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ABSTRACT 

Let nR  be the symmetric set of permutations  defined on 1n   letters. 

Every nR  has a unique representation by the product of independent 

cycles K , 1 2, ,.... WK K K  where ( )W W   represent the number of 

cycles.For determine the value concentration of completely additive 

function and multiplicative functions defined on random permutations, the 

analog of the Kolmogorov-Rogozin inequality and Voronoi summability are 

analysed. 

Keywords- Permutations, Ewens sampling, Kolmogorov-Rogozin inequality, 

Voronoi summability. 

 

1. Introduction 

The family of probability computes on the symmetric set nR  of permutations on{1,2,...., }n , 

influenced by the Ewens sampling formula are given by 
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forthe partition 1 21 2 .... nn K K nK    , n N , and 0 otherwise, where 0,   and 

( ) ( 1).....( 1)n n       . The quantity 
_

, ( )nV K  can also be viewed as the probability measure 

on the class of conjugate elements nR  , all having ( )j jK K   cycles of length ,1j j n  . The 

probability measure ,nV  is persuaded by the measure 
'

,nV  on nR , that assigns a mass proportional 

to ( )W  for nR  , where 1( ) ( ) .... ( )nW K K     represents the overall number of cycles of

 . This can be observed that 
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Thus, the probability measure on 
nR and leave the similar notation ,nV   for it. 

The case 1  relates to the measure induced by the uniform probability (1/ !)#{ :...}nn R  on

nR . If ( ) 1jK    for some ,
2

n
j n  then ( ) 0iK   for all ,

2

n
i n i j   . 

 This influences deliberation of additive and multiplicative functionson
nR . A function 

: nH R S is known as additive if (0) 0jH  and
_

1
( ) ( ( )),

n

j jj
H h K K  


  . The measure 

,nV  can be represented using independent Poisson random variables j with ( )jD
j


   as  

 
_

, 1 1 1( ) ( ,...., | 1 .... )n n n nV K Q K K n               (3)
 

 
Let nR  be a random permutation and 

 1 2

/

, ,... :W

X

X X X X


           (4) 

be its unique up to order expression by the result of the cycles X . Represent  

 1(...) ( !) #{ ..}n nV n R   

Consider ( )  represent the number of the cycles involving . Then,  

 
2 /21

( ( ) log log ) ( ) :
2

X

u

nV n X n X e du  






    
   (5)

 

Where the limit is taken as n . Observing the asymptotic distribution of the set theoretic order 

of the random permutation . The sum ( )c  of the natural logarithms of the different cycle lengths

( )L X , where /X  also obeys the normal limit law. It was attained that 

 
2 3/2( ( ) (1/ 2) log (1/ 3) log ) ( )nV c n X n X        (6) 

2. Random Permutation 

Let nR be the symmetric group. The nR is comprised of everyprobable functions that 

bijectively plot the group of first n integers {1,2,....., }n into itself. This is referred as permutations. 

All permutation  belonging to the symmetric group nR can be representedas an oriented graph 

with n vertices that are labeled by natural numbers 1,2,.....,n  and n  edges, all edge conforming to 

a set ( , ( ))j j , beginning at vertex j  and pointing to vertex ( )j . Such graphs are characterized by 

the property that all edge has only one outgoing edge and one incoming edge.  

Let the classes of additive and multiplicative functions on permutations whose values are computed 

by the decomposition of permutations into cyclical components. These functions are defined as 

follows. Suppose consider n real numbers (1), (2),..... ( ),H H H n
  

then for every permutation 

nR  , compute a sum ( )H  over all cycles in the graph of  so that for every cycle of length j

we add one summand ( )H j


. Or equivalently, 

 
1 2( ) (1) ( ) (2) ( ) ,..... ( ) ( )nH H H H n      

  

   
   (7)
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Where ( )j  is the total of cycles of length j in permutation .The resulting additive function 

( )  is then equivalent to the whole number of cycles of in the graph of . Then the number of 

permutations nR   fulfilling inequality 
( ) log

log

n
X

n

  
 divided by the overall total of 

permutations | | !nR n  converges to 
2 /21

2

X

ue du






  as n . 

