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oot ABSTRACT
Let Rn be the symmetric set of permutations o defined on nN2>1 letters.
= Every o€ Rn has a unique representation by the product of independent
BOMSR cyclesK o=K,K,,...K, where W =W (o) represent the number of

cycles.For determine the value concentration of completely additive
function and multiplicative functions defined on random permutations, the

analog of the Kolmogorov-Rogozin inequality and Voronoi summability are
analysed.
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1. Introduction
The family of probability computes on the symmetric set R of permutations on{L, 2,....,n},

influenced by the Ewens sampling formula are given by
K.
- n' & (0)"'[ 1 - L
vnﬂ(K):z—H(—_j {—J K:=(K,K,,..,K)eZ", (1)
O i1\ ) K;!

forthe partitionn=1K +2K, +...+nK_ ,neN, and Ootherwise, where &>0, and
Oy =0(0+1).....(0 +n=1). The quantity Vnﬂ(lz) can also be viewed as the probability measure
on the class of conjugate elementso € R, all having Kj (o) = Kj cycles of length j,1< j<n.The
probability measure ane is persuaded by the measure an,a onR,, that assigns a mass proportional

to 8" forc eR , where W(c) =K, (o) +....+ K () represents the overall number of cycles of

o . This can be observed that
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) 9W (o)
vg(a)=9w<“’(Zew“>j -z 2)
7eR, e(n)

Thus, the probability measure on Rn and leave the similar notation Vnﬂ for it.

The case @ =1relates to the measure induced by the uniform probability (L/n)#{oc R, :...}on
n . n . . .
R, . If K;(o) =1 for some E< j <n,then Ki(O'):OforaII§<IS ni=#j.
This influences deliberation of additive and multiplicative functionson Rn. A function

H:R, — Sis known as additive if H;(0)=0and H (o) =Z?:lhj(Kj(o-)),ae K . The measure

0
V, , can be represented using independent Poisson random variables CJ- with D(é/j) =— as
’ J

V,,(K)=Q(, =Ky 7, =K [ =1y .11y (3)
Let o € R, be a random permutation and
o =Xy, X, Xy = [ X (4)
Xlo

be its unique up to order expression by the result of the cycles X . Represent
V., (.)=(n !)_1 #HoeR,..}

Consider &(o) represent the number of the cycles involving o . Then,

1 7
V (8(c)—logn < X,/logn) = w(X)=— f e '?du
N2 ®
® (5)
Where the limit is taken as N —> 0. Observing the asymptotic distribution of the set theoretic order
of the random permutation o . The sum (o) of the natural logarithms of the different cycle lengths

L(X), where X / o also obeys the normal limit law. It was attained that
V. (c(c)—(1/2)log? n < (1//3) X log¥? n) - w(X) (6)
2. Random Permutation
Let Rn be the symmetric group. The Rn is comprised of everyprobable functions that
bijectively plot the group of first Nintegers {1, 2,....., N}into itself. This is referred as permutations.
All permutation o belonging to the symmetric group Rn can be representedas an oriented graph
with Nvertices that are labeled by natural numbers 1,2,.....,n and N edges, all edge conforming to

aset(j,o(])), beginning at vertex j and pointing to vertex o( j) . Such graphs are characterized by

the property that all edge has only one outgoing edge and one incoming edge.
Let the classes of additive and multiplicative functions on permutations whose values are computed
by the decomposition of permutations into cyclical components. These functions are defined as

follows. Suppose consider Nreal numbers H(1),H(2),....H(n),then for every permutation

o€ Rn , compute a sum H (o) over all cycles in the graph of o so that for every cycle of length |

we add one summand H () . Or equivalently,

H(o) = HDa,(0) + H(@)a, (0) 4+t H()a, (0)
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Where o, (o) is the total of cycles of length jin permutation o .The resulting additive function
O(o) is then equivalent to the whole number of cycles of in the graph of o. Then the number of

o(o)—logn
permutations o € Rn fulfilling inequality ()—g<Xdivided by the overall total of

Jlogn
X
—u?/2
«— je du asn —oo.

