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ABSTRACT 

In this paper, a proof of new summation formula for 2𝜓2 bilateral basic 
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 1.Introduction 

In this paper, an extension of S. Ramanujan’s 1 𝜓 1 bilateral basic hypergeometric summation formula 

(1.1) was established, in nice form. The motivation primarily come from unfulfilled claim of W. N. 

Bailey [4] to get 2𝜓2bilateral basic hypergeometric summation formula. G. E. Andrews [2] has given 

2𝜓2  summation formula. 

𝑎−1  ∑
(

−𝑞
𝑎⁄ ,𝑐𝑑

𝑎𝑏⁄ )
𝑘

(−𝑐
𝑎⁄ ,−𝑑

𝑎⁄ )
𝑘+1

(−𝑏)𝑘 − 𝑏−1∞
𝑘=0 ∑

(
−𝑞

𝑏⁄ ,𝑐𝑏
𝑎𝑏⁄ )

𝑘

(−𝑐
𝑏⁄ ,−𝑑

𝑏⁄ )
𝑘+1

(−𝑎)𝑘   =∞
𝑘=0

                                                                             (𝑎−1 − 𝑏−1)
(

𝑞,𝑎𝑞
𝑏⁄ ,

𝑞,𝑏𝑞
𝑎⁄ 𝑐,𝑑,𝑐𝑑

𝑎𝑏⁄ )
∞

(
−𝑎,−𝑏,−𝑐

𝑎⁄ ,−𝑐
𝑏

⁄ ,−𝑑
𝑎⁄ −𝑑

𝑏⁄ )
∞

  (1.1) 

which is considered as an extension of Ramanujan’s 1𝜓1 summation formula (1.1). 

We shall follow the notation and terminology in [8], and throughout this paper, we assume | q | < 1. 

The q-shifted factorial is defined by 
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(a;  q)0 : = 1 

(𝑎)∞: = (a;  q)∞= ∏  (1 − 𝑎𝑞𝑘)∞
𝐾=𝑂  , 

(𝑎)𝑘: = (a;  q)𝑘 =
(𝑎)∞

(𝑎𝑞𝑘)∞
  , k is an integer. 

The bilateral basic hypergeometric series is defined by 

𝑟𝜓s (
𝑎1, 𝑎2, … , 𝑎𝑟,

𝑏1, 𝑏2, … , 𝑏𝑟,
|𝑞; 𝑥) = ∑

(𝑎1)𝑛,(𝑎2)𝑛…,(𝑎𝑟)𝑛,

(𝑏1)𝑛,(𝑏2)𝑛…,(𝑏𝑠)𝑛,

∞ 
⬚

𝑛=−∞ 
 𝑥𝑛

. 

In his ‘lost’ notebook [?], Ramanujan has given ‘remarkable’ 1 𝜓 1 summation formula: 

1𝜓1 (
𝑎
𝑏

|𝑞; 𝑧)  =  ∑
(𝑎)𝑘

(𝑏)𝑘

∞  
𝑘=−∞  𝑧𝑘 =  

(𝑎𝑧)∞(𝑞)∞(
𝑞

𝑎𝑧⁄ )∞(𝑏
𝑎)⁄

∞

(𝑧)∞(𝑏)∞(𝑏
𝑎𝑧)⁄

∞
(

𝑞
𝑎⁄ )

∞

 ,          (1.2) 

where |𝑏 𝑎⁄ ||𝑧| 1. 

There are many of proofs of summation formula (1.1), for more details one may refer the book by B. 

C. Berndt [5]. Further, (1.1) has been influential in the development of Ramanujan’s theory of theta 

and elliptic functions. 

In recent paper, Somashekara, Narasimha murthy, and Shalini [12], the authors have given a new 

bilateral summation formula for 2ψ2 hyper geometric series. 

