Vol.5.Issue.3.2017 (July-Sept) ©KY PUBLICATIONS

http://www.bomsr.com Email:editorbomsr@gmail.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

COUPLED LUCAS SEQUENCE

KIRAN SINGH SISODIYA1, VANDANA GUPTA2, V.H.BADSHAH3

Sobhasaria Group of Institution, Sikar (Rajasthan)¹
Govt. Kalidas Girls College, Ujjain,(M.P.)India²
Department of Mathematics, Vikram University, Ujjain,(M.P.)India³
kiransinghbais@gmail.com

ABSTRACT

In this paper we have introduced interlinked coupled recurrence relation of Lucas second order sequence and deduced some of its properties

Subject Classification MSC (2000)11B37, 11B39, 11B99

Key words: Fibonacci numbers, Lucas numbers, Fibonacci sequence, Lucas sequence, 2F Sequence

1. INTRODUCTION

Atanassov [1] and Suman, Amitava, k sisodiya introduce respectively the interlinked second order recurrence relation and interlinked Jacobsthal Sequence by constructing two sequences $\{\alpha_{i=0}^{\infty}\}_{i=0}^{\infty}$ naming them as 2F Sequences.

According to the scheme,
$$\alpha_{n+2} = \beta_{n+1} + \beta_n, n \ge 0$$
, $\beta_{n+2} = \alpha_{n+1} + \alpha_n, n \ge 0$

Taking $\alpha_0=a$, $\beta_0=b$, $\alpha_1=c$, $\beta_1=d$, where a,b,c,d are integers, he extended his research in the same direction which can be seen in [1],[3] and [5]. Hirschhorn in [6] and [2] present explicit solution to the longlasting problems on the second and third order recurrence relations posed by Atanassov[5]. Recently Singh, Sikhwal and Jain deduced coupled recurrence relations of order five[7]. Carlitz, et.el,[8] had also given a representation for a special sequence.

2. COUPLED LUCAS SEQUENCE

Taking Lucas Sequence

$$L_{n+2} = L_{n+1} + 2L_n$$
 where , $L_0 = 0, L_1 = 1$

$$l_{\scriptscriptstyle n+2} = l_{\scriptscriptstyle n+1} + 2l_{\scriptscriptstyle n}$$
 where , $l_{\scriptscriptstyle 0} = 2, l_{\scriptscriptstyle 1} = 1, n \geq 0\,.$

The Koken and Bozkurth in [1] and [2] have given some matrix properties of Jacobsthal-Lucas numbers.

We have introduced coupled order recurrence relations for Lucas number and Lucas sequence and called them as 2-L Sequences.

$$L_{n+2} = l_{n+1} + 2l_n, n \ge 0$$

$$l_{n+2} = L_{n+1} + 2L_n, n \ge 0$$

$$L_0 = a, L_1 = b, l_0 = c, l_1 = d$$
(2.1)

If we set a = b and c = d then the sequence $\{L_i\}_{i=0}^{\infty}$ and $\{L_i\}_{i=0}^{\infty}$ shall coincide with each other and the sequence $\{L_i\}_{i=0}^{\infty}$ shall becomes a generalized Lucas sequence where,

$$L_0(a,c) = a, L_1(a,c) = c$$

$$L_{n+2}(a,c) = l_{n+1}(a,c) + l_n(a,c)$$

$$L_n = a,b,d + 2c,b + 2a + 2d$$

 $l_n = c, d, b + 2a, d + 2c + 2b$

By examining the above terms we obtain the following properties:

Theorem 1:For every integers $n \ge 0$

(a)
$$L_{4n}/l_0 = l_{4n}/L_0$$

(b)
$$L_{4n+1} + l_1 = l_{4n+1} + L_1$$

(c)
$$L_{4n+3} + l_0 + l_1 = l_{4n+3} + L_0 + L_1$$

Proof:

For (c) the statement is obviously true for n=0.

Assuming that the statement is true for some integer, $n \ge 0$, by the given scheme (1)

$$\begin{split} L_{4n+3} + l_0 + l_1 &= l_{4n+2} + 2l_{4n+1} + l_0 + l_1 \\ &= L_{4n+1} + 2L_{4n} + 2l_{4n+1} + l_0 + l_1 \end{split}$$

(by inductive hypothesis)

$$\begin{split} &= L_{4n+1} + L_{4n+2} + l_{4m+1} + l_1 + l_0 \\ &= l_{4n+3} + l_1 + l_0 \end{split}$$

Hence the statement is true for all integers $n \ge 0$

Similar proofs can be given for parts (a) and (b). Adding the first n terms of $\{L_i\}_{i=0}^{\infty}$ and $\{L_i\}_{i=0}^{\infty}$ yields the following results.