1
Vor 2

Similarly, define multiplicative functions on the symmetric group Rn. Suppose consider Ncomplex

permutations | R |=n! converges to

numbers F (1), F(2),......, F(n) . Then for every permutationo € R, assign a product F (o) over all

cycles belonging to the oriented graph of o that include one multiplicand F(]) corresponding to

every cycle of size j belonging to o . In other words

f(0) = FQ)“©, F(2)“,....., F(n)= @)

Where assume 0° =1. For this instance of 1 € Ris we have

f()=FO* F@ FEF@ (©)
Suppose p(o)is a non-negative multiplicative function, which is not identically equal to zero. Then

define a probabilistic measure V, , on R, by the formula

V, (o) =P

2o PO)

The simplest and the most natural choice is to put p(j) =1, which lead to the uniform probability

(10)

measure

\/ﬁl)(cy) ::'g;
n!

Thus result can be expressed in probabilistic terms as a limit theorem

1 fi 212
—— <X —>—Ie_“ du,as n—ow 11
1/Iog n ] N (1)
stating that the number of cycles W (o) in permutation o chosen with equal probability among all

the permutations of the symmetric group Rn is asymptotically normally distributed.

More generally if all p(j)are equal p(j)=86>0then p(j)=6"", thus this is called as a Ewens

probability measure

V(o) A
n \O)= W (7)
ZSERHQ
GW(O')
T 0(0+1)...(0+n-1) (12)

Let us represent by an(F) a weighted mean of a multiplicative function F: Rn — E with respect

to the measureV,  (0):
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Gy (F)= > F(oN,,(0)

oeR,

> . Fl@)p()
2o PO

3.Value Concentration of Additive Function on Random Permutation

(13)

Theorem 3.1
Let

P, (m) <Cm(E, (m)) ™
Where E, (m)=o0(m?)asn—>o0, the trivial estimate P (M)<1 is better. Observe that the

Kolmogorov-Rogozin theorem applied for the sumR = b(l)}/1+....+b(n)}/n, where y;are the

independent Poisson random variables yields the estimate

sUpQ(X <R, < X +m)<C,m(E,(m;0))™"?
XeS (14)

Thus, with a successful choice of A, concentration estimate for H (o) = AH' (o) is comparable with
that for R,

Proof for theorem 3.1
The proof for the theorem is split into various lemmas 3.2, 3.3, 3.4, 3.5and 3.6

Lemma3.2: LetQ: Rn — C be a completely multiplicative function defined by

gle)=[Ta()“*”, 0°=1
. (15)
witha(j) € C,|a(j)|<1for eachl< j<n.Then
n1_ \ il
LIS g <co0{ - 3100

| oeR, 4 lulsz i J

Proof:
Apply Fourier transform of the distributionV. (H(c) < X). In this case, a(j) =" teS, the

first step will be analysis of the trigonometrical polynomial
& 1-cos2z(b(jt—uj)
yu)=>" .
= ] (16)

Consider the values u(t) giving

~1/2<u<1/2 (17)
Use conditions for implicit functions while dealing with the stationary points, and observe that u(t)
is well defined continuous function in some nontrivial neighborhood of the pointt =0,u(0)=0.
Beyond it, if numerous values of u(t)appear for a fixedt, select the least of them and so get the
function u(t) defined on the whole interval [-1,1] and taking values in[-1/2,1/2) . It indicates
that u(t) is connected to a homomorphism of the additive sets SandS/Z =T . For convenience,
identify T with the interval [0,1)and yield addition modulo one. Notice that the group T is the

whole metric space in terms of the metric defined via the distance to the nearest integer
|| X ||={X3A @—{X}) which is not a norm. Besides, if—1/2 <u(t) <0, redefine this value to
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1+u(t)and so get the function u:[—11] — T maintaining continuity at the pointt=0. Then
observe the Cauchy equations with respect to|| u ||.