2𝜓2 (
𝑎 𝑏𝑐

𝑎𝑧𝑞⁄

𝑏 𝑐
 |𝑞; 𝑧)  =   

(𝑎𝑧)∞(𝑞)∞(
𝑞

𝑎𝑧⁄ )∞(𝑏
𝑎)⁄

∞
(𝑐

𝑎)⁄
∞

(𝑏𝑐
𝑎𝑧𝑞)⁄

∞

(𝑧)∞(𝑏)∞ (𝑐)∞(𝑏
𝑎𝑧)⁄

∞
(𝑐

𝑎𝑧)⁄
∞

(
𝑞

𝑎⁄ )
∞

 ,          (1.3) 

Where   max {|
𝑏

𝑐
| , |

𝑐

𝑎
|}  |𝑧| 1, |𝑞| 1, 

and its applications, was established on using well-known Ramanujan’s 1ψ1 summation formula and 

the method of parameter augmentation and some applications to obtain q-gamma, q-beta function 

identities, eta-function identities and partition theoretic identities. 

In the chapter 16 of his notebook [10], Ramanujan defines the general theta function 

𝑓 (𝑎, 𝑏) ∶= ∑ 𝑎(𝑛+1)/2𝑏𝑛(𝑛−1)/2∞
𝑛=−∞ , 

The special cases of f (a, b) are 

𝜑(𝑞) ∶=  𝑓 (𝑞, 𝑞)  = ∑ 𝑞𝑛2∞
𝑛=−∞ = 

(−𝑞;−𝑞)∞

(𝑞;−𝑞)∞
  ,       (1.4) 

𝜓(𝑞) ∶=  𝑓 (𝑞, 𝑞3)  = ∑ 𝑞 𝑛(𝑛+1)/2∞
𝑛=−∞ = 

(𝑞2;𝑞2)
2

∞

(𝑞;𝑞)∞
  ,       (1.5) 

𝑓 (−𝑞) ∶= 𝑓 (−𝑞, 𝑞2) = ∑ (−1)𝑛 𝑞𝑛(3𝑛−1)/2∞
𝑛=−∞  =  (𝑞; 𝑞)∞ ,  (1.6) 

Ramanujan also defined the function χ(q) as 

χ(𝑞) = (𝑞 ; 𝑞2)∞ = 

(𝑞2;𝑞2)
2

∞

(𝑞;𝑞)∞(𝑞4;𝑞4)2
∞

    ,(1.7) 

Using elementary q-analysis, one can easily verify 

𝜓(−𝑞) = 
(𝑞;𝑞)∞

(𝑞2;𝑞2)∞(𝑞4;𝑞4) 
∞

  ,(1.8) 

χ(−𝑞) = 
(𝑞;𝑞)2

∞

(𝑞2;𝑞2)∞
, (1.9) 

In his paper [7], W. Chu has shown how the basic hypergeometric series identities can be studied 

systematically on apply of modified Abel’s lemma on summation by parts, which in fact, was given by 

Norwegian mathematician N. H. Abel [1]. 

For an arbitrary complex sequence {z k}, define the backward and for- ward differences operator Q 

and Δ respectively as 

𝛻 𝑧𝑘 =  𝑧𝑘 − 𝑧𝑘−1 𝑎𝑛𝑑  𝛥 𝑧𝑘 − 𝑧𝑘+1 

Then Abel’s lemma on summation by parts may be formulated as 

∑ 𝐵𝑘 
∞
𝑘 =−∞  𝛻 𝐴𝑘 = ∑  ∞

𝑘 =−∞   𝐴𝑘  𝛥 𝐵𝑘   ,(1.10) 

provided that the series on both sides convergent and there exists limits, 
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[𝐴𝐵]± : = lim
𝑛

 
→ ±∞

𝐴𝑛 𝐵𝑛+1  

For the proof one may refer paper by Chu [7]. Further, the Dedekind eta-function is defined by 

𝜂(𝜏 ): =  𝑒𝜋𝑖𝜏 12⁄ ∏(1 − 𝑒2𝜋𝑖𝑘𝜏 )

∞

𝑘=0

∶=  𝑞
1

24⁄ (𝑞; 𝑞)∞, (𝟏. 𝟏𝟏) 

Where q = 𝑒2𝜋𝑖𝑘𝜏 and Im()  0. 