Similarly, define multiplicative functions on the symmetric group nR . Suppose consider n complex 

numbers (1), (2),......, ( )F F F n
  

. Then for every permutation nR  , assign a product ( )F  over all 

cycles belonging to the oriented graph of  that include one multiplicand ( )F j


 corresponding to 

every cycle of size j  belonging to . In other words 

 1 2 ( )( ) ( )
( ) (1) , (2) ,......, ( ) nf F F F n

    
  

     (8) 

Where assume 00 1 .  For this instance of 15R  we have 

 3 2( ) (1) , (2) , (3) (4)f F F F F
   

      (9) 

Suppose ( )p  is a non-negative multiplicative function, which is not identically equal to zero. Then 

define a probabilistic measure ,n pV  on nR by the formula 

 ,

( )
( )

( )
n

n p

s R

p
V

p










       (10)

 

The simplest and the most natural choice is to put ( ) 1p j


 , which lead to the uniform probability 

measure 

(1) 1
( )

!
nV

n
   

Thus result can be expressed in probabilistic terms as a limit theorem 

 
2(1) /2( ) log 1
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W n
V X e du
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  , as n   (11) 

stating that the number of cycles ( )W  in permutation  chosen with equal probability among all 

the permutations of the symmetric group nR  is asymptotically normally distributed. 

More generally if all ( )p j


are equal ( ) 0p j 


  then ( )( ) Wp j 


 , thus this is called as a Ewens 

probability measure 
( )

( )

( )
( )

n

W

n W
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    =
( )

( 1)...( 1)

W

n



          (12)

 

Let us represent by ( )p

nG F a weighted mean of a multiplicative function : nF R   with respect 

to the measure , ( )n pV  : 
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3.Value Concentration of Additive Function on Random Permutation 

Theorem 3.1 

Let  

 1/2( ) ( ( ))n nP m Cm E m   

Where 2( ) ( )nE m o m as n , the trivial estimate ( ) 1nP m   is better. Observe that the 

Kolmogorov-Rogozin theorem applied for the sum 1: (1) .... ( )n nR b b n    , where j are the 

independent Poisson random variables yields the estimate 

 1/2

1sup ( ) ( ( ;0))n n
X S

Q X R X m C m E m 



   
    (14)

 

Thus, with a successful choice of , concentration estimate for 
1( ) ( )H H    is comparable with 

that for nR  

Proof for theorem 3.1 

The proof for the theorem is split into various lemmas 3.2, 3.3, 3.4, 3.5 and 3.6 

Lemma 3.2: Let : ng R C be a completely multiplicative function defined by 

 
( ) 0

1

( ) ( ) , 0 : 1j

n
K

j

g a j





 
      (15)

 

with ( ) , | ( ) | 1a j C a j  for each1 j n  . Then  

 2
| |

1

1 1 1 ( ( )
( ) exp min

! 4
n

iujn

u
R j

a j e
g C

n j






 

 
  

 
   

Proof: 

Apply Fourier transform of the distribution ( ( ) )nV H X  . In this case, 
2 ( )( ) ,ia j ta j e t S  , the 

first step will be analysis of the trigonometrical polynomial 

 
1

1 cos 2 ( ( ) )
( , ) :

n

j

b j t uj
y u t

j





 


     (16)

 

Consider the values ( )u t giving 

 
1/2 1/2
min ( , ) ( ( ), ), [ 1,1]

u
y u t y u t t t

  
  

     (17)
 

Use conditions for implicit functions while dealing with the stationary points, and observe that ( )u t  

is well defined continuous function in some nontrivial neighborhood of the point 0, (0) 0t u  . 

Beyond it, if numerous values of ( )u t appear for a fixed t , select the least of them and so get the 

function ( )u t  defined on the whole interval [ 1,1]  and taking values in[ 1/ 2,1/ 2) . It indicates 

that ( )u t is connected to a homomorphism of the additive sets S and /S Z T . For convenience, 

identify T with the interval [0,1) and yield addition modulo one. Notice that the group T is the 

whole metric space in terms of the metric defined via the distance to the nearest integer 

|| || { } (1 { })X X X   which is not a norm. Besides, if 1/ 2 ( ) 0u t   , redefine this value to 
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1 ( )u t and so get the function :[ 1,1]u T  maintaining continuity at the point 0t  . Then 

observe the Cauchy equations with respect to || ||u . 

Lemma 3.3: Let :[ 1,1]V T  be continuous at the point 0t  and (0) 0V  . Suppose that, for 

some 0 1/18  , 

 1 2 1 2|| ( ) ( ) ( ) ||V t t V t V t           (18) 

Whenever 1 2 1 2, , [ 1,1]t t t t   . Then  

 || ( ) || 3V t t          (19) 

for some S and all [ 1,1]t   

Proof 

State :W S T by 

 (2 ) 2 (1) ( )mod1, [ 1,1]W K t Ku V t t      

This function outspreads ( )V t to the real line, excluding at 1t  , where (1) 2 (1) ( 1)mod1W V V   . 

