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ABSTRACT 

In this paper locally Hausdorff spaces of three kinds have been defined as 

generalizations of a Hausdorff space. Their interrelationships and properties 

of the first kind have been studied. It has been shown that the class of such 

spaces of the first kind is closed under formation of arbitrary products, 

quotient spaces and disjoints union-spaces. It has been proved that this 

class is precisely the class of T1-spaces.Two conjectures have been made 

regarding one the structure of this class in terms of Hausdorff spaces and 

cofinite spaces, and the other about the largest topology of a space in this 

class. 

Four characterizations of a Hausdorff space have been proved two of which 

describe the axiom T2 as an obvious generalization of T1. At the end, 

Hausdorffifications of a locally Hausdorff space of the first kind have been 

described. 

Keywords: Locally Hausdorff space, kc-space, us-space, S1-space, S2-space,T

a -space,T b -space, Hausdorffification, Anti-Hausdorff space. 
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1. Introduction 

Many authors have studied  topological spaces with separation axioms between T1 and T2 and also 

those which are weaker than T1 ( [1], [2], [3], [4], [5], [6], [7], [8], [9] ,[10], [11], [12], [13], [14]). In 

this paper we have defined three kinds of locally Hausdorff spaces. We have used definitions and 

terminology of [12] in general. 

Definition 1.1 

A topological space X will be called a locally Hausdorff space of the first kind if each point x in X is 

contained in a closed set Fx which is Hausdorff. 

Definition 1.2 
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A topological space X will be called a locally Hausdorff space of the second kind if each point x in X is 

contained in an open set Gx which is Hausdorff. 

Definition 1.3 

A topological space X will be called a locally Hausdorff space of the third kind if each point x in X is 

contained in an open set Gx such that xG  is Hausdorff. 

Relationship among the above three classes of spaces and properties of the spaces of the first kind 

have been studied. In particular, it has been proved that the topology of each space in this class 

contains the cofinite topology. This class has been proved to be identical with class of T1-spaces. We 

recall ([2], [4], [11]) that a topological space X is called a T1-space if any one of the equivalent 

conditions (i), (ii)  and (iii) hold, where (i), (ii)  and (iii) are as follows: 

i) For each pair  of distinct elements x, y in X, there exists an open set Gxy such that xyGx  and 

xyGy  

ii) For each pair of distinct elements x, y in X, there exist open set Gxy and Hyx such that xyGx  

, xyGy and yxHy  , yxHx . 

iii) For each x in X, {x} is closed. 

While (i) and (ii) occur in definitions, (iii) is usually proved to be their equivalent (see [2] p-

47, [12] p-100, [11] p-100). 

The locally Hausdorff spaces of the second and the third kinds will be called Ta-spaces and Tb-spaces 

respectively. It has been shown that T2TbTa T1, a, b [1, 2], where the last implication is not 

reversible. 

We have stated a conjecture on the structure of a locally Hausdorff space of the first kind using 

Hausdorff spaces and cofinite spaces as building blocks and formation of products, union-spaces, 

quotient spaces and subspaces as glues. 

Four characterizations of a T2-spaces have been given one of which describes T2 as a natural 

generalization of T1. At the end of this paper, new topologies have been introduced in a locally 

Hausdorff space of the first kind, i.e., a T1-space, which makes the latter Hausdorff. Throughout the 

section 2 and section 3, a locally Hausdorff space of the first kind will simply be called locally 

Hausdorff. 

Example 2.1  

Every Hausdorff space is locally Hausdorff. 

Example 2.2 

Let X be an infinite set and let CX be the cofinite topology on X. Then (X, CX) is locally Hausdorff. A 

proof of this statement directly from the definition is as follows: 

Let a∈X and b,c,d be three distinct points of X each of which is different from a. Then {a,b,c,d} is a 

closed subset, say F, of X. Here a∈X. Then {a,b} Fc, {a,c} Fc,{a,d} Fc,{b,c} Fc,{b,d} Fc,{c,d}

Fc are open subsets of X. And so, V1={a,b}, V2={a,c},V3={a,d},V4={b,c},V5={b,d},V6={c,d} are open sets in 

F. 

Now a and b are separated by V2 and V5, a and c are separated by V1 and V6, a and d are separated 

by V1 and V6, b and c are separated by V1 and V6,b and d are separated by V3 and V4, c and d are 

separated by V2 and V5.  

