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ABSTRACT 

In this study, some identities for the Fibonacci and Lucas numbers with 

rational subscripts are established via taken the general techniques from 

matrix theory. For these aims, the two well-known Fibonacci matrices are 

considered, and special functions of the Fibonacci matrices are achieved by 

using certain scalar complex functions. Some identities involving terms of 

the Fibonacci and Lucas numbers with rational subscripts are given by these 

functions of the Fibonacci matrices. 
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1. Introduction 

The Fibonacci and Lucas numbers are the sequence of numbers {𝐹𝑛}𝑛=0
∞  and {𝐿𝑛}𝑛=0

∞  

defined by the linear recurrence equation 𝐹𝑛+2 = 𝐹𝑛+1 + 𝐹𝑛 and 𝐿𝑛+2 = 𝐿𝑛+1 + 𝐿𝑛 with 𝐹1 = 1, 

𝐹0 = 0 and 𝐿1 = 1, 𝐿0 = 2 [3], [11]. Also, the Binet’s formulas for the 𝐹𝑛 and 𝐿𝑛 is given by 𝐹𝑛 =

𝛼𝑛−𝛽𝑛

𝛼−𝛽
, 𝐿𝑛 = 𝛼

𝑛 + 𝛽𝑛 where 𝑎 =
1+√5

2
 and 𝛽 =

1−√5

2
 are the roots of equation 𝑥2 − 𝑥 − 1 = 0. 

Using Binet’s formulas, the definition of the 𝐹𝑛 and 𝐿𝑛 can be extended to negative integers 𝑛 

according to 

𝐹−𝑛 = (−1)
𝑛+1𝐹𝑛, 𝑎𝑛𝑑 𝐿−𝑛 = (−1)

𝑛+1𝐿𝑛, 𝑛 ∈ ℤ+. 

In literature authors have described a lot of methods that may be used to define the Fibonacci and 

the Lucas numbers with real or complex subscripts [6], [7], [8], [10], [11]. First of them, which Halsey 

has observed, is that the Gamma functions extends the notion of Fibonacci sequence to rational 

numbers. Halsey has developed a function which give Fibonacci numbers 𝐹𝑛 for any integer 𝑛, and 
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which also give real Fibonacci numbers 𝐹𝑢 for any rational number 𝑢 [6]. But, 𝐹𝑢+2 = 𝐹𝑢+1 + 𝐹𝑢, 

𝑢 ≥  0 as known the Fibonacci recurrence identity is not valid for the real Fibonacci numbers given 

with this function. However, Parker has revised the recurrence identity and the restriction that 𝑢 

must be rational by using a function 𝐹(𝑥) defined for any real number 𝑥 in the form 

𝐹(𝑥) =
𝛼𝑥 − 𝑐𝑜𝑠(𝜋𝑥)𝛼−𝑥

√5
, 

where 𝛼 = (1 + √5) /2 is the golden ratio [7]. The well known Fibonacci identity 𝐹(2𝑥)  =

 𝐹(𝑥)𝐿(𝑥) is destroyed for the Parker’s function 𝐹(𝑥). Later, Horadam and Shannaon [10] defined 

the following Fibonacci and the Lucas curves with complex notation: 

𝐹(𝑥) =
𝛼𝑥 − 𝑒𝑥𝜋𝑖𝛼−𝑥

√5
, 𝐿(𝑥) = 𝛼𝑥 + 𝑒𝑥𝜋𝑖𝛼−𝑥. 

The functions 𝐹(𝑥) and 𝐿(𝑥) defined in (1) hold for analogous identities of the classical Fibonacci 

and the Lucas numbers [11] and can be called as generalized Binet’s formula for the Fibonacci 

𝐹(𝑥) = 𝐹𝑥 and the Lucas 𝐿(𝑥) =  𝐿𝑥  numbers with real subscripts, respectively. 

The Fibonacci and the Lucas numbers are generated by the matrices as well as the 

recurrence relations and the Binet’s formulas [2], [3], [5], [11]. Matrices provide a different way of 

producing properties of the Fibonacci and the Lucas numbers via multiplying of its different powers 

and taking successive integer powers of a matrix. 

The purpose of this study is to establish the Fibonacci and the Lucas numbers with rational 

subscripts, using matrix functions of the Fibonacci matrices in [2], [3], [5], [11]; 

𝑄 = [
1 1
1 0

]  𝑎𝑛𝑑 𝑄𝑅 =
1

2
 [
1 5
1 1

] , 

via the generalized Binet’s formula, i.e., 

𝐹𝑥 =
𝛼𝑥 − 𝛽𝑥

√5
, 𝐿𝑥 = 𝛼

𝑥 + 𝛽𝑥, 𝑥 ∈  ℝ,               (1) 

and the general techniques taken from matrix theory. 