F.H.Jackson [9] defined the q - analogue of the gamma function by 

Γ 𝑞(𝑥) =  
(𝑞;𝑞)∞

(𝑞𝑥𝑞)∞
(1 − 𝑞)1−𝑥 0 <  q  < 1. (1.12) 

In his paper [3] on the q-gamma and q-beta function, Askey has obtained q-analogues of several 

classical results about the gamma function. Further, he has given the definition for q-beta function as 

B 𝑞(𝑥,𝑦 ) =  (1 − 𝑞) ∑ (𝑞)𝑛𝑥 ∞
𝑛=−∞

(𝑞𝑛+1)
∞

(𝑞𝑥+𝑦)∞
,    (1.13) 

B 𝑞(𝑥,𝑦 ) = 
Γ 𝑞(𝑥)Γ 𝑞(𝑦)

Γ 𝑞(𝑥∗𝑦)        ,(1.14) 

In this paper, we give proof of (1.3), on using well-known Ramanujan’s 1ψ1 summation formula and 

Abel’s lemma on summation by parts. In Section 2, we prove the summation formula (1.3). In Section 

3, we show application of (1.3), namely sums of squares and some theta function identities. In Section 

4, some identities deduce from (1.3) and partition theoretic interpretation of identities. In Section 5, 

some identities of q - Beta and q - Gamma functions. 

 2.Proof of the summation formula (1.3) 

Proof. Define the two sequences by  

𝑨𝒌 : =  
(𝒃𝒄

𝒂𝒛⁄ )
𝒌

𝒃𝒌

𝒂𝒌𝒛𝒌

𝒄𝒌 𝒂𝒏𝒅    𝑩𝒌 : =  
(𝒂)𝒌

(𝒄)𝒌

𝒄𝒌

𝒂𝒌  . 

We can easily find two extreme values 

[𝐴𝐵]+ =  [𝐴𝐵]− = 0 with   max {|
𝑏

𝑐
| , |

𝑐

𝑎
|}  |𝑧| 1, and the finite differences  

𝛻 𝐴𝑘 : =  
(1− 𝑐

𝑎𝑧⁄ )

(1−  𝑏𝑐
𝑎𝑧𝑞)⁄

(𝑏𝑐
𝑎𝑧𝑞⁄ )

𝑘

𝑏𝑘

𝑎𝑘𝑧𝑘

𝑐𝑘   and   𝛥 𝐵𝑘 ∶=
(1− 𝑐

𝑎⁄ )

(1−𝑐)

(𝑎)𝑘

(𝑐𝑞)𝑘

𝑐𝑘

𝑎𝑘 

By means of the modified Abel’s lemma on summation by parts for bilateral series, we can manipulate 

the bilateral - series as 

2𝜓2 (
𝑎 𝑏𝑐

𝑎𝑧𝑞⁄

𝑏 𝑐
 |𝑞; 𝑧)  =  

(1−𝑏𝑐
𝑎𝑧𝑞⁄ )

(1−  𝑐
𝑎𝑧)⁄

 ∑  ∞
𝑘 =−∞   𝐵𝑘  𝛻 𝐴𝑘 

= 
(1−𝑏𝑐

𝑎𝑧𝑞⁄ )

(1−  𝑐
𝑎𝑧)⁄

 ∑  ∞
𝑘 =−∞ 𝐴𝑘  𝛥 𝐵𝑘  

 = 
(1− 𝑐 𝑎)⁄ (1−𝑏𝑐

𝑎𝑧𝑞⁄ )
 

(1−𝑐)(1− 𝑐 𝑎𝑧⁄ )
 ∑  ∞

𝑘 =−∞

(𝑎)𝑘  (
𝑏𝑐

𝑎𝑧⁄ )
𝑘

(𝑏)𝑘(𝑐𝑞)𝑘
 𝑧𝑘

. 

Iterating this n-times, we find recurrence relation 

2𝜓2 (
𝑎 𝑏𝑐

𝑎𝑧𝑞⁄

𝑏 𝑐
 |𝑞; 𝑧)  = 

(𝑐
𝑎⁄ )𝑛(𝑏𝑐

𝑎𝑧𝑞⁄ )
𝑛

(𝑐)𝑛(𝑐
𝑎⁄ )𝑛

 2𝜓2  (𝑎
𝑏𝑐𝑞𝑛−1

𝑎𝑧⁄

𝑏 𝑐𝑞𝑛
 |𝑞; 𝑧)        ,(2.1) 

Letting n → ∞ in (2.1) and then applying (1.2), we obtain (1.3). 