The function ( ) : ( ) (1) mod1L t W t V t  is 2-periodical. Thus estimating for all ,X Z S , 

 : || ( ) ( ) ( ) || || ( ) ( ) ( ) ||e W X Z W X W Z L X Z L X L Z         (20) 

confine to the values , [ 1,1)X Z  . If also [ 1,1)X Z   , then by equation (6) e n . If 1X Z 

, we get 

 || 2 (1) ( 2) ( ) ( ) ||e V V X Z V X V Z       

  || ( 2) ( 1) ( 1) || || ( 1) (1) ( ) ||e V X Z V X V Z V X V V X              

   | ( 1) (1) ( ) || 3V Z V V Z          (21) 

Lemma 3.4: For 0 1/ 2X   and 0 10 , we have 3( ,0) ( ,0)l X l X C    

 Proof 

Let 1/: ns e  and  
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1
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iz
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j

jz se
z s

j s








 
 


  

         = 2

2

1 4
log 1 sin

2 (1 )

s
z
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By virtue of  

 1

1

1
1 1 , 1

j j Xn

j j n n

s s s
dX e n

j j X





 


       

    (22)

 

We have | ( ,0) ( ) | 3l z z  . Thus it remains to check if 4( ) ( )X X C     in the region presumed 

in the lemma. Then 

 
2

520 1/2

sin
( ) : max

sinX

X
C C

X



 


    

for 0 10 . Thus  

 52

1 4 ( ) 1
( ) log 1 ( ) log(max(1, ))

2 (1 ) 2

rC
X X C

s
 

 
     

    (23)

 

aschosen. As a result, lemma 3.4 is verified. 

Lemma 3.5: Let D be a constant such that, for a continuous at the point 0t   function

:[ 1,1] , (0) 0U T U   , then 
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 ( ( ), )D U t t D        (24) 

for all [ 1,1]t  . Then, for some S ,       

 3( , ) 20 2 , [ 1,1]D t t D C t          (25) 

and 

 3 6(1, ) (10 )nE D C C         (26) 

Proof: 

Set  

 1 2 1 2 1 2 1 2sup{|| ( ) ( ) ( ) ||: , , [ 1,1]}U t t U t U t t t t t         

If 0  , then || ( ) || 0U t t  and inequality (25) follows from (24). If 0  , chose 

1 2 1 2, , [ 1,1]t t t t   so that  

 
1 2 1 2

9
: || ( ) ( ) ( ) ||

10
U t t U t U t      . 

For arbitrary [ 1,1]t  with  , we have 1 : || ( ) || 9 10U t t       . Since the first inequality 

is trivial for 1/18  , avoid the condition on . Now, by virtue of Lemma 3.4,

1 3( ,0) ( ,0)d d C   . The inequality 

 1 11 cos( ..... ) ((1 cos ) ... (1 cos ))K KX X K X X          (27) 

and equation (24) obtain 

 1 2 1 2 1 1 2 2( ,0) 3( ( ( ), ) ( ( ), ) ( ( ), ))d d U t t t t d U t t d U t t       

  9D . 

Again by equation (27) obtain bound equation (25): 

 1( , ) 2 ( ( ), ) 2 ( ,0)d t t d U t t d    

  3 32 2 ( ,0) 2 20 2D d C D C        (28) 

Incorporating the trigonometrical polynomial ( , )d t t over the interval [0,1] and by the inequality 

2

11 sin / min{1, }X X c X  , where X S and 1 0c  is an absolute constant. Thus, Lemma 3.5 is 

verified. 

Lemma 3.6: If [ 1,1]X


  is a set of positive Lebesgue measure, symmetric to the origin and 

containing it, then we have 

 1 1{ .... : ...., } [ 1,1]
s

s sX X X X X X
 

          (29) 

In case that [12 / ( )]S meas X


  

Proof 

For  0m  , it avails to deal with (1)nP , only and then apply the result for ( ) /H m . Then 

 

1 1

2 ( )7
8

1 1

1
(1) min ( , )

! 4
n

itH

n

R

C
P e dt C d U t dt

n

 

 

 
   

 
    (30) 

Set 

  [ 1,1]: min ( , ) , 1,2,...K
U T

X t d U t K K
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These sets are nonempty measurable, symmetric with respect to the origin, and having the Lebesgue 

measure : ( ) 0KK meas X


  . For KX X


 , then the set sum 
s

X


involves the interval [ 1,1] if

[12 / ]Ks   i.e., this means that every [ 1,1]t  has an expression 1 .... st t t   such that 

( , )d dd U t K with some dU T ,1 d s  . Thus, by equation (27)  obtain 

 
2( , )d U t Ks  

for any [ 1,1]t  and 1 .... sU U U   mod 1, U T . The same holds for the function ( )U t

discussed above. So, by Lemma 3.5, 

 2 2

6 3 9(1, ) (10 )n KE C Ks C C K     

for some S , or equivalently, 

 1/2

10 ( / (1))K nC K E   

This and equation (5) deduces 

 /4 1/2

8 1 11

1

(1) ( (1))K

n K n

K

P C e C E 





      (31) 

Therefore, lemma 3.6 is proved. 