Thus F is Hausdorff. Hence X is locally Hausdorff. 

Comment 2.1 

Surprisingly, this space (X, CX) is anti-Hausdorff ( see [10],[13]), i.e., no two distinct points of it can be 

separated by disjoint open sets. 
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Example 2.1 

Every T1-space is locally Hausdorff. 

In fact the converse is true too. 

Thus we have: 

Theorem 2.1 

A topological space is locally Hausdorff if and only if it is T1. 

Proof: Let X be a topological space. First suppose X is T1. Then for each x in X, {x} is closed. Now, {x} is 

Hausdorff. For, if not, there exist distinct points y, z ∈{x}, such that y and z cannot be separated by 

disjoint open sets. Since no two distinct points exist in {x}, this is absurd. Hence x is contained in the 

Hausdorff closed subspace {x}. Thus X is locally Hausdorff. 

Conversely, suppose X is locally Hausdorff. Let x1, x2 be two distinct points in X. Since X is locally 

Hausdorff, there exists closed Hausdorff subspaces F1 and F2 of X such that x1∈F1, x2∈F2. If both x1, x2 

belong to either F1 or F2, say F1, then there exist disjoint open sets G1 and G2 in F1 such thatx1∈G1, 

x2∈G2.Now G1= 11 FV  and G2= 12 FV   for some open sets V1, V2 in X. Then, x1∈V1, 21 Vx  , x2∈V2,

12 Vx  . Now, if both x1, x2 do not belong to F1 or F2, then we may assume that x1∈F1, 21 Fx  ,x2 ∈F2,

12 Fx  . So, cc FxFx 1121 ,  , 
cc FxFx 2212 ,  where cF1

and cF2
 are open sets in X. 

Thus in each case the T1-condition is satisfied. 

Comment 2.2 

In view of Theorem-2.1, the space (X, CX) is easily seen to be locally Hausdorff since each singleton 

subset of X is closed. 

Comment 2.3 

The topology of an infinite locally Hausdorff space contains the cofinite topology. This is so, because 

for an infinite locally Hausdorff space X, every singleton subset, and hence, every finite subset is 

closed. In fact, a topological space (X, ) is locally Hausdorff if and only if   contains the cofinite 

topology. This is obvious. 

Although, as mentioned earlier, the topology of an infinite locally Hausdorff space X contains the 

cofinite topology on X, it need not be equal to the cofinite topology. The usual space Rn being 

Hausdorff is locally Hausdorff with the topology strictly finer than the cofinite topology. 

We give below two examples of locally Hausdorff spaces which are not Hausdorff but still whose 

topologies are strictly finer than the relevant cofinite topologies : 

Example 2.3 

 Let A be an infinite set, and for each ,A  let Xα be an infinite set with the cofinite topology. Let 

X= 


X
A

 be the product space. 

Let G= 


G
A

 , where Gα ={x
1

, …, x
1

}c. Then each G c

 is finite but G c is not finite. Also G is open in 

X. 

Example 2.4 

Let X1 be an infinite set with the cofinite topology 1 , and let X2 be a finite set disjoint from X1 with 

the discrete topology. Let X= (X1∪X2,  ), where  is the topology on X generated by 1 ∪ 2, i.e., X 

is the union space of X1 andX2 . Then  is strictly finer than the cofinite topology on X, since the 

(finite) subsets of  X2 are open in X but their complements in X are not finite. X is not Hausdorff, since 

the distinct points in X1 cannot be separated by disjoint open sets in X. 
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In particular, we may take X1=׀N or and X2={i, 2i, 3i, …, 10i} or { 7,5,3,2 }, or          {

11

1
,

7

1
,

5

1
,

3

1
,

2

1
} 

Comment 2.4 

I. Let X be a compact locally Hausdorff space. Then, for each point x∈X there exists a compact 

Hausdorff subspace K of X such that x∈ 𝐾. This is so because every closed subset of a 

compact space is compact. 

II. Let X be a compact locally Hausdorff space, then, every point x∈X is contained in both a 

closed Hausdorff space of X and a compact Hausdorff subspaces of X. 

Example: Let X= [a,b] with the usual topology and Y=iz ={ip│p∈Z} with the cofinite topology. Then 

X×Y is a non-trivial compact locally Hausdorff spaces. 