2. On the Fibonacci and Lucas Sequences with Rational Subscript 

Since the matrices 𝑄 and 𝑄𝑅 possess two distinct eigenvalues 𝛼, is golden ratio 𝛼 =

(1 + √5 )/2 and 𝛽 = 1 − 𝛼 = 𝛼−1, it is well known that there exists any invertible matrices 𝑉 and 𝑈 

to rewrite the matrices 𝑄 = 𝑉 𝐽𝑄 𝑉
−1 and 𝑄 = 𝑈 𝐽𝑄𝑅 𝑈

−1, where 𝐽𝑄  and 𝐽𝑄𝑅  designate the Jordan 

canonical form associated to 𝑄 and 𝑄𝑅. Now, by using the scalar complex function 𝐹(𝑟)(𝑧) = 𝑧𝑟, 𝑟 ∈

ℤ, the matrix functions 𝐹(𝑟)(𝑄) = 𝑉 (𝐹(𝑟)(𝐽𝑄 ))𝑉
−1 = 𝑄𝑟 and 𝐹(𝑟)(𝑄𝑅) = 𝑈 (𝐹

(𝑟) (𝐽𝑄𝑅  ))𝑈
−1 =

𝑄𝑅
𝑟  are known as 

𝐹(𝑟)(𝑄) = [
𝛼 𝛽
1 1

] [
𝛼𝑟 0
0 𝛽𝑟

] [
1 (𝛼 − 𝛽)⁄ −𝛽 (𝛼 − 𝛽)⁄

−1 (𝛼 − 𝛽)⁄ 𝛼 (𝛼 − 𝛽)⁄
] = [

𝐹𝑟+1 𝐹𝑟
𝐹𝑟 𝐹𝑟−1

],               (2) 

𝐹(𝑟)(𝑄𝑅) = [
1 1

1 (𝛼 − 𝛽)⁄ −1 (𝛼 − 𝛽)⁄ ] [
𝛼𝑟 0
0 𝛽𝑟

] [
1 2⁄ (𝛼 − 𝛽) 2⁄

1 2⁄ (𝛽 − 𝛼) 2⁄
] = [

𝐿𝑟 2⁄ 5𝐹𝑟 2⁄

𝐹𝑟 2⁄ 𝐿𝑟 2⁄
].      (3) 

It is well known there are the properties of the Fibonacci matrix 𝑄𝑟 in the (2) and the 

Fibonacci-Lucas matrix 𝑄𝑅
𝑟  in the (3) for 𝑟 ∈ ℤ. But, as we have used the equations (2) and (3) in this 

study and shown any integer powers of the these matrices with the Jordan canonical form 

associated to 𝑄 and 𝑄𝑅. 

Now, let us consider that the complex function 𝐹(1,𝑠)(𝑧) ≡ 𝑧1 𝑠⁄ = 𝑓𝑘
(1,𝑠)

, 𝑠 ∈ ℤ ∖ {0}, 𝑘 ∈

{0,1,… , 𝑠 − 1} gives the 𝑠𝑡ℎ roots of the complex number 𝑧. In other respects, for every nonzero 

complex number 𝑧 = |𝑧|𝑒𝑥𝑝 [𝑖 𝑎𝑟𝑔(𝑧)], (𝜋 ≤ 𝑎𝑟𝑔(𝑧) ≤ 𝜋), let 𝑓𝑘
(1,𝑠)(𝑧) be the 𝑘𝑡ℎ branch of the 

function 𝐹(1,𝑠)(𝑧), these branches may be characterized as follows 
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𝑓𝑘
(1,𝑠)(𝑧) = 𝑧1 𝑠⁄ 𝑒𝑥𝑝 [

1

𝑠
(𝑖 𝑎𝑟𝑔(𝑧) + 2𝑘𝜋𝑖)] , 𝑘 ∈ {0,1,⋯ , 𝑠 − 1}. 

Also, the principal branch of 𝐹(1,𝑠)(𝑧) is denoted by 𝑓0
(1,𝑠)(𝑧) = 𝑧1/𝑠, and for every nonzero 𝑧 in ℂ 

the all branches of 𝐹(1,𝑠)(𝑧) are rewritten as 

𝑓𝑘
(1,𝑠)(𝑧) = 𝑧1 𝑠⁄ 𝑒𝑥𝑝 (

2𝑘𝜋𝑖

𝑠
) , 𝑘 ∈ {0,1,⋯ , 𝑠 − 1}.               (4) 

In fact, using the equations (2) and (3), we have derived the matrices 𝐹(1,𝑠)(𝑄𝑟) =

𝑉 (𝐹(1,𝑠)(𝐽𝑄𝑟 ))𝑉
−1 and 𝐹(1,𝑠)(𝑄𝑅

𝑟) = 𝑈 (𝐹(1,𝑠)  (𝐽𝑄𝑅
𝑟
 
))𝑈−1 defined with the matrix functions; 

𝐹(𝑘1,𝑘2)
(1,𝑠) (𝑄𝑟) = 𝑉 [

𝑓𝑘1
(1,𝑠)(𝛼𝑟) 0

0 𝑓𝑘2
(1,𝑠)(𝛽𝑟)