4.Theorem for Multiplicative Function on Random Permutation 

Theorem 4.1: 

Let : ng R C be a multiplicative function filling the condition | ( ) | 1g   for all nR  . Assume 

that the measure defining multiplicative function ( )a  is such that 0 ( )a a j a


    . Then  

 
1
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     (32) 

for 1a  and 

 

1

1

0 1 1

1
( ) 1 ( ) 1 1 log

n n n

n j n K

j K K

n
c q g j q g j

n k


 



  

    
             
                (33) 

for 1a  , where 1 1( , )c c a a  is appositive constant which depends on a and a only, and 

 
1

1 ( )
( ) [ ]exp

!
n

n j

n

R j

a j
q a z z
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Observe that if function ( )H  is additive then function exp( ( ))ith  is multiplicative which defines 

that the characteristic function of an additive function with respect to measure is a mean value of a 

multiplicative function. It follow that the estimate for the mean values of multiplicative functions 

allows us to get information on the distribution of the values of additive functions. 

Let denote 
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n
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Henceforth assume that ( )nH K


satisfies the normalizing condition 

 

2

1
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( ) 1

n
n

K

H j
a K

K






  

Proof 

Since ( )g K


for K n do not influence the n -th Taylor coefficient nD  for the generating function

( )D z , consider that ( ) 1g K


 for K n . Then the inequality  

 1 '

1

( ; ) [ ] ( ) ( ) ( ) 1
n

j

j K

K

R d j z q z d z a a K q


 





      (34) 

By the condition ( ) ( )h z d z , then get inequality 

 
1/ /
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( ) exp

n
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Where min{1, }a  and ( , )c c a a  . After computing simpler estimates for the second and the 

third term in the sum on the right hand side of the above inequality, inequality observed in the 

formulation of the theorem. Further, consider the second term. Varying the order of summation, 

then 
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1 1
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1 1/( )

1/
1

1 ( )
( ) 1

( )

j kn

j Kj
k n j K

j q e
g K q

n q e j K





  


  

 


   

   1
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1 2

1
( ) 1

( )

n
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j
k k j K

q
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     (35) 

As a Taylor series with positive coefficients function ( )q X is increasing for increasing values of X . 

Hence for j K we have 
1/( ) 1/( ) ( )j K jq e q e   and

1/ 1/( ) ( )j Kq e q e  . By these inequalities to 

calculate the last estimate we obtain, 
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The third term can be defined as 
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The inequality in statement of the theorem observed as 
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      (37) 

to estimate the quantity under exponent in the inequality. 

The theorem is verified. 

Theorem 4.2 

For any fixed max{1,1/ }q a  , there exists such a positive ( , , )a a q    that if  , then 
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exp{ (1)} 1 1 ( )
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   (38) 

Proof 

The values of ( )g j


with j N do not influence the value of
ND , then deduce that ( ) 1g j



 for all

j N . Consider ( ; )R h n with  

 1/
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       (39) 

instead of ( ) ( )h z d z then  
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Applying here the estimate 1/( )( )(1 ( ))n j

n j n jD q d e O 

   , then get 
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The second sum of the above estimate has already been already shown to be 2 1/( ( ) )n

nO nq d e  . 

Hence, 
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Since 
log X

e X X
    if 0  , further estimate 
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After plugging this estimate into the inequality for Voronoi mean, we obtain the estimate  
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This after recalling the definition of NU  becomes 
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Applying here estimate  

 1/ 1/ 1/ 2( ) exp{ ( )} exp{ (1)} 1 ( ) (1) ( )N N N

N N N Nd e M e M M e M O                  (43) 

Thus the theorem is verified.  

5. Conclusion 

 This Paper discusses a value concentration of additive and multiplicative function on random 

permutation. The analog of the Kolmogorov-Rogozin inequality is used for determine the value 

concentration of completely additive function defined on random permutations. For the 

multiplicative function, the Voronoi summability are used to analyse the value concentration of 

multiplicative functions on random permutation. 
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