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{ nevawen ¢ ABSTRACT
R - i In this study, some identities for the Fibonacci and Lucas numbers with
ROMSR rational subscripts are established via taken the general techniques from

i matrix theory. For these aims, the two well-known Fibonacci matrices are
considered, and special functions of the Fibonacci matrices are achieved by
using certain scalar complex functions. Some identities involving terms of
the Fibonacci and Lucas numbers with rational subscripts are given by these
functions of the Fibonacci matrices.
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1. Introduction

The Fibonacci and Lucas numbers are the sequence of numbers {F,};-o and {L,}n-o
defined by the linear recurrence equation F,,, = F, 1 + F, and L, = L,4q + L, with F; =1,
Fo=0and Ly =1, Ly =2 [3], [11]. Also, the Binet’s formulas for the F,, and L,, is given by F, =

n_pn —
%, L, =a™+ " where a = %g and B = %g are the roots of equation x? —x —1 = 0.

Using Binet’s formulas, the definition of the F, and L, can be extended to negative integers n
according to

F,=CFD"E,and L_, = (—1)"*'L,, n € Z*.
In literature authors have described a lot of methods that may be used to define the Fibonacci and
the Lucas numbers with real or complex subscripts [6], [7], [8], [10], [11]. First of them, which Halsey
has observed, is that the Gamma functions extends the notion of Fibonacci sequence to rational
numbers. Halsey has developed a function which give Fibonacci numbers E, for any integer n, and
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which also give real Fibonacci numbers F, for any rational number u [6]. But, F,,;», = F;4 1 + F,,
u = 0 as known the Fibonacci recurrence identity is not valid for the real Fibonacci numbers given
with this function. However, Parker has revised the recurrence identity and the restriction that u
must be rational by using a function F (x) defined for any real number x in the form
* —cos(mx)a™™

NG )
where a = (1 + \/5/2 is the golden ratio [7]. The well known Fibonacci identity F(2x) =
F(x)L(x) is destroyed for the Parker’s function F(x). Later, Horadam and Shannaon [10] defined

the following Fibonacci and the Lucas curves with complex notation:
X _ ,XTi,,—X

V5

The functions F(x) and L(x) defined in (1) hold for analogous identities of the classical Fibonacci

a
F(x) =

F(x) = ,L(x) = a¥ + e*™g X,

and the Lucas numbers [11] and can be called as generalized Binet’s formula for the Fibonacci
F(x) = F, and the Lucas L(x) = L, numbers with real subscripts, respectively.

The Fibonacci and the Lucas numbers are generated by the matrices as well as the
recurrence relations and the Binet’s formulas [2], [3], [5], [11]. Matrices provide a different way of
producing properties of the Fibonacci and the Lucas numbers via multiplying of its different powers
and taking successive integer powers of a matrix.

The purpose of this study is to establish the Fibonacci and the Lucas numbers with rational
subscripts, using matrix functions of the Fibonacci matrices in [2], [3], [5], [11];

o1 1 s
Q_[l 0 andQR—z[1 11
via the generalized Binet’s formula, i.e.,
aX — B*
LT &
V5

and the general techniques taken from matrix theory.

Ly=a*+ % x€ R, (D

2. On the Fibonacci and Lucas Sequences with Rational Subscript

Since the matrices Q and Qp possess two distinct eigenvalues «, is golden ratio a =
(1 + \/g)/Z and B = 1 — a = a1, it is well known that there exists any invertible matrices V and U
to rewrite the matrices Q@ =V J, V™1land Q = UJog U1, where Jo and J,, designate the Jordan

canonical form associated to Q and Qg. Now, by using the scalar complex function FM(z)=2z"r¢€
Z, the matrix functions F™(Q) =V (F(T)(]Q )) V-1=Q" and FM(Qz) =U (F(T) Uox )) U-l=

Qf are known as
a a” 0 1/(6(—[3) _B/(a_ﬁ) Fr+1 Fr
Fo@=[7 5% pllaln wa-pl-lE sl @
F(T)(QR)=[ 1 1 Har 0”1/2 (a—,B)/Z]:[LT/Z 5Fr/2]. 3)
/(=) -1/(@=-pIlo pll1/2 B-a)/2]  |E/2 L./2

It is well known there are the properties of the Fibonacci matrix Q7 in the (2) and the
Fibonacci-Lucas matrix Qf in the (3) for r € Z. But, as we have used the equations (2) and (3) in this
study and shown any integer powers of the these matrices with the Jordan canonical form
associated to @ and Qp.