] 𝑉−1,                (5) 

𝐹(𝑘1,𝑘2)
(1,𝑠) (𝑄𝑅

𝑟) = 𝑈 [
𝑓𝑘1
(1,𝑠)(𝛼𝑟) 0

0 𝑓𝑘2
(1,𝑠)(𝛽𝑟)

]𝑈−1, 𝑘1, 𝑘2 ∈ {0,1,⋯ , 𝑠 − 1},               (6) 

where the matrices 𝑈, 𝑈−1, 𝑉 and 𝑉−1 are given in (2) and (3). It is seen that the matrix functions 

𝐹(1,𝑠)(𝑄) and 𝐹(1,𝑠)(𝑄𝑅) are the multivalued functions giving rise to 𝑠2 branches [4], [9]. The 

functions 𝑓(𝑘1,𝑘2)
(1,𝑠)

(𝑄𝑟) and 𝑓(𝑘1,𝑘2)
(1,𝑠)

(𝑄𝑅
𝑟) denote the 𝑠𝑡ℎ roots of the matrices 𝑄𝑟 and 𝑄𝑅

𝑟 . 

Theorem 1 𝐿𝑒𝑡 
𝑟

𝑠
 𝑏𝑒 𝑎𝑛 𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛, 𝑟 ∈ ℤ ∖ {0} 𝑎𝑛𝑑 𝑠 ∈ ℕ ∖ {0}.  𝑇ℎ𝑒𝑛, 

𝑓(𝑘1,𝑘2)
(1,𝑠) (𝑄𝑟) =

[
 
 
 
𝐶1 + 𝐶2
2

𝐹𝑟
𝑠
+1 +

𝐶1 − 𝐶2

2√5
𝐿𝑟
𝑠
+1

𝐶1 + 𝐶2
2

𝐹𝑟
𝑠
+
𝐶1 − 𝐶2

2√5
𝐿𝑟
𝑠

𝐶1 + 𝐶2
2

𝐹𝑟
𝑠
+
𝐶1 − 𝐶2

2√5
𝐿𝑟
𝑠

𝐶1 + 𝐶2
2

𝐹𝑟
𝑠
−1 +

𝐶1 − 𝐶2

2√5
𝐿𝑟
𝑠
−1]
 
 
 

, 

𝑎𝑛𝑑 

𝑓(𝑘1,𝑘2)
(1,𝑠) (𝑄𝑅

𝑟) =
1

2
[
 
 
 √5

𝐶1 − 𝐶2
2

𝐹𝑟
𝑠
+
𝐶1 + 𝐶2
2

𝐿𝑟
𝑠

𝐶1 + 𝐶2
2

𝐹𝑟
𝑠
+
𝐶1 − 𝐶2

2√5
𝐿𝑟
𝑠

5
𝐶1 + 𝐶2
2

𝐹𝑟
𝑠
+ √5

𝐶1 − 𝐶2
2

𝐿𝑟
𝑠
√5
𝐶1 − 𝐶2
2

𝐹𝑟
𝑠
+
𝐶1 + 𝐶2
2

𝐿𝑟
𝑠]
 
 
 

, 

𝑤ℎ𝑒𝑟𝑒 𝐶1 =  𝑒𝑥𝑝 (
2𝑘1𝑟𝜋𝑖

𝑠
)  𝑎𝑛𝑑  𝐶1 = 𝑒𝑥𝑝 (

2𝑘2𝑟𝜋𝑖

𝑠
)  𝑎𝑛𝑑 𝑘1, 𝑘2 ∈ {0,1,⋯ , 𝑠 − 1}. 

Proof. The matrix functions 𝐹(1,𝑠)(𝑄𝑟) are computed by using the equation (5) in forms 

𝑓(𝑘1,𝑘2)
(1,𝑠) (𝑄𝑟) = [

𝛼 𝛽
1 1

] [
𝑓𝑘1
(1,𝑠)(𝛼𝑟) 0

0 𝑓𝑘2
(1,𝑠)(𝛽𝑟)

] [
1 (𝛼 − 𝛽)⁄ −𝛽 (𝛼 − 𝛽)⁄

−1 (𝛼 − 𝛽)⁄ 𝛼 (𝛼 − 𝛽)⁄
] 

=
1

𝛼 − 𝛽
[
𝑒𝑥𝑝 (

2𝑘1𝑟𝜋𝑖

𝑠
)𝛼

𝑟

𝑠
+1 − 𝑒𝑥𝑝 (

2𝑘2𝑟𝜋𝑖

𝑠
)𝛽

𝑟

𝑠
+1 𝑒𝑥𝑝 (

2𝑘1𝑟𝜋𝑖

𝑠
)𝛼

𝑟

𝑠 − 𝑒𝑥𝑝 (
2𝑘2𝑟𝜋𝑖

𝑠
)𝛽

𝑟

𝑠

𝑒𝑥𝑝 (
2𝑘1𝑟𝜋𝑖

𝑠
)𝛼

𝑟

𝑠 − 𝑒𝑥𝑝 (
2𝑘2𝑟𝜋𝑖

𝑠
)𝛽

𝑟

𝑠 𝑒𝑥𝑝 (
2𝑘1𝑟𝜋𝑖

𝑠
)𝛼

𝑟

𝑠
−1 − 𝑒𝑥𝑝 (

2𝑘2𝑟𝜋𝑖

𝑠
)𝛽

𝑟

𝑠
−1
] 