2. Here we prove a number of theorems yielding newer classes of locally Hausdorff spaces. 

Theorem 3.1 

Every subspace of a locally Hausdorff space is locally Hausdorff . 

Proof:  Let X be a locally Hausdorff space and let Y be asubspace of X. Let y1 , y2 be two distinct points 

in Y. By Theorem-1,  X is T1, and so, there exist open sets G1 and G2 in X such that y1∈ 𝐺1, 21 Gy  , 

y2∈ 𝐺2, 12 Gy  . Let 11 GYV  , 22 GYV  .Then y1∈ 𝑉1, 21 Vy  , y2∈ 𝐺2, 12 Vy  . Hence Y is T1 

and so, Y is locally Hausdorff. 

Corollary-1 

Let A and B be two locally Hausdorff subspaces of a topological space X. Then, BA  is locally 

Hausdorff 

Theorem 3.2 

Let X be a topological space and let A and B be two locally Hausdorff subspaces of  X. Then, BA  is 

locally Hausdorffif either both A and B are open or both A and B are closed. 

Proof: Suppose both A and B are open. Let ., BAyx   If both x and y belong to A then there 

exists open sets G and H in A such that HxGx  , , GyHy  , . Since A is open in X, G and H 

too are open in X. Similarly, if both ,, Byx  then  open sets G, H in X such that HxGx  , ,

GyHy  , . 

Lastly, if one of x and y belongs to A and the other belongs to B, say BxAx  , , ,, AyBy  then 

we will still have the above situation with G=A, H=B. Thus BA  is T1 and hence locally Hausdorff. 

Now suppose both A and B are closed. Let .BAx   Then ,Ax or ,Bx suppose Ax . A 

being locally Hausdorff, there exists a closed subset F of A such that ,Fx  and F is Hausdorff. 

Since A is closed in X, F is closed in X, and so in BA . Similarly, if  ,Bx  then there is a closed 

subset P which is Hausdorff and is closed in BA . Thus BA is locally Hausdorff. 

Theorem 3.3 

Let (X 1 , 1 ) and ( 22 ,X ) be two disjoint locally Hausdorffspaces. Let 21   be the 

topology generated by 21  on X= 21 XX  . Then (X, ) is locally Hausdorff. 

Proof: We shall show that (X, ) is T1. Let x,y be two distinct points in X. If x,y both belong to X1or X2, 

say to X1. Then there exist open sets V, W in X1, and hence in X, WxVx  , , VyWy  , . If x 

and y belong to X1 and X2 respectively, then x∈ 𝑋1, 2Xx , y∈ 𝑋2, 1Xy , and X1, X2 are open sets 

in X. Thus X is T1, and so, locally Hausdorff. 

We call (X, ) the union space of (X 1 , 1 ) and ( 22 ,X ). 



Bull .Math.&Stat.Res ( ISSN:2348 -0580)  

   5 

Vol.5.Issue.4.2017 (Oct-Dec) 

MALLIKA MITRA et al., 

An exactly similar proof will yield 

Theorem 3.4 

Let (X  ,  ) be a non-empty family of locallyHausdorff spaces, then (X, ), where X= 


X and



 , the topology generated by 


 , is locally Hausdorff. 

Theorem 3.5 

Let {X  ,  } be a non-empty family of topological space, and let X= 


X


 , the product space. Then 

X is locally Hausdorff spaces if and only if each X  is locally Hausdorff. 

Proof: We first assume that each X  is locally Hausdorff and prove that X= 


X


 is locally 

Hausdorff too. Let Xxx  }{  . Since each X  is locally Hausdorff, for each α, there exists a 

closed Hausdorff subspace F  of X  such that  Fx   . Then F = 


F


   is a closed subspace of X. 

Hence X is locally Hausdorff. 

Conversely suppose that X is locally Hausdorff. We shall show that each X  is locally Hausdorff. Let 

 XX  : be the projection map. Let  Xx  . Then ),(xx   for some Xx  . Let {F
i } 

be the collection of all closed subsets of X  which contains x . Let, ),(1

i
FFi 

  for each i. Then

iF
, s are closed subsets of X and contains x. Since X is locally Hausdorff there exists i0 such that 

0i
F  

is Hausdorff . Then )(
0

0 i
i FF  is Hausdorff.  For, if 

0i
x , 

0i
y be two distinct elements of 

0i
F , 

consider the elements
0i

x , 
0i

y such that 
0i

x ≠
0i

y where )()(
00 ii yx  

’
 (   ). Then

00 ii yx   , and so, X being locally Hausdorff, there exist disjoint sub basic open sets G
0i

, H
0i

such 

that 
0000

, iiii HyGx  . Then 
00

)(
i

GGi    and 
00

)(
i

HH i   are disjoint open sets in X

with
0i

x G
0i

 ,
0i

y H
0i

  . Hence 
0i

F  is Hausdorff. Thus X  is locally Hausdorff. 