Lemma 3.3: LetV :[-11] > T be continuous at the point t=0andV (0)=0. Suppose that, for
some0< £ <1/18,

IVE+5L)-VE) -V IS (18)
Whenevert,,t,,t +t, €[-11]. Then

V() - t]l<3¢ (19)
forsome A eSandall t e[-11]

Proof
StateW :S —>T by
W(2K +t) =2Ku@)+V (t)modl, te[-11]
This function outspreadsV (t) to the real line, excluding att =1, whereW (1) =2V (1) +V (1) mod 1.
The function L(t) =W (t) —V ()t mod lis 2-periodical. Thus estimating forall X,Z € S,
e=H[W(X +2)-W(X)-W(2)|HIL(X +Z) - L(X) - L) (20)
confine to the values X,Z €[-1,1) . If also X +Z €[-1,1) , then by equation (6) e<n.If X +Z >1
, we get
eq|l2V@D)+V(X+Z-2)-V(X)-V(2)||
<ed|lVIX+Z-2)+V(X-D-VEZ-D|[+|[VIX-D+VD-V(X) ||+
V(Z-D+V(@D)-V(2)|x3& (21)

Lemma 3.4: For 0< X <1/2 and0<® <10, we have 1(©®X,0) <I(X,0)+C,

Proof

Let s:=e V" and

0 _ H ) _ 2riz
#(2) = ZMSJ = |ogw
=i ] 1-s

:llog 142 ~sin’ 7z
2 1-5)

By virtue of

n 1_cl j 0 X
Zl _S +ZS— £1+Js—dx <l+etn>1
j=1 J j>n J n X (22)
We have|l(z,0) —@(z) |< 3. Thus it remains to check if #(€X) <@(X)+C, in the region presumed
in the lemma. Then

HJ
sin 7z®X<

C(®) = max <C,

0<x<12 sin? X
for 0<®<10.Thus

4rC(®)
(1-s)’

HOX) < Zlog| 1+ < $(X) +~log(max(L C,))
2 2
(23)
aschosen. As a result, lemma 3.4 is verified.

Lemma 3.5: Let Dbe a constant such that, for a continuous at the point t=0 function

U:[-11]—>T,U(0)=0, then
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DU(t),t)<D (24)
forallt e[-L1]. Then, forsome A €S,

D(At,t) <20D+2C,, te[-11] (25)
and

E.(LA)<(10D+C,)C, (26)
Proof:
Set

a=sup{||U(t, +t,)-U(t)-UE) [ttt +t, e[-11]}
Ifa=0, then ||U(t)—At||=0and inequality (25) follows from (24). Ifa >0, chose

t,t,,t +t, €[-11] so that
AU -UQ)-U@) P oo

For arbitrary t e[-L ] with& =, we have £, =||U(t ) — At |[< 9 <10 Since the first inequality
is trivial fora¢>1/18, avoid the condition ona. Now, by virtue of Lemma 3.4,
d(4,,0) <d(p,0)+C,. The inequality
1-cos(X; +....+ X, ) < K((L-cos X,) +...+(L—cos X, )) (27)
and equation (24) obtain
d(5,0) <UL +1,).t +5) +dU L)L) +dU L)L)
<9D.
Again by equation (27) obtain bound equation (25):
d(At,t) <2d (U (1), 1) +2d(43,,0)
<2D+2d(B,0)+2C ,<20D+2C, (28)
Incorporating the trigonometrical polynomial d(At,t)over the interval [0,1] and by the inequality
1-sin X / X >¢, min{l, X*}, where X € Sand ¢, > Ois an absolute constant. Thus, Lemma 3.5 is

verified.

Lemma 3.6: If X €[-1,1]is a set of positive Lebesgue measure, symmetric to the origin and

containing it, then we have
X ={X 4ot X, Xpoos X, € X} [11] (29)

In case that S =[12/meas(X)]
Proof
For m> 0, it avails to deal with P, (1), only and then apply the result for H(c) /m. Then

Z e27ritH (o)

oeR,

Pn(1)s%j

-1

1
dtscgj{—%mind(u,t)}dt (30)
]

Set

X :{te[—l,l]:rJlEiTnd(U,t)g K}, K=12,..
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These sets are nonempty measurable, symmetric with respect to the origin, and having the Lebesgue

AS

measure f4, = meaS()A( k)>0. For X = X k, then the set sum X involves the interval [-1,1]if
S=[12/ u,] ie., this means that every te[-11]has an expression t=t +....+t such that
dU,,t,) <KwithsomeU, €T ,1<d <. Thus, by equation (27) obtain

d(U,t) <Ks?
for any te[-11]and U =U,+...4+U . mod 1, U €T . The same holds for the function U (t)
discussed above. So, by Lemma 3.5,