3 Some Application of (1.3) 

Corrolary 1. if | q | < 1, then 

1 + 2 ∑
(𝑞 ;𝑞2)

𝑛

(1+𝑞2𝑛)(−𝑞2;𝑞2)𝑛

∞
𝑛=1 𝑞𝑛 = 𝜑(𝑞) ,   (3.1) 

 

1 + 2 ∑
(−𝑞 ;−𝑞3)

𝑛
(−𝑞3;−𝑞3)

𝑛−1

(−𝑞2;−𝑞3)𝑛(𝑞3;−𝑞3)𝑛

∞
𝑛=1 𝑞𝑛 + 2 ∑ (−1)𝑛 (−𝑞 ;−𝑞3)

𝑛
(−𝑞3;−𝑞3)

𝑛−1

(𝑞2 
;−𝑞3)𝑛(𝑞3 

;−𝑞3)𝑛

∞
𝑛=1 𝑞3𝑛=𝜑2(𝑞) ,   …..(3.2) 
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1 + 2 ∑
(𝑞 ;𝑞2)

𝑛

(1+𝑞2𝑛)(−𝑞2;𝑞2)𝑛

∞
𝑛=1 𝑞𝑛 + 4 ∑

(−𝑞2 
;𝑞2)

𝑛−1

(1+𝑞2𝑛)(−𝑞 ;𝑞2)𝑛

∞
𝑛=1  𝑞2𝑛 = 𝜑3(𝑞) ……..(3.3) 

∑
(𝑞 ;𝑞4)

𝑛

2

(𝑞3;𝑞4)𝑛(𝑞4;𝑞4)𝑛

∞
𝑛=0  𝑞𝑛 =  χ(𝑞)χ(−𝑞),     (3.4) 

∑
(𝑞2 

;𝑞6)
𝑛

2

(𝑞5;𝑞6)𝑛(𝑞6;𝑞6)𝑛

∞
𝑛=0  𝑞𝑛 =  𝜓(𝑞)𝜓(−𝑞),     (3.5) 

Proof.      Putting a = -1, z = q, b = - q2, c = q2 and then changing q to 

q2 in (1.3), and on some simplification using (1.4), we obtain (3.1). 

Similarly   putting a = -1, z = q, b = -q2, c = q3 and then changing q to q3 in (1.3), and on some 

simplification using (1.4), we obtain (3.2). Finally putting a = 1, z = q, b = c = - q2, and then changing q 

to q2 in (1.3), and on some simplification using (1.4), we obtain (3.3).   Putting a = q1/4 = z, b = q, c = q3/4 

and then changing q to q4 in (1.3), using (1.7) and (1.9) with some q-analysis simplification, we obtain 

(3.4). Similarly, putting a = q2/6, z = q1/6, b = q, c = q5/6 and then changing q to q6 in (1.3), using (1.5) and 

(1.8) with some q-analysis simplification, we obtain (3.5). 

4 Some Partition Identities and theoretic interpretation 

A partition of a positive integer n is a non-increasing sequence of positive integers, called parts, whose 

sum equals n. For example, n = 3 has three partitions, namely, 

3, 2 + 1, 1 + 1 + 1. 

 If p(n) denote the number of partitions of n, then p(3) = 3. The generating function for p(n) due to 

Euler is given by 

∑ 𝑝𝑟(𝑛)𝑞𝑛 =
1

(𝑞;𝑞)∞

∞
𝑛=0  .  ……(4.1) 

Ramanujan [11] established following beautiful congruences for : 𝑝𝑟(𝑛) 

p(5n + 4) = 0 (mod5), 

p(7n + 5) = 0 (mod7) 

and 

p(11n + 6) = 0 (mod11) 

A part in a partition of n has r colours. For any positive integers n and r, let  𝑝𝑟(𝑛) denote the number 

of partitions of n where each part may have r distinct colours. 