Now, let us consider that the complex function F(19)(z) = z1/5 = k(l’s), seZ\ {0}, k €
{0,1,...,s — 1} gives the st roots of the complex number z. In other respects, for every nonzero
complex number z = |z|exp [i arg(2)], (r < arg(z) < r), let fk(l’s)(z) be the k" branch of the

function F1S)(2), these branches may be characterized as follows
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1
fk(l’s) (z) = zV/Sexp [E (iarg(z) + 2km’)] ,ke{0,1,---,s — 1}

Also, the principal branch of F(1)(2) is denoted by fo(l's)(z) = z1/5, and for every nonzero z in C
the all branches of F(15)(2) are rewritten as

2kmi
f(l S)(Z) — Zl/sexp< ) ke{01,--,s—1} )
In fact, using the equations (2) and (3), we have derived the matrices F19(Q") =
v (F“’S) (]Qr )) V-1 and F(1,s)(Q£) =U (F(l,s) (]ng )) U~ defined with the matrix functions;

@ o ]
(1 s) r ky -1
Q") = s 14 (5)
(k1 k2) 0 fk(21_ )(ﬁr)
f(l,S) (ar) 0
(15) kq U_l, k ’k € 0’1’...’ -1 , 6
(kl kz)(QR) 0 fk(zl's) (ﬁr) 1 2 { S } ( )

where the matrices U, U™1, V and V™1 are given in (2) and (3). It is seen that the matrix functions
FA9(Q) and F(ls)(QR) are the multivalued functions giving rise to s? branches [4], [9]. The

functions f(k (Q ) and f(g 5,22)((25) denote the st roots of the matrices Q" and QF.
Theorem 1 Let ; be an irreducible fraction, r € Z \ {0} and s € N \ {0}. Then,

GHC GG GHC, GG
09 (Qr)—[ 2 a5 st 2 5T 5]
k)@= v, -G €1 +Cy G=C |
Fr+ Lr Fr o, +—F— __J

2 s 2\/§ s 2 s ! 2\/_ !

and

[ga—Cp Gtl, GG, G-G,

=yl Lo R o BE
(k2 200t Gy gO=6) ga-G GG
3 2 5 2 5 2 EJ

2kqrmi 2k,rmi

) and C; = exp( ) and kq,k, € {0,1,--+,s — 1}.

Proof. The matrix functions F(l's)(Qr) are computed by using the equation (5) in forms

where C; = exp(

. fiel® @ —p/(a —
=l A e )
2k rmiy T4 2kyrmiy T4 2kqrmiy T 2k,rmiy T
1 |exp as’ —exp Bs exp as — exp s
T a-p ( 25k1r7)ri r (Zkzrni) r chlrni )1_1 (Zkzrm'> L
e (A e (B () oy (B
(CI11 _ C12'|\}_C2 (a§+1 _ ﬁ£+1) n Clzrfgcz (a£+1 n B£+1)
f&lfﬁz)(Qr) =91 12=4921 = Clzj—cz ( s = ﬂg) + C12;§C2 (az + ﬁg)
szz = C12-|\}_C2 ( st ﬂg_l) + —612;;2 (ag_l + ﬂg_l)

where C; = exp (@) and C, = exp (@) and kq,k, €{0,1,:--,s —1}. By using the

generalized Binet’s formula, we have achieved the matrix functions f(gcll’sk)z)(Qr).
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Since the matrix Qf has exactly the same eigenvalues as the matrix Q", the matrix functions

]?EC?SISZ)(QE), ki,k, € {0,1,...,s — 1} have been obtained by similar calculation for the matrix Qf and

substituting Q by Qp in the proof above.
If the matrix F(12)(QR) is defined for s = 2 on the F(9)(Q™) (and F(%)(QF)), we obtain

(1,2)

matrix functions f( (QM), which are derived from the four branches kq,k, € {0,1}, and are

k1.kz)
defined by:
Corollary 2 The square root matrices of the matrices Q" and Qg are obtained as
(1,2) (1,2) Fan 1
) ™y — __ ) ™\ — 2 2
f(0,0) (Q ) - (1,1 (Q ) - Ff Ff_l )
2 2
Lr Lr
1 [":+1 -
12)rary — _f(@2)rary — _— | 2 2
f(O,l) (Q ) - f(l,O) (Q ) - \/g[ LZ Lf_ll’
2 2
and
(12) (12) [t
y Ty — » Ty — 2 2
f(0,0) (QR) - f(l'l) (QR) - 2 SFI Lr )
2 2
Gle L
flomy (@R = —f5e) (QR) = 7[ s 5%
2 2

In literature [1], Bicknell motions that there is only a square root matrix of the matrix Q, and by
taking successive odd integer powers of this matrix, the author established
F F
r/2 _ (r+2)/2 r/2 — @2 Ar 7