𝑓(𝑘1,𝑘2)
(1,𝑠) (𝑄𝑟) =

{
  
 

  
 𝑞11 =

𝐶1 + 𝐶2

2√5
(𝛼

𝑟

𝑠
+1 − 𝛽

𝑟

𝑠
+1) +

𝐶1 − 𝐶2

2√5
(𝛼

𝑟

𝑠
+1 + 𝛽

𝑟

𝑠
+1)

𝑞12 = 𝑞21 =
𝐶1 + 𝐶2

2√5
(𝛼

𝑟

𝑠 − 𝛽
𝑟

𝑠) +
𝐶1 − 𝐶2

2√5
(𝛼

𝑟

𝑠 + 𝛽
𝑟

𝑠)

𝑞22 =
𝐶1 + 𝐶2

2√5
(𝛼

𝑟

𝑠
−1 − 𝛽

𝑟

𝑠
−1) +

𝐶1 − 𝐶2

2√5
(𝛼

𝑟

𝑠
−1 + 𝛽

𝑟

𝑠
−1)

 

where 𝐶1 =  𝑒𝑥𝑝 (
2𝑘1𝑟𝜋𝑖

𝑠
) and 𝐶2 =  𝑒𝑥𝑝 (

2𝑘2𝑟𝜋𝑖

𝑠
) and 𝑘1, 𝑘2 ∈ {0,1,⋯ , 𝑠 − 1}. By using the 

generalized Binet’s formula, we have achieved the matrix functions 𝑓(𝑘1,𝑘2)
(1,𝑠)

(𝑄𝑟). 
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Since the matrix 𝑄𝑅
𝑟  has exactly the same eigenvalues as the matrix 𝑄𝑟, the matrix functions 

𝑓(𝑘1,𝑘2)
(1,𝑠) (𝑄𝑅

𝑟), 𝑘1, 𝑘2 ∈ {0,1,… , 𝑠 − 1} have been obtained by similar calculation for the matrix 𝑄𝑅
𝑟  and 

substituting 𝑄 by 𝑄𝑅 in the proof above. 

If the matrix 𝐹(1,2)(𝑄𝑅) is defined for 𝑠 = 2 on the 𝐹(1,𝑠)(𝑄𝑟) (and 𝐹(1,𝑠)(𝑄𝑅
𝑟)), we obtain 

matrix functions 𝑓(𝑘1,𝑘2)
(1,2)

(𝑄𝑟), which are derived from the four branches 𝑘1, 𝑘2 ∈ {0,1}, and are 

defined by: 

Corollary 2 𝑇ℎ𝑒 𝑠𝑞𝑢𝑎𝑟𝑒 𝑟𝑜𝑜𝑡 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 𝑄𝑟 𝑎𝑛𝑑 𝑄𝑅
𝑟  𝑎𝑟𝑒 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑎𝑠 

𝑓(0,0)
(1,2)(𝑄𝑟) = −𝑓(1,1)

(1,2)(𝑄𝑟) = [
𝐹𝑟
2
+1 𝐹𝑟

2

𝐹𝑟
2

𝐹𝑟
2
−1
], 

𝑓(0,1)
(1,2)(𝑄𝑟) = −𝑓(1,0)

(1,2)(𝑄𝑟) =
1

√5
[
𝐿𝑟
2
+1 𝐿𝑟

2

𝐿𝑟
2

𝐿𝑟
2
−1
], 

and 

𝑓(0,0)
(1,2)(𝑄𝑅

𝑟) = −𝑓(1,1)
(1,2)(𝑄𝑅

𝑟) =
1

2
[
𝐿𝑟
2

𝐹𝑟
2

5𝐹𝑟
2

𝐿𝑟
2

], 

𝑓(0,1)
(1,2)(𝑄𝑅

𝑟) = −𝑓(1,0)
(1,2)(𝑄𝑅

𝑟) =
√5

2
[
𝐹𝑟
2

1

5
𝐿𝑟
2

𝐿𝑟
2

𝐹𝑟
2

]. 