This result was proved in [6], [9] in a different manner. 

Theorem 3.6 

Let X be a locally Hausdorff space and R an equivalence relation on X. Then 
R

X  is locally Hausdorff. 

Proof: Let 
R

XX :  be the projection map. Let 
R

Xx  .Let )(1 xx  . Then there exists a 

closed subset F of X such that xF and F is Hausdorff. Since Fc is open in X and   is both open and 

continuous, )( cF  is open in
R

X . Hence ( )(F ) c  = )( cF is open in
R

X . Thus )(F  is 

closed in
R

X . Let yx,  be two distinct points in )(F . Let )(),( 11 zzyy   . Then y, z are 

distinct points in F, and so, there exist disjoint open sets G, H in F such that ., HzGy  Then 

)(G  and )(H are disjoint sets in )(F and ).(),( HzGy  Thus )(F is Hausdorff. 

Hence 
R

X  is locally Hausdorff. 

Theorems 3.1, 3.3, 3.4, 3.5 and 3.6 can be summarized as follows: 

Theorem 3.7 

The class of all locally Hausdorff spaces is closed under the formation of products, union subspaces 

and quotient spaces 
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We shall now give here two examples which will prove that the product of locally Hausdorff spaces 

at least one of which is not Hausdorff may or may not be Hausdorff. 

Example 3.1 

 Let X=  with the usual topology and Y is  with the cofinite topology. Then Y is not Hausdorff but 

X×Y is Hausdorff.  

Example 3.2 

Let X=  with the cofinite topology and Y=i ={i n │n } with the cofinite topology. Then X×Y 

islocally Hausdorff but not Hausdorff. For if (x, y) and (x/, y/) are two distinct points in X×Y, every pair 

of open sets G and H in X×Y with (x, y)G,(x/, y/)H, there are open sets /, xx GG in X, 
/, yy HH in V 

such that (x, y) ,yx HG  (x/, y/) // yx
HG  . Since X, Y have the corresponding cofinite topologies

 /

xx GG ,  /

yy HH . Hence HG . Thus X×Y is not Hausdorff. 

Remark: The proof in example 3.1 shows that, if X is a Hausdorff space and Y is any topological 

space, then X×Y is Hausdorff, i.e., the product of a Hausdorff space with any space is Hausdorff. 

The class of all locally Hausdorff spaces, i.e., T1-spaces can be characterized as follows: 

Theorem 3.8. 

A topological spaces (X, ) islocally Hausdorff spaceif and only if either (X, ) is finite discrete space 

or X is infinite and   contains the cofinite topology on X. 

We now state a conjecture regarding the structure of a locally Hausdorff space and hence regarding 

the classification of all locally Hausdorff spaces. 

Conjecture 3.1 

The class of all locally Hausdorff topological spaces is formed from (i) the class of all Hausdorff 

spaces and (ii) the class of all infinite sets with the corresponding cofinite topologies with the help of 

(1) Products, (2) Union spaces,  (3) Subspaces and (4) Quotient spaces.  

3. Relationship among the various kinds of locally Hausdorff spaces. 

Proposition 4.1 

Every locally Hausdorff space of the third kind is a locally Hausdorff space of the first kind. 

Proof: This is obvious. 

Proposition 4.2 

Every locally Hausdorff space of the third kind is a locally Hausdorff space of the second kind. 

Proof: Let X be a locally Hausdorff space of the third kind. Then, for each xX, there exists an open 

set G in X with xG such that G  is Hausdorff. Then G is Hausdorff, and so X is locally Hausdorff of 

the second kind. 

Proposition 4.3 

A locally Hausdorff space of the first kind need not be a locally Hausdorff space of the second or 

third kind. 