Theorem 2: For all integers $k \ge 0$

(a)
$$l_{3k+5} = \sum_{i=1}^{3k} L_{3k+i} + \sum_{i=-1}^{k+1} l_{3k+i} + \sum_{i=1}^{2k} l_{3k+i} + l_{3k-i}$$

(b)
$$L_{3k+5} = \sum_{i=1}^{3k} l_{3k+i} + \sum_{i=-1}^{k+1} L_{3k+i} + \sum_{i=1}^{2k} l_{3k+i} + l_{3k-i}$$

Proof(a):

$$\begin{split} &l_{3k+5} = L_{3k+4} + 2L_{3k+3} \\ &= l_{3k+3} + 2l_{3k+2} + 2L_{3k+3} \\ &= L_{3k+2} + 2L_{3k+1} + 2l_{3k+2} + 2l_{3k+2} + 4l_{3k+1} \\ &= L_{3k+2} + 2L_{3k+1} + 2l_{3k+2} + 2L_{3k+3} \\ &= \sum_{i=1}^{3k} L_{3k+i} + L_{3k+1} + L_{3k+3} + l_{3k+2} \qquad \text{by(1)} \end{split}$$

$$\begin{split} &= \sum_{i=1}^{3k} L_{3k+i} + L_{3k+1} + 2L_{3k+2} + 2l_{3k+1} + l_{3k+2} \\ &= \sum_{i=1}^{3k} L_{3k+i} + l_{3k} + 2l_{3k-1} + 2l_{3k+2} + 2l_{3k+1} + l_{3k+2} \\ &= \sum_{i=1}^{3k} L_{3k+i} + l_{3k} + 2l_{3k-1} + 2l_{3k+2} + 2l_{3k+1} + l_{3k+2} \\ &= \sum_{i=1}^{3k} L_{3k+i} + \sum_{i=-1}^{k+1} l_{3k+i} + l_{3k-i} + l_{3k+1} + l_{3k+2} \\ &= \sum_{i=1}^{3k} L_{3k+i} + \sum_{i=-1}^{k+1} l_{3k+i} + \sum_{i=1}^{2k} L_{3k+i} + l_{3k-i} \end{split}$$

The proof of (b) is similar to the proof of (a), hence omitted for the sake of brevity. Adding the first n terms with even or odd subscripts for each sequence $\{L_i\}_{i=0}^{\infty}$ and $\{l_i\}_{i=0}^{\infty}$.

3. TWO INFINITE SEQUENCES

Let us assume two infinite sequences of second order $\{a_i\}_{i=0}^\infty$ and $\{b_i\}_{i=0}^\infty$ with the initial values a, c and b, $d \in R$

Out of the many schemes that emerge we study two of them

Scheme 3.1

$$a_{n+2} = b_{n+1} + 2a_n : b_{n+2} = a_{n+1} + 2b_n, n \ge 0$$

 $a_0 = a, b_0 = b, a_1 = c, b_1 = d$

Setting a-b, c-d, the sequence $\{a_i\}$ and $\{b_i\}$ coincides and from a generalized Lucas sequence L_i

Consider, n
$$a_n$$
 b_n 0 a b 1 c d 2 d+2a c+2b 3 3c+2b 3d+2a

Theorem3.1:
$$a_n - b_n = (-1)^{n-1} (a_1 - b_1) L_n + (-1)^n . 2 . (a_0 - b_0) L_{n-1}$$

Proof: Using the principle of mathematical induction we get, for n=2

$$a_{2} - b_{2} = (d+2a) - (c+2b)$$

$$= -(c-d) + 2(a-b)$$

$$= (-1)^{2-1} \cdot (c-d) \cdot 1 + (-1)^{2} \cdot 2 \cdot (a-b) \cdot 1$$

$$= (-1)^{2-1} \cdot (c-d) \cdot L_{2} + (-1)^{2} \cdot 2 \cdot (a_{0} - b_{0}) \cdot L_{2-1}$$