In literature [1], Bicknell motions that there is only a square root matrix of the matrix 𝑄, and by 

taking successive odd integer powers of this matrix, the author established  

𝑄𝑟 2⁄ = [
𝐹(𝑟+2) 2⁄ 𝐹𝑟 2⁄

𝐹𝑟 2⁄ 𝐹(𝑟−2) 2⁄
] = 𝑓(0,0)

(1,2)(𝑄𝑟),               (7) 

which is established by induction, using algebraic manipulation and identities such as 

𝐹(𝑟+2) 2⁄
2 + 𝐹𝑟 2⁄

2 = 𝐹𝑟+1,   𝐹(𝑟+2) 2⁄ 𝐹𝑟 2⁄ + 𝐹𝑟 2⁄ 𝐹(𝑟−2) 2⁄ = 𝐹𝑟, 

obtained from the generalized Binet’s formulas. Also, taking the determinant of the matrix 𝑄𝑟/2  

given in (7) and using matrix multiply of different power of the matrix 𝑄𝑟/2, Bicknell derived some 

identities such as 

𝐹(𝑟+2) 2⁄ 𝐹(𝑟−2) 2⁄ − 𝐹𝑟 2⁄
2 = (−1)𝑟 2⁄ = 𝑖𝑟 2⁄ , 

𝐹(𝑟+3) 2⁄ 𝐹(𝑟+2) 2⁄ + 𝐹(𝑟+1) 2⁄ 𝐹𝑟 2⁄ = 𝐹(2𝑟+3) 2⁄ , 

𝐹(2𝑟+1) 2⁄ 𝐿(2𝑟+1) 2⁄ = 𝐹2𝑟+1, 

for the Fibonacci and Lucas numbers whose subscripts are odd multiples of one-half.  

Obviously, the property of square root matrix that the square roots of a 2 × 2 matrix 𝐴 are 

those 2 × 2 matrices 𝑋 for which 𝑋2 = 𝐴, we have 

𝑓(𝑘1,𝑘2)
(1,2) (𝑄𝑟) × 𝑓(𝑘1,𝑘2)

(1,2) (𝑄𝑟) = 𝑄𝑟               (8) 

and 

𝑓(𝑘1,𝑘2)
(1,2) (𝑄𝑅

𝑟) × 𝑓(𝑘1,𝑘2)
(1,2) (𝑄𝑅

𝑟) = 𝑄𝑅
𝑟 .               (9) 

By using the equations (8) and (9), we can achieve some results; 

Theorem 3 𝐹𝑜𝑟 𝑎𝑛𝑦 𝑜𝑑𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑟, 

i) 𝐹𝑟
2
+1𝐹𝑟

2
−1 − 𝐹𝑟

2

2 = ±𝑒𝑟𝜋𝑖 2⁄ , 

ii) 𝐿𝑟
2
+1𝐿𝑟

2
−1 − 𝐿𝑟

2

2 = ±5𝑒𝑟𝜋𝑖 2⁄ , 

iii) 𝐿𝑟
2

2 − 5𝐹𝑟
2

2 = ±4𝑒𝑟𝜋𝑖 2⁄ . 

Proof. It is well known that taking determinants of the matrix equations (8) and (9) give the following 
equations; 
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[𝑑𝑒𝑡 (𝑓(𝑘1,𝑘2)
(1,2) (𝑄𝑟))]

2

= 𝑑𝑒𝑡(𝑄𝑟) = (𝑑𝑒𝑡(𝑄))
𝑟
. 

Therefore, we obtain that 

𝑑𝑒𝑡 (𝑓(𝑘1,𝑘2)
(1,2) (𝑄𝑟)) = ±𝑒𝑟𝜋𝑖 2⁄ , and 𝑑𝑒𝑡 (𝑓(𝑘1,𝑘2)

(1,2) (𝑄𝑅
𝑟)) = ±𝑒𝑟𝜋𝑖 2⁄ . 

When 𝑟 is an even number, these identities are well known Cassini’s identities for the Fibonacci and 
Lucas sequences with integer subscript. 
Theorem 4 𝐹𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑟 

i) 𝐹𝑟+1 = 𝐹𝑟
2
+1
2 + 𝐹𝑟

2

2 =
1

5
(𝐿𝑟

2
+1
2 + 𝐿𝑟

2

2), 

ii) 2𝐿𝑟 = 𝐿𝑟
2

2 + 5𝐹𝑟
2

2, 

iii) 𝐹𝑟 = 𝐹𝑟
2
𝐹𝑟
2
+1 + 𝐹𝑟

2
−1𝐹𝑟

2
=

1

5
(𝐿𝑟

2
𝐿𝑟
2
+1 + 𝐿𝑟

2
−1𝐿𝑟

2
) = 𝐹𝑟

2
𝐿𝑟
2
. 

Proof. The proof is completed by equalizing of corresponding elements for the matrix equations (8) 
and (9). 

When 𝑟 is an even number, similar identities are well known identities for usual the 
Fibonacci and Lucas numbers. 