The generating function of  𝑝𝑟(𝑛) Berndt and Ranking [6] is given by 

 ∑ 𝑝𝑟(𝑛)𝑞𝑛 =
1

(𝑞;𝑞)𝑟)∞

∞
𝑛=0  .. (4.2) 

For positive integers k, m and r 

   
1

(𝑞𝑘;𝑞𝑚)∞
𝑟       (4.3) 

is the generating function of the number of partitions of a positive integer with parts congruent to k 

modulo m and each part has r colours. Similarly 
1

(𝑞𝑘1;𝑞𝑚) 
∞
2 (𝑞𝑘2;𝑞𝑚) 

∞
2  = 

1

(𝑞𝑘1 ,𝑞𝑘2;𝑞𝑚) 
∞
2  ,    (4.4) 

is the generating function of the number of partitions of positive integer with parts = k1 or k2 (modm) 

and each part has two colours. 

Given a partition π, let e(π) denote the number of parts in p.   Define Pm(n) to be the set of partitions 

of n in which all parts are less than or equal to m. Let qm(n) be the number of partitions of n in which 

all parts are less than or equal to m. Define 

Pm(n) = ∑ (−1)𝑒(𝜋).
𝜋∈ 𝑝𝑚(𝑛)    (4.5) 

∑ 𝑝𝑚(𝑛)𝑞𝑛 =
1

(−𝑞;𝑞)𝑚

∞
𝑛=0  .. (4.6) 

∑ 𝑞𝑚(𝑛)𝑞𝑛 =
1

(𝑞;𝑞)𝑚

∞
𝑛=0  .. (4.7) 
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Define Po,m(n) to be the set of partitions of n in odd parts and all parts are less than or equal to 2m. 

Let qe,m (n) be the number of partitions of n into even parts in which all parts are less than or equal to 

2m. Define 

Po,m (n) = ∑ (−1)𝑒(𝜋).
𝜋∈ 𝑝 𝑜,𝑚(𝑛)    (4.8) 

so that 

∑ 𝑝𝑜,𝑚(𝑛)𝑞𝑛 =
1

(−𝑞;𝑞2)𝑚

∞
𝑛=0   (4.9) 

∑ 𝑞𝑒,𝑚(𝑛)𝑞𝑛 =
1

(𝑞2;𝑞2)𝑚

∞
𝑛=0   (4.10) 

We shall begin with the following definitions. 

Define 𝑃𝑠,𝑡
𝑘(𝑛)to be the number of partitions of n in which parts are only of the form km + s or km + 

t.    𝑃𝑠,𝑡
𝑘,𝑂(𝑛) denote number of partitions of n in which parts are of n in the form km + s and km + t 

taken together appear odd number of times.    𝑃𝑠,𝑡
𝑘,ɛ(𝑛)   denote number of partitions of n in which 

parts are of the form km + s and km + t taken together appear even number of times. 

Theorem 4.11 If 𝑃𝑠,𝑡
𝑘(𝑛) denotes the number of partitions of n in which parts are only of the form km 

+ s or km + t and    𝑃𝑠,𝑡
𝑘,𝑂(𝑛)  and  are    𝑃𝑠,𝑡

𝑘,ɛ(𝑛)  as defined above, then 

 𝑃[1,3
4 (𝑛) − 𝑃2,2

4,𝑜(𝑛) + 𝑃2,2
4,ɛ(𝑛) = 1 + ∑ 𝑃3,4

4 (𝑛 − 𝑚) − 𝑃1,1
4,𝑜(𝑛 − 𝑚) + 𝑃1,1

4,,ɛ(𝑛 − 𝑚)𝑛−1
𝑚=1 ]        (4.12) 

Proof.  Putting a = q1/4 = z,  b = q,  c = q3/4 and then changing q to q4 

in (1.3), we obtain 

∑
(𝑞 ;𝑞4)

𝑛

2

(𝑞3;𝑞4)𝑛(𝑞4;𝑞4)𝑛

∞
𝑛=0  𝑞𝑛 =  

(𝑞2 
;𝑞6)