Proof: Let X be an infinite set with the cofinite topology. Then X is locally Hausdorff space of the first 

kind. Let V be an open set in X with xV. Then V is infinite. The topology of V is the cofinite topology 

since GXGV   which is finite. So V is not Hausdorff. Hence X is not locally Hausdorff space of 

the second kind. Now V =X, which is not Hausdorff. So, X is NOT locally Hausdorff space of the third 

kind. 

Proposition 4.4 

Every locally Hausdorff of the second kind is a locally Hausdorff space of the first kind. 
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Proof: Let X be a locally Hausdorff of the second kind. Let x, yX and yx  .  open sets xG and 

yH  in X such that x yx HyG  , , and both yx HandG  are Hausdorff. For all 
21

,, 21 xxx GGGxx   

(open in Gx) such that x 1 21 2, xx GxG  , 
21 xx GG . Here

21 xx GandG  are open in X, since

xxxxxx GVGGVG 
2211

, , for some open sets 
21

, xx VV in X. 
If any of x and y belongs to Gx Hy, then x ,y both belong to Gx or to Hy , and so, x & y can be 

separated by disjoint open sets in Gx (or Hy ), and hence by open sets in X . If none of xGx, xHy  

and yHy, yGx . 

Since T2T1, each pair of points x, y in X satisfies the condition for T1.Thus, X is locally Hausdorff of 

the 1st kind. 

Comment: We thus see that the classes of all locally Hausdorff spaces of the second and third kind 

are proper subclasses of the class of all locally Hausdorff spaces of the first kind i.e., of T1-space. 

Thus, T2TbTaT1. The last implication is not reversible. We have not been able to decide 

whether the first two implications are reversible or not. We know ([1]) that {Hausdorff spaces} {kc-

spaces} {us-spaces} {T1-spaces}, the inclusions being strict everywhere. Here a kc-space is one in 

which every compact subset is closed, and a space in which every convergent sequence has a unique 

limit is called a us-space. These terms were introduced by Wilansky [1]. Two more classes of spaces 

viz., S1-spaces and S2-spaces have been proved to exist between T1 and T2 by Aull [3]. An S1-space is a 

us-space in which every convergent sequence has a subsequence which does have a side point i.e., a 

limit point which is not the limit of a sequence. An S2-space is a us-space in which no convergent 

sequence has a side point. 

We do not know the relationship of Ta –spaces and Tb-spaces with kc-spaces, us-spaces, S1-spaces 

and S2-spaces. 

4. Maximal and Minimal T1-topologies 

Theorem 5.1 

The collection of all T1-topologies on a non-empty set X has a smallest member, viz., the cofinite 

topology CX on X. 

Proof: Let X be a non-empty set. 

Let C  be the collection of all T1-topologies and  = 

 . Then is a T1-topology. For if xX, xV   

for eachV    . Let V  . Then, V   ,  . Hence xV. Thus {x} is closed in (X, ). Hence 

 is a T1-topology. 

Since each T1-topologyon X contains the cofinite topology C  on X, and since C itself is a T1-topology. 

So  =C. 

Definition 5.1. 

 For a non-empty class {  } of topologies on X, the topology  generated by 

  will be called 

the union topology on X defined by {  }. 

It is clear that if each  is a T1-topology, , too, is a T1-topology. 

Assuming the truth of the conjecture 3.1, we see that the following is true: 

Conjecture 5.1. 

The largest T1-topology on a non-empty set X is the union topology defined by the class of all 

Hausdorff topologies on X. 

5. Hausdorffification of the locally Hausdorff space of the first kind 

Here we alter the topology of a locally hausdorff space of the first kind to make it Hausdorff. 
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(A) Let (X, ) be locally Hausdorffspace of thefirst kind. We form a topology   on X from   as 

follows: 

For every pair of disjoint points x, y in X, which cannot be separated by disjoint open sets, we choose 

a pair of open sets yx HG ,  such that yx HxGx  , , xy GyHy  , . Such yx HG , exist since 

X is locally Hausdorff, and hence T1. Let S  be obtained from   by replacing yx HandG by 

xyxyyxyx GHVHGU  ,, , respectively, for each such pair x, y X. Let   denote the 

topology generated by S on X. Then ),( X is a Hausdorff space. ),( X will be called a 

Hausdorffification of the first kind for the space (X, ). 

Comment: Since  depend on the choice Gx and Hy, is not  unique. 