Now, let consider the matrix equations 

𝑓(𝑘1,𝑘2)
(1,2) (𝑄𝑟1) × 𝑓(𝑘1,𝑘2)

(1,2) (𝑄𝑟2) = 𝑓(𝑘1,𝑘2)
(1,2) (𝑄𝑟1+𝑟2) 

and 

𝑓(𝑘1,𝑘2)
(1,2)

(𝑄𝑅
𝑟1) × 𝑓(𝑘1,𝑘2)

(1,2)
(𝑄𝑅

𝑟2) = 𝑓(𝑘1,𝑘2)
(1,2)

(𝑄𝑅
𝑟1+𝑟2), (𝑟1, 𝑟2 ∈ ℤ ∖ {0}) 

then following identities are valid; 

Theorem 5 𝐹𝑜𝑟 𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠  𝑟1, 𝑟2 ∈ ℤ ∖ {0}, 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑖𝑒𝑠 𝑎𝑟𝑒 𝑣𝑎𝑙𝑖𝑑: 
i) 5𝐹𝑟1+𝑟2

2
+1
= 𝐿𝑟1

2
+1𝐿𝑟2

2
+1 + 𝐿𝑟1

2
𝐿𝑟2
2
, 

ii) 5𝐹𝑟1+𝑟2
2

= 𝐿𝑟1
2
𝐿𝑟2
2
+1 + 𝐿𝑟1

2
−1𝐿𝑟2

2
, 

iii) 2𝐿𝑟1+𝑟2
2

= 𝐿𝑟1
2
𝐿𝑟2
2
+ 5𝐹𝑟1

2
𝐹𝑟2
2
, 

iv) 2𝐹𝑟1+𝑟2
2

= 𝐹𝑟1
2
𝐿𝑟2
2
+ 𝐿𝑟1

2
𝐹𝑟2
2
, 

v) 𝐿𝑟1+𝑟2
2

+1
= 𝐹𝑟1

2
+1𝐿𝑟2

2
+1 + 𝐹𝑟1

2
𝐿𝑟2
2
, 

vi) 𝐿𝑟1+𝑟2
2

= 𝐹𝑟1
2
𝐿𝑟2
2
+1 + 𝐹𝑟1

2
−1𝐿𝑟2

2
, 

vii) 𝑒𝑟2𝜋𝑖 2⁄ 𝐹𝑟1−𝑟2
2

= 𝐹𝑟1
2
𝐹𝑟2
2
−1 − 𝐹𝑟1

2
−1𝐹𝑟2

2
, (𝑟1 > 𝑟2) 

viii) 2𝑒𝑟2𝜋𝑖 2⁄ 𝐿𝑟1−𝑟2
2

= 𝐿𝑟1
2
𝐿𝑟2
2
− 5𝐹𝑟1

2
𝐹𝑟2
2
, (𝑟1 > 𝑟2). 

Proof. The proof is based on method to find a Jordan canonical form of matrices, since the 𝑄 and 𝑄𝑅 
admits to distinct eigenvalues 𝛼 and 𝛽, there exists the invertible matrix 𝑉 and 𝑈 such that 

𝑓(𝑘1,𝑘2)
(1,2) (𝑄𝑟1) × 𝑓(𝑘1,𝑘2)

(1,2) (𝑄𝑟2) = 𝑉 (𝑓(𝑘1,𝑘1)
(1,2)

(𝐽𝑄
𝑟1) × 𝑓(𝑘1,𝑘1)

(1,2)
(𝐽𝑄
𝑟2)) 𝑉−1 

𝑉 [
𝑓(𝑘1)
(1,2)(𝛼𝑟1+𝑟2) 0

0 𝑓(𝑘2)
(1,2)(𝛽𝑟1+𝑟2)

] 𝑉−1 = 𝑓(𝑘1,𝑘2)
(1,2) (𝑄𝑟1+𝑟2) 

and 

𝑓(𝑘1,𝑘2)
(1,2)

(𝑄𝑅
𝑟1) × 𝑓(𝑘1,𝑘2)

(1,2)
(𝑄𝑅

𝑟2) = 𝑈 (𝑓(𝑘1,𝑘1)
(1,2)

(𝐽𝑄𝑅
𝑟1 ) × 𝑓(𝑘1,𝑘1)

(1,2)
(𝐽𝑄𝑅
𝑟2 ))𝑈−1 

𝑈 [
𝑓(𝑘1)
(1,2)(𝛼𝑟1+𝑟2) 0

0 𝑓(𝑘2)
(1,2)(𝛽𝑟1+𝑟2)

] 𝑈−1 = 𝑓(𝑘1,𝑘2)
(1,2)

(𝑄𝑅
𝑟1+𝑟2) 

where the matrices 𝐽𝑄
𝑟  and 𝐽𝑄𝑅

𝑟  designate the Jordan canonical form associated to the matrices 𝑄𝑟  

and 𝑄𝑅
𝑟 . Consequently, by performing 𝑓(0,1)

(1,2)(𝑄𝑟1) × 𝑓(0,1)
(1,2)(𝑄𝑟2) = 𝑓(0,1)

(1,2)(𝑄𝑟1+𝑟2) and 𝑓(0,1)
(1,2)