If the statement is true for n=k

That is ,
$$a_k - b_k = (-1)^{k-1}(a_1 - b_1)L_k + (-1)^k.2.(a_0 - b_0)L_{k-1}$$

Hence for n=k+1, we get

$$\begin{split} &(1)^{k+1-1} (a_1b_1) L_{k+1} + (1)^{k+1} 2 \cdot (a_0b_0) L_{k+1-1} \\ &= (-1)^k (a_1 - b_1) L_k + (-1)^{k+1} \cdot 2 \cdot (a_0 - b_0) L_k \\ &= (-1)^k (a_1 - b_1) (L_k + 2L_{k-1}) + (-1)^{k+1} (a_0 - b_0) (2L_{k-1} + 2L_{k-2}) \\ &= (-1)^k (a_1 - b_1) (L_k) + (-1)^k (a_1 - b_1) (2L_{k-1}) + (-1)^{k+1} (a_0 - b_0) (2L_{k-1}) + (-1)^{k-1} (a_0 - b_0) (4L_{k-2}) \end{split}$$

$$\begin{split} &= -[\left(-1\right)^{k-1}(a_1-b_1)(L_k) + \left(-1\right)^k(a_0-b_0)\left(2L_{k-1}\right)] + \left(-1\right)^2[\left(-1\right)^{k-2}\left(a_1-b_1\right)\left(L_{k-1}\right) + \left(-1\right)^{k-1}\left(a_0-b_0\right)\left(2L_{k-2}\right)] \\ &= -\left(a_k-b_k\right) + 2[a_{k-1}-b_{k-1}] \\ &= a_{k+1}-b_{k+1} \end{split}$$

Scheme 3.2

$$\begin{aligned} a_{n+2} &= a_{n+1} + 2a_n \colon b_{n+2} = b_{n+1} + 2b_n, n \ge 0 \\ \text{Consider} \,, & \text{n} & \text{a}_{\text{n}} & \text{b}_{\text{n}} \\ & 0 & \text{a} & \text{b} \\ & 1 & \text{c} & \text{d} \\ & 2 & \text{c+2a} & \text{d+2b} \\ & 3 & 3\text{c+2a} & 3\text{d+2b} \end{aligned}$$

Theorem 3.3:
$$a_n - b_n = L_n(a_1 - b_1) + 2L_{n-1}(a_0 - b_0)$$

Proof:-By the principal of mathematical induction we get for n=2

For n=2

$$a_2 - b_2 = (c - d) + 2(a - b)$$

 $a_2 - b_2 = L_2(a_1 - b_1) + 2L_1(a_0 - b_0)$

Now, Supposing that the statement is true for n=k

$$a_k - b_k = L_k (a_1 - b_1) + 2L_{k-1} (a_0 - b_0)$$

Thus, for ,n=k+1,we get

$$\begin{split} &= L_{k+1}(a_1 - b_1) + 2L_{k+1-1}(a_0 - b_0) \\ &= [L_k + 2L_{k-1}](a_1 - b_1) + 2.[L_{k-1} + 2L_{k-2}](a_0 - b_0) \\ &= L_k(a_1 - b_1) + 2L_{k-1}.(a_1 - b_1) + 2L_{k-1}(a_0 - b_0) + 4.L_{k-2}(a_0 - b_0) \\ &= L_k(a_1 - b_1) + 2L_{k-1}.(a_0 - b_0) + 2[L_{k-1}(a_1 - b_1) + 2.L_{k-2}(a_0 - b_0)] \\ &= (a_k - b_k) + 2[a_{k-1} - b_{k-1}] \\ &= [a_k + 2a_{k-1}] - [b_k + 2b_{k-1}] \\ &= a_{k+1} - b_{k+1} \end{split}$$

REFERENCES

- [1]. Jain S, Saraswati A, Sisodiya K, Coupled Jacobsthal Sequence, International Journal of Theoretical and Applied Science 4(1), 30-32(2012)
- [2]. Horadam, A.F., Associated sequences of General Order, The Fibonacci Quarterly, Vol.31(2): 166-172 (1993)
- [3]. Atanassov,K.,On A Generalization of the Fibonacci sequence .The Fibonacci Quarterly, Vol.24(4): 362-365(1986)
- [4]. Tasci, D. and Kilie, E., On The Order k-Generalized Lucas Numbers, App. Math Comp., 195, 3:637-641 (2004).
- [5]. Hoggatt, V., Fibonacci and Lucas Numbers, Palo Alto, Houghton-Miffin (1969)
- [6]. Hirschhoranm, M.D., Coupled Third Order Recurrences, The Fibonacci Quarterly, 44,26-31(2006)
- [7]. Singh, B., Sikhwal, O.P.and Some Properties, Int.Journal of Math Analysis, Vol.4 (25):1247-1254 (2010)
- [8]. Carlitz,L.,Scoville,R. and V.Hoggatt jr.,Representation for A special sequence, The Fibonacci Quarterly,Vol.10,(50):499-518,550(2006).