∞

2

(𝑞;𝑞4)∞(𝑞3;𝑞4)∞
   (4.13) 

 

Using the definitions as defined above in (4.13), we obtain 

∑  

∞

𝑛=0 

∑ 𝑃3,4
4 (𝑛 − 𝑚) − 𝑃1,1

4,𝑜(𝑛 − 𝑚) + 𝑃1,1
4,𝑂(𝑛 − 𝑚)𝑞𝑛

∞

𝑚=1

= ∑ 𝑃1,3
4 (𝑛) − 𝑃2,2

4,𝑜(𝑛) + 𝑃2,2
4,,ɛ(𝑛)

∞

𝑛=0 

𝑞𝑛 (𝟒. 𝟏𝟒) 

 

By comparing the coefficients of qn, we obtain (4.12). 

 Theorem 4.15  

If 𝑃𝑠,𝑡
𝑘(𝑛)  denotes the number of partitions of n in which parts are only of the form km + s or km + t 

and   𝑃𝑠,𝑡
𝑘,𝑂(𝑛)  and  are    𝑃𝑠,𝑡

𝑘,ɛ(𝑛)  as defined above, then 

 and) are  as defined above, then 

1+ ∑  𝑛−1
𝑚=1  [𝑃5,6

6 (𝑛 − 𝑚) − 𝑃2,2
6,𝑜(𝑛 − 𝑚) + 𝑃2,2

6,ɛ(𝑛 − 𝑚]) = 𝑃1,5
6 (𝑛) − 𝑃3,3

6,𝑜(𝑛) + 𝑃3,3
6,,ɛ(𝑛). . . . .. (4.16) 

Proof. Putting a = q2/6, z = q1/6,  b = q,  c = q5/6 and then changing q to 

q6 in (1.3), we obtain 

∑
(q2; q6)n

2

(q5; q6)n(q6; q6)n
qn

∞

n=0

=
(q3; q6)∞

2

(q; q6)∞(q5; q6)∞
  (4.17) 

  

Using the definitions as defined above in (4.17), we obtain 

∑ ∑ [𝒫5,6
6 (𝑛 − 𝑚) −  𝒫2,2

6,𝒪

n=1

m=1

(𝑛 − 𝑚) + 𝒫2,2
6,ℰ

∞

n=0

 (𝑛 − 𝑚)]qn 

∑ [𝒫5,6
6 (𝑛) − 𝒫2,2

6,𝒪∞
n=0  (𝑛) + +𝒫2,2

6,ℰ (n)]qn ….4.18 

By comparing the coefficients of qn, we obtain (4.16). 
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5. Some applications of the main identity 

Corollary 5. If 0 <  𝑞 <  1, 0 <  𝑥, 𝑦 <  1 𝑎𝑛𝑑 0 <  𝑥 +  𝑦 <  1, then 

Bq(x. y) = Γq(y)Γq(1-y) ∑
(q1-x-y)k(qy)k

(q)k
2 qkx

∞

k=0

      . . . (5.1) 

Proof. Putting a = q1−x−y, z = qx, and b = c = q, we obtain (3.12). 

Corollary 6. If 0 < x, y < 1 and 1 < x + y < 2, then 

B2(x. y) =
Γ(y-x)Γ(x-y + 1)Γ(x + y + 2)

Γ(y)Γ(1 + x)
[∑

(-x)k(x + y + 1)k

(y)k
2

∞

k=

+ ∑
(y + 1)k

2

(1 + x)k (2 + x + y)k

∞

k=

]   . . . . (5.2) 

Proof. Letting 𝑞 →  1 in (3.9), we obtain (3.11). 

Corollary 7. If 0 <  𝑥, 𝑦 <  1 and 0 <  𝑥 +  𝑦 <  1, then 

B3(x. y) =
Γ(1-x + y)Γ(x-y)

y2 [∑
(1-x)k(x + y)k

(1 + y)k
2 + ∑

(-y)k
2

(x)k (1-x-y)k

∞

k=

∞

k=

]  . . . . 5.3 

 

Proof. Letting q  →1 in (3.8), we obtain (3.10). 
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