Q FT/Z F(T—Z)/Z (0,0) (Q )! ( )

which is established by induction, using algebraic manipulation and identities such as
Févay2 ¥ Flya = Frans Faay2Frpa + FrpaF—2y2 = E,

obtained from the generalized Binet’s formulas. Also, taking the determinant of the matrix Q/2
given in (7) and using matrix multiply of different power of the matrix Q”/2, Bicknell derived some

identities such as
Fars)/2Fr-2)2 = Frp = (172 =772,
Fai3)2Fa42)72 + Frar)2Fr2 = Fres) 2
F(2r+1)/2L(2r+1)/2 = Fory1
for the Fibonacci and Lucas numbers whose subscripts are odd multiples of one-half.
Obviously, the property of square root matrix that the square roots of a 2 X 2 matrix A4 are
those 2 X 2 matrices X for which X? = A, we have
e @ x £ @ = @7 (8)
and
FE2 @) X FS2 (@R = Q. ©
By using the equations (8) and (9), we can achieve some results;
Theorem 3 For any odd integer r,
i) Fr  Fr_ —F? =+e™/2,
2 2 2
i) Lr, Lr_ — L} = +5e™/2,
2 2 2
i) L% — 5FF = +4e™/2,
2 2

Proof. It is well known that taking determinants of the matrix equations (8) and (9) give the following
equations;
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2
r
[det (f((,}f,gz)(qr))] = det(Q") = (det(Q)).
Therefore, we obtain that
det (f(scll”zk)z)(Qr)> +e"™/2, and det (f((k1 zk) )(QE)) = +e™mi/2,
When 7 is an even number, these identities are well known Cassini’s identities for the Fibonacci and

Lucas sequences with integer subscript.
Theorem 4 For every integer odd number r

. _ 2 2 _1(;2 2

I) Fr+1—Fg+1+Fg —5(L§+1+L£>,

i) 2L, = L} + 5F7,

2 2
1
iii E. =FrFr _+ Fr Fr=—(LrLr + Lr Lr)=FrLr.
) Tttt Ttz s\Ug gt G zz

Proof. The proof is completed by equalizing of corresponding elements for the matrix equations (8)
and (9).

When r is an even number, similar identities are well known identities for usual the
Fibonacci and Lucas numbers.
Now, let consider the matrix equations

(1,2) (1,2) _ (12
Faes e @™ X fie ey Q™) = £33, (@)
and
(1 2) (1,2) (1 2) i+
fiie,, kz)(Q ) X f(kl,kz)(Q ) k1.k2)(Q ! 2) (r,m, €Z\ {0})
then following identities are valid;
Theorem 5 For all integers 1,1, € Z\ {0}, the following equalities are valid:

i 5Fri+ =Lri . Lr + LriLry,
) 124 124y T MM
ii 5Fri+r, = LriLr + Lry  Lrp,
A
iii) 2Lri+r; = LriLry + 5FriFry,

2 2 2 2 2
iV) 2FT1+T‘2 - FT_]_LT_Z + Lr_lFT_ZJ

2 2 2 2 2
V) Lr1+r2+1 = FT_1+1LT_2+1 +Fr_1Lr_z,

Vi) LT1+T2 — FT1L7"2+1 + Frl 1LT2’

vii) erZ”‘/ZFrl—rz = Frlerzz L = FrayFra, (> 1)

V|||) Zerznl/zLT1 -y = LT1LT2 - SFT1FT‘2, (Tl > Tz)
2 2 2
Proof. The proof is based on method to flnd a Jordan canonical form of matrices, since the Q and Qp

admits to distinct eigenvalues @ and 3, there exists the invertible matrix I and U such that

(1,2) (1,2) _ (1 2) (1,2) T -
Fliepe) @) X foe 1y (@) =V ( Faeien Ug )xf(kl,kl)(foz))v !

f(gclj) (a™¥72) 0 (1,2) -
v (1,2) ¢ pry +1: f(k1k2 @m*)
0 £ griemy|”
and
(1 2) (1,2) (1,2) (1 2)
1R (@) % £2) (QR) = u(f(kl,ki)o ) X FeR, U ) U
f(5(112)(ar1+r2) 0 (1 2 (Q””Z)
IR

where the matrices ]5 and ]6R designate the Jordan canonical form associated to the matrices Q"
and Qg. Consequently, by performing f((&f))(er) X f((éf))(QrZ) = f(ollz))(erJ“’”Z) and f((ollz))(Q ) X