E,(L,A) <C,(10Ks* +C,) <C,K
forsome A € S, or equivalently,

<C,,(K/E,@)"*

This and equation (5) deduces

Pn (1) < C8Z e_KMluK+1 < Cll(En (1))_1/2 (31)

K>1
Therefore, lemma 3.6 is proved.
4.Theorem for Multiplicative Function on Random Permutation
Theorem 4.1:

Let g:R, = Cbe a multiplicative function filling the condition | g(o)|<1for allo € R, . Assume

that the measure defining multiplicative function a(o)is such thatO <a™ <a(j)<a".Then

A, = P2 (@) expy Ya() * =

no) 1 o 1@
SC{Z%] Zg(J) 19, + Zg(J) 4K =) 9(])-1‘ (32)
j=0 K=1 n* i3 Nk
fora” <land
1
: o 13 n
<C (ijj g(i)—1a, « +—Z g(J)—1‘£1+|09—) (33)
=0 K=1 n ko k

for a” 21, where ¢, = cl(a‘,a*) is appositive constant which depends on @ and a" only, and

G- ZR a(0) = [2"lexp) 3.0 (”
Observe that if function H(o)is additive then function exp(ith(o))is multiplicative which defines
that the characteristic function of an additive function with respect to measure is a mean value of a
multiplicative function. It follow that the estimate for the mean values of multiplicative functions
allows us to get information on the distribution of the values of additive functions.

Let denote

n(K)

W(n) = Za(K) "
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K=1 qn
A q
n |Ha(K)
M p—
n,q KZ:l K
A2
M, =3 HoD) _1‘
j=1 J qn

Proof

Since g(K)for K >ndo not influence the N-th Taylor coefficient D, for the generating function

D(z), consider that g(K) =1for K >n. Then the inequality

IR(d; J)] = [z ]a(2)d (2)| < a*

K1

k) - 1\q, . 34

By the condition h(z) = d(z), then get inequality

" " 3, (9(K) 1)
Sn_d@e")| = —exp Y K222 e
@ 0 & K

9(K)-1

o(K)- 4qu+ L Ze' Z

q(e—lln) j>n k=1

»

Where d=min{l,a }andc=c(a",a"). After computing simpler estimates for the second and the
third term in the sum on the right hand side of the above inequality, inequality observed in the
formulation of the theorem. Further, consider the second term. Varying the order of summation,
then

A 1 '971 i
K) - i
g( ) ‘L‘qu 0 q( 7111)2

k=1

1 n
<c| —
£

1 n '9*1 i 1 jH—l
-1 K)-1 ——q.
=i q(e,l/J) kz g( ) qn K= n kzj; g( ) n;K q(e,l/J)qJ—K
1 nooIa j@—l q(e—ll(j—k))
— 2. |9(K)-1 -k
-1 nz%Kq(e lIJ) =« J_K
+izn: é(K)—l‘K‘” 3 i (35)
n’ & 2k> =K qe™)

As a Taylor series with positive coefficients function (|(X) is increasing for increasing values of X .

Hence for j>K we have q(e‘”“‘K)) Sq(e_uj)and q(e‘”j) Zq(e‘”K). By these inequalities to

calculate the last estimate we obtain,
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1 n jH—l i A(K) 1‘
D D WRETITS g =19
n’ 7 q(e e o I
- 0-1
5 g(K)—J{ O Zg(K)—J{ qu
K=1 n> j>2K K (
<<— g(K) (K“+'[X“dx] (36)
The third term can be defined as
1 e " d, |» 1 g i
—1la.
q(e_m); > 0010, = s Sa(K) - 42 "
—K/n n A
[0t « o S < g(K)—l\
j>n

The inequality in statement of the theorem observed as

$8(00)-D) iaK(guo Dl

K=1 K K=1

Za

g(K) 1‘ (37)

to estimate the quantity under exponent in the inequality.
The theorem is verified.
Theorem 4.2

For any fixed oo > > max{L,1/a }, there exists such a positive ¥y =y(a",a",q) thatifv <y, then

N N

N _exp{M, (1)}{1+Za g(JJ) 1[(‘”’ ]+0(02)} (38)