(𝑄𝑅
𝑟1) ×

𝑓(0,1)
(1,2)

(𝑄𝑅
𝑟2) = 𝑓(0,1)

(1,2)
(𝑄𝑅

𝑟1+𝑟2), the desired results are established. For all integers 𝑟1 and 𝑟2, only two 

rational cases are considered: 
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If 𝑟1 and 𝑟2 are both odd integer, then 𝑟1 + 𝑟2 is even, the equalities (𝑖) − (𝑖𝑣) is achieved 

with 

1

5
[
𝐿𝑟1
2
+1 𝐿𝑟1

2

𝐿𝑟1
2

𝐿𝑟1
2
−1
] [
𝐿𝑟2
2
+1 𝐿𝑟2

2

𝐿𝑟2
2

𝐿𝑟2
2
−1
] = [

𝐹𝑟1+𝑟2
2

+1
𝐹𝑟1+𝑟2

2

𝐹𝑟1+𝑟2
2

𝐹𝑟1+𝑟2
2

−1

] 

and 

5

4
[
𝐹𝑟1
2

1

5
𝐿𝑟1
2

𝐿𝑟1
2

𝐹𝑟1
2

] [
𝐹𝑟2
2

1

5
𝐿𝑟2
2

𝐿𝑟2
2

𝐹𝑟2
2

] =
1

2
[
𝐿𝑟1+𝑟2

2

𝐹𝑟1+𝑟2
2

5𝐹𝑟1+𝑟2
2

𝐿𝑟1+𝑟2
2

]. 

If 𝑟1 is even and 𝑟2 is odd, then 𝑟1 + 𝑟2 is odd, the equalities (𝑣) − (𝑣𝑖) are obtained with 

1

√5
[
𝐹𝑟1
2
+1 𝐹𝑟1

2

𝐹𝑟1
2

𝐹𝑟1
2
−1
] [
𝐿𝑟2
2
+1 𝐿𝑟2

2

𝐿𝑟2
2

𝐿𝑟2
2
−1
] =

1

√5
[
𝐿𝑟1+𝑟2

2
+1

𝐿𝑟1+𝑟2
2

𝐿𝑟1+𝑟2
2

𝐿𝑟1+𝑟2
2

−1

] 

and 

√5

4
[
𝐿𝑟1
2

𝐹𝑟1
2

5𝐹𝑟1
2

𝐿𝑟1
2

] [
𝐹𝑟2
2

1

5
𝐿𝑟2
2

𝐿𝑟2
2

𝐹𝑟2
2

] =
√5

2
[
𝐹𝑟1+𝑟2

2

1

5
𝐿𝑟1+𝑟2

2

𝐿𝑟1+𝑟2
2

𝐹𝑟1+𝑟2
2

]. 

Since the matrices 𝑓(𝑘1,𝑘2)
(1,2) (𝑄𝑟) and 𝑓(𝑘1,𝑘2)

(1,2) (𝑄𝑅
𝑟) are nonsingular, there are inverse of these 

matrices, let 𝑓(𝑘1,𝑘2)
(−1,2)(𝑄𝑟) and 𝑓(𝑘1,𝑘2)

(−1,2)(𝑄𝑅
𝑟) denote inverse of matrices 𝑓(𝑘1,𝑘2)

(1,2) (𝑄𝑟) and 𝑓(𝑘1,𝑘2)
(1,2) (𝑄𝑅

𝑟), 

which are given by 

𝑓(0,0)
(−1,2)(𝑄𝑟) = −𝑓(1,1)

(−1,2)(𝑄𝑟) =
1

𝑒𝑟𝜋𝑖 2⁄
[
𝐹𝑟
2
−1 −𝐹𝑟

2

−𝐹𝑟
2

𝐹𝑟
2
+1
], 

𝑓(0,1)
(−1,2)(𝑄𝑟) = −𝑓(1,0)

(−1,2)(𝑄𝑟) =
1

√5𝑒𝑟𝜋𝑖 2⁄
[
−𝐿𝑟

2
−1 𝐿𝑟

2

𝐿𝑟
2

−𝐿𝑟
2
+1
], 

and 

𝑓(0,0)
(−1,2)(𝑄𝑅

𝑟) = −𝑓(1,1)
(−1,2)(𝑄𝑅

𝑟) =
1

2𝑒𝑟𝜋𝑖 2⁄
[
𝐿𝑟
2

−𝐹𝑟
2

−5𝐹𝑟
2

𝐿𝑟
2

], 

𝑓(0,1)
(−1,2)(𝑄𝑅

𝑟) = −𝑓(1,0)
(−1,2)(𝑄𝑅

𝑟) =
√5

2𝑒𝑟𝜋𝑖 2⁄
[
𝐹𝑟
2

−1

5
𝐿𝑟
2

−𝐿𝑟
2

𝐹𝑟
2

]. 