0112))((2 ) f(0112))(Qr1+r2) the desired results are established. For all integers r; and 5, only two
rational cases are considered:
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If r, and 1, are both odd integer, then r; + 1, is even, the equalities (i) — (iv) is achieved

with
1 LT‘1+1 L?"l LT‘2+1 LT‘Z FT’1+T2 1 FT1+T2
— — 2 2
5 _1 Lr1 1 er er 1 Fri+r, Fry 124
2 2 2
and
] 1
5|Fr, = Lr_l Fr, —=Lr, 1 Lm F ri+r
— 2 53 2 52| == z 2 .
4 Lry Frq Lrs Fry 2 |5Fri+r,  Lrq+ry
2 2 dL 2 2 2 2

If 1 is even and r, is odd, then r; + 1, is odd, the equaIities (v) — (vi) are obtained with

Fr Fr [Lr Lr Lrq+r Lri+r
i 71_,,1 71 72+1 2 1+ 2, 1: 2
\/g Fr_1 Fr_1_1 Lr_z er 1 \/_ Lr1+r2 Lr1+r2 1
2 2 L 2
and
Lr, Fr 1 !
\/_ 1 71 FT_Z —_ _2 ‘\/g FT1+T2 — LT1+T2
F L 2 5 2 = — 2 5 2 .
T1 7'2—1 LT'_2 F_Z 2 LT1+‘I"2 F‘I"1+‘I"2
2 2 2 2

Since the matrices f(gcl Zk) )(QT) and f(gcllzk)z)(QE) are nonsingular, there are inverse of these

matrices, let f(gc 1k2)) (™) and f((kl'lki)) (Qf) denote inverse of matrices f((kll"zk)z)(Qr) and f(gcll'lzk)z)(QE),
which are given by

Fr —Fr
Foa2@) = ~1GP @) == | o 5
0,0) =Jayn = iz | —Fr Fr,,
2 2
—Lr Lr
£ (o) = — 1D (gr) = 1 1
(0,1) (1,0) \/germ'/z Lr —LI+1 !
2 2
and
Lr —Fr
[CDon = (SO = | 22
(0,0) ‘<R (1,1) RJ = 5prmi/2|—5Fr Lr |
| 2 2
-1
1,2) 2) V5 [ Fr =L
f(01) (QR)—_f(m) (Qr) = W —Zz SFEZ-
2 2

A lot of identities can be obtained comparing the entries (2,1) via method mentioned above
using the matrix equations, the equalities (vii) — (viii) are obtained with
fom @) X f§52 Q™) = f((olg,z))(Q”‘TZ)
1,2) ,2) (1,2)
fom (QR) % o0 (@) = f&a (QRT™).
In the remainder of this section, we’ll focus on the k; = k, = 0 principal branches of the
previous matrix function:

15) o 1 1) S
1 S 1 N
f(() ()S) (Qr) = Fr ,and f(o ()S) (QR) = ISFT LT]'
Letry, 7, € Z\ {0}, ands E N\ {0}. Then, it can be easily shown that:
T
a) If h ?2 an d are all irreducible fractions, then

f(olos))(QTl) X f((()los))(Qrz) — f(l S)(QT1+T2)
and
(15) (1,8) (1,5) f AT1+T
fom (@R) % fos) (Q ) = fom (@)
b) If %1 is any irreducible fractions and 2 - = l € Z\ {0}, % is any irreducible
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fractions, then
@, @,

fo@m) x Q' = £ @)
and

1s) (1,8) f AT+

o0 (Qr) % Qk = frooy (@2 ).

Consequently, a number of results are obtained by performing mentioned above. For

simplicity’s sake, we omit the details which will appear in a similar argument below.

T Tt . : .
a)lf — ? and S are all irreducible fractions, then
I) FT1+T2+1 = FT1+1FT2+1 + FT‘1FT2, II) FT'1+T'2 P FT‘1FT2 + FT1 1Fr2 1
iii) Fr1+r2 = FrlFr2+1 + Fr1 1Fr2, iv) Fr1+r2 = Fr1+1Fr2 + FT1Fr2 1
V) Fri+r, = E(Lr_1FT_2 + FT_1LT_2), Vi) Lri+r, = E(Lr_1Lr_z + SFT_1FT_2>.
7 S N S S N p S N N S S
b) If ?is any irreducible fractions and ?2 =1 € Z\ {0}, then,
i) FT_1+1+1 = FT_1+1FI+1 + FriF, ii) FT_1+l = FT_1+1FZ + FriFyq,
N N N S N S
iii) FT_1+Z =FriFq + FT_1_1F1, iv) FT_1+1_1 =FriF + Fr_1_1Fl—1:
N S N N S S
v) Fry,, = %(Lr_lFl + Fr_lLl), Vi) Lry,, = %(Lr_lLl + 5Fr_1Fl),

It seems that analogous identities of the Fibonacci and the Lucas numbers with integers
subscripts hold for the Fibonacci and the Lucas numbers with rational subscripts.
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