Proof

The values of g(j)with j> N do not influence the value of D, then deduce that g(j)=1for all
J > N.. Consider R(h; n) with

h(2)=U, (@) =d(@)-d(e ")y a, 3D (39)
instead of h(z) =d(z) then
RWU,;:n) =[z"Ta(2)U,, (2)
= R(d:n) - [0 ")a@)Y a, (9()) Dz
j=1
= >a,(0()-(D, -, )
Applying here the estimate D, ; =q,_;d (e ") (1+0(v)), then get
RO << 3Ja(i) a6 ) -de s,
Jo(i) -1, 4 ) o)
15
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The second sum of the above estimate has already been already shown to be O(v’nq, |[d(e™")|) .
Hence,
1 o1 Up
R(UN;n)<<(—Z‘d(e1”)—d(e““)‘qu] +vng, |d(e™")
n 4=
1 1 N Up
< ﬂl)z‘d(eilm )‘(_Zexp{paw Iog_—‘}qu +o°ng, |d(Ee™") (41)
n j=1 J\/l
since e/ < X# 4 X# if # >0, further estimate
pa* 1Up
n-1 av s\ pa‘y
R(U,;n) << nv? 1 q’ l +(ij +o°ng, |d(e™")
n= Jjv1 N
2 ~Un NV (™ 2 ~Un
<n’onjdEe)||| = | + N +v?ng, |d(e™™) (42)
n

After plugging this estimate into the inequality for Voronoi mean, we obtain the estimate

(22U, (1) -U, ) << 0?[d )
gN

This after recalling the definition of U, becomes

N e _ i .
&:d(efl/N) 1+Za] g(J) 1(h_eJ/Nj+o(02)
N =1 J qN

Applying here estimate
de ™) =exp{M, (")} =exp{M, (}1+M (™)~ M, (D) +O(*)) (43)

Thus the theorem is verified.
5. Conclusion
This Paper discusses a value concentration of additive and multiplicative function on random
permutation. The analog of the Kolmogorov-Rogozin inequality is used for determine the value
concentration of completely additive function defined on random permutations. For the
multiplicative function, the Voronoi summability are used to analyse the value concentration of
multiplicative functions on random permutation.
REFERENCES
[1].  Babu, G. J. (2006). Probabilistic number theory and random permutations: Functional limit
theory. The Riemann Zeta function and related themes, R. Balasubramanian and K. Srinivas
(eds.). Ramanujam Mathematical Society—Lecture Notes Series, (2), 19-27.
[2]. Manstavicius, E. (1996). Additive and multiplicative functions on random
permutations. Lithuanian Mathematical Journal, 36(4), 400-408.
[3]. Manstavic¢ius, E. (1998). The law of the iterated logarithm for random
permutations. Lithuanian Mathematical Journal, 38(2), 160-171.
[4]. Manstavicius, E. (2007). Moments of additive  functions on  random
permutations. ActaApplicandaeMathematicae, 97(1), 119-127.
[5]. KARGINA, T. (2009). Asymptotic distributions of the number of restricted cycles in a random
permutation. Liet. mat. rink. LMD darbai, 50.

MOHD. FAREEDUDDIN & E. KESHAVA REDDY 16



Vol.5.Issue.3.2017 (July-Sept) Bull.Math.&Stat.Res (ISSN:2348-0580)

[6].

[7].

[8].

[9].

[10].

Bakshajeva, T., & Manstavicius, E. (2014). On statistics of permutations chosen from the
Ewens distribution. Combinatorics, Probability and Computing, 23(06), 889-913.
Manstavicius, E. (2008). Asymptotic value distribution of additive functions defined on the
symmetric group. The Ramanujan Journal, 17(2), 259-280.

Babu, G. J., Manstavicius, E., &Zacharovas, V. (2005). Limiting processes with dependent
increments for measures on symmetric group of permutations. Probability and number
theory—Kanazawa, 49, 41-67.

Manstavicius, E. (1997). A Tauber theorem and multiplicative functions on
permutations. Number theory in progress, 2, 1025-1038.

Wieand, K. L. (1998). Eigenvalue in distribution of random matrices in the permutation group
and compact lie groups (Doctoral dissertation, Department of Mathematics, Harvard
University).

MOHD. FAREEDUDDIN & E. KESHAVA REDDY

17



