i+1) \text{ for all } i \in [n-1] \text{ and } \{f(i)\}_{i \in [n]} = [k] \right\}$$

and

	n		
$\mathcal{H}_n =$	$\bigcup_{k=1}$	\mathcal{H}_n^k	•

In the section (4), we established a map ψ from \mathcal{H}_n^k to $\mathcal{P}^{k-1}(\Omega)$ such that $\mathcal{P}^l(\Omega)$ represent the set of the parts of Ω to l elements where Ω is the set of n-1 objects. So we have found that the map ψ is bijective. Then, \mathcal{H}_n^k represents all parts of Ω with k-1 elements and as result too, the bijection of the map ψ from \mathcal{H}_n^k to $\mathcal{P}^{k-1}(\Omega)$ can be extand in \mathcal{H}_n to $\mathcal{P}(\Omega)$. So \mathcal{H}_n represents all subset of Ω .

Therefore, if we have a part of the set Ω , it is possible to encode this part using one and only one sub-exceeding fuction in \mathcal{H}_n (*Coding*) and vice verca, given a sub-exceeding function in \mathcal{H}_n , we can find the part of Ω who it represents (*Decoding*).

In section (5), since $\mathcal{P}(\Omega)$ is stable by the operations \cup , \cap and by passing to the complement, then we have found the operation $\bigcup_{rab} \cap_{rab}$ and \overline{f} which are the equivalent of these laws in \mathcal{H}_n .

References

- [1]. Désarménien, J.: Une autre interprétation du nombre de dérangements. Actes 8e Sém. Lothar. Comb., IRMA Strasbourg, 11–16 (1984)
- [2]. D.H. Lahmer, *Teaching combinatorial tricks to a computer*,Proc. Sympos. Appl. Math. Combinatorial Analisis, V10, Amer. Math. Soc, Providence, 179-193, 1960.
- [3]. Knuth, D.: The Art of Computer Programming, vol. 3. Sorting and Searching, 2nd edn.Addison-Wesley, Reading (1981)
- [4]. M.Hall, Proc. Sympos. Appl. Math. *Combinatorial Analysis*, Vol.6, Math. Soc., Providence, R.I., p.203 and following; 1956.
- [5]. Rakotondrajao, F. Thèse de Doctorat, Université d'Antananarivo, Madagascar (November 1999)
- [6]. R. Mantaci et F. Rakotondrajao, *A permutation that knows what Eulerian means*, Discrete Mathematics and Theortical Computer Science, May 2001.
- [7]. R. Mantaci, Sur la distribution des anti-excédances dans le groupe symétrique et dans ses sous-groupes, Theoret. Comp. Science A, 117, 243-253, 1993.