A lot of identities can be obtained comparing the entries (2,1) via method mentioned above 

using the matrix equations, the equalities (𝑣𝑖𝑖) − (𝑣𝑖𝑖𝑖) are obtained with 

𝑓(0,0)
(1,2)(𝑄𝑟1) × 𝑓(0,0)

(−1,2)(𝑄𝑟2) = 𝑓(0,0)
(1,2)(𝑄𝑟1−𝑟2), 

𝑓(0,0)
(1,2)

(𝑄𝑅
𝑟1) × 𝑓(0,0)

(−1,2)
(𝑄𝑅

𝑟2) = 𝑓(0,0)
(1,2)

(𝑄𝑅
𝑟1−𝑟2). 

In the remainder of this section, we’ll focus on the 𝑘1 = 𝑘2 = 0 principal branches of the 
previous matrix function: 

𝑓(0,0)
(1,𝑠)(𝑄𝑟) = [

𝐹𝑟
𝑠
+1 𝐹𝑟

𝑠

𝐹𝑟
𝑠

𝐹𝑟
𝑠
−1
] , 𝑎𝑛𝑑 𝑓(0,0)

(1,𝑠)(𝑄𝑅
𝑟) =

1

2
[
𝐿𝑟
𝑠

𝐹𝑟
𝑠

5𝐹𝑟
𝑠

𝐿𝑟
𝑠

]. 

Let 𝑟1, 𝑟2  ∈ ℤ ∖ {0}, and 𝑠 ∈ ℕ ∖ {0}. Then, it can be easily shown that: 

𝑎) 𝐼f 
𝑟1
𝑠
,
𝑟2
𝑠
 and  

𝑟1 + 𝑟2
𝑠

 𝑎𝑟𝑒 𝑎𝑙𝑙 𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠, 𝑡ℎ𝑒𝑛 

𝑓(0,0)
(1,𝑠)(𝑄𝑟1) × 𝑓(0,0)

(1,𝑠)(𝑄𝑟2) = 𝑓(0,0)
(1,𝑠)(𝑄𝑟1+𝑟2) 

𝑎𝑛𝑑 

𝑓(0,0)
(1,𝑠)

(𝑄𝑅
𝑟1) × 𝑓(0,0)

(1,𝑠)
(𝑄𝑅

𝑟2) = 𝑓(0,0)
(1,𝑠)

(𝑄𝑅
𝑟1+𝑟2). 

𝑏) 𝐼f 
𝑟1

𝑠
 is any irreducible fractions and 

𝑟2

𝑠
=  𝑙 ∈ ℤ ∖ {0},   

𝑟1+𝑟2

𝑠
  is any irreducible  
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fractions, then 

𝑓(0,0)
(1,𝑠)(𝑄𝑟1) × 𝑄𝑙 = 𝑓(0,0)

(1,𝑠)(𝑄𝑟1+𝑟2) 

𝑎𝑛𝑑 

𝑓(0,0)
(1,𝑠)

(𝑄𝑅
𝑟1) × 𝑄𝑅

𝑙 = 𝑓(0,0)
(1,𝑠)

(𝑄𝑅
𝑟1++𝑟2). 

Consequently, a number of results are obtained by performing mentioned above. For 
simplicity’s sake, we omit the details which will appear in a similar argument below. 

𝑎) 𝐼f 
𝑟1
𝑠
,
𝑟2
𝑠
 and  

𝑟1 + 𝑟2
𝑠

 𝑎𝑟𝑒 𝑎𝑙𝑙 𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠, 𝑡ℎ𝑒𝑛 

i)  𝐹𝑟1+𝑟2
𝑠

+1
= 𝐹𝑟1

𝑠
+1𝐹𝑟2

𝑠
+1 + 𝐹𝑟1

𝑠
𝐹𝑟2

𝑠
,                 ii)  𝐹𝑟1+𝑟2

𝑠
−1
= 𝐹𝑟1

𝑠
𝐹𝑟2

𝑠
+ 𝐹𝑟1

𝑠
−1𝐹𝑟2

𝑠
−1, 

iii)  𝐹𝑟1+𝑟2
𝑠

= 𝐹𝑟1
𝑠
𝐹𝑟2

𝑠
+1 + 𝐹𝑟1

𝑠
−1𝐹𝑟2

𝑠
,                   iv)  𝐹𝑟1+𝑟2

𝑠

= 𝐹𝑟1
𝑠
+1𝐹𝑟2

𝑠
+ 𝐹𝑟1

𝑠
𝐹𝑟2

𝑠
−1, 

v)  𝐹𝑟1+𝑟2
𝑠

=
1

2
(𝐿𝑟1

𝑠
𝐹𝑟2

𝑠
+ 𝐹𝑟1

𝑠
𝐿𝑟2
𝑠
),                      vi)  𝐿𝑟1+𝑟2

𝑠

=
1

2
(𝐿𝑟1

𝑠
𝐿𝑟2
𝑠
+ 5𝐹𝑟1

𝑠