However, we give below another kind of Hausdorffification which yields a unique Hausdorff topology
/

 on X : 

(B)  Let (X, ) be locally Hausdorff space of the first kind. Let A be the set of all pairs {x, y} in X 

such that x and y cannot be separated by disjoint open sets in X. Since X is T1, for pair {x, y} in A, 

there exist open sets Gx,y and Hy, x, in X such that yxyx GyGx ,, ,  , xyxy HxHy ,, ,   . Let 

yxyx GV ,,  and xyxy HW ,,  , the union being taken over all such special Gx, y
, s and Hy, x

, s 

respectively. Clearly, xVx,y , yVx,y, and xyxy WxWy ,, ,  , andVx,y and Wy,x are the largest such 

open sets. 

Let V ={Vx,y –Wy,x│{x, y}A}, W={Wy,x -Vx,y │{x, y}A} . Let be the topology on X which is generated 

by   VW. 

Then (X, ) is Hausdorff and will be called the Hausdorffification of the second kind for the space (X,

 ). Clearly (X, ) is unique. 

If instead of Vx,y –Wy,x and Wy,x -Vx,y we would have considered Gx,y –Hy,x and Hy,x -Gx,y, and called then 

G  and H respectively, then the topology generated by   G H  would have given us a Hausdorff 

topology on X. But it would not have been unique. 

Example  6.1 

 Let A be an infinite set, and  the cofinite topology on X. Then   is unique and is the discrete 

topology on X. 

Example  6.2 

Let X= ,


X where sX ,

 are the distinct infinite sets with the corresponding cofinite topologies 

. Then (X, ) is locally Hausdorff space of the first kind, where  is the product topology on X. Each

),(  X is a discrete space for each , but (X, ), the product space of the collection { ),(  X }, 

is not a discrete space. 

6. Characterisations of T2-spaces 

We here digress and prove a few characterisations of a Hausdorff space which resemble the 

definition of a 1 -space.   

We now state and prove below four characterisations of a Hausdorff space. 

Theorem 7.1 

For a topological space X, the following five statements are equivalent: 

(i) X is Hausdorff, 



Bull .Math.&Stat.Res ( ISSN:2348 -0580)  

   9 

Vol.5.Issue.4.2017 (Oct-Dec) 

MALLIKA MITRA et al., 

(ii) For each pair of distinct points x, y in X, there exists an open set Gxy in X such that xGxy, y

xyG . 

(iii) For each pair of distinct points x, y in X, there exists an open sets Gxy and Hyx in X such that x

Gxy, y xyG , yHyx , x yxH . 

(iv) For each compact subset K of X and for each xX with x  K, there exist disjoint open sets G 

and H in x such that KG, yH; 

(v) For each pair of disjoint compact subsets K1 and K2 of X, there exist disjoint open sets G1 and 

G2 of X such that K1G1, K2G2. 

Proof: (i)  (ii) 

Let X be a Hausdorff space and let x, y in X (x y). Then there exist disjoint open sets G and H such 

that xG, yH. It is clear that y G . (ii) follows by writing Gxy=G. 

(ii)  (i) 

Let (ii) hold. Let ,, Xyx  with x y. Then there exists an open set Hxy in X such that yHxy and Gxy

 Hxy = . Hence X is Hausdorff. 

(ii)  (iii). Obvious. 

(iv) (i). Obvious since every singleton set is compact. 

(i)  (iv). Let (i) hold. Let X be Hausdorff and let K be a compact subset of X and Xx 0
 with

Kx 0
. Since X is Hausdorff, for each xK, there exist open sets Gx and Hx in X such that xGx, 

xHx 0
, and Gx Hx = . Since K is compact and {Gx} is an open cover of K, {Gx} has a finite 

subcover {G
1x

, … , G
nx }, say. Let G =G

1x
  …   G

nx and H= H
1x
  …   G

nx . Then G and H are 

open and disjoint, and KG, Hx 0
. Thus (iv) holds. 

(v) (i). since every singleton subset is compact, it is obvious. 

(i)  (v). It will be sufficient to prove that (iv)  (v). It is clear that the method of proof of (i)  (iv) 

can be similarly used to prove that (iv)  (v). 

[N.B. Wilansky too proved the equivalence of (i) and (iv) in his book [2]] 

As mentioned in the second paragraph of the abstract, the conditions (ii) and (iii) in the statement of 

the above theorem regarding a T2-space closely resemble the conditions (i) and (ii) in page 2 for T1-

space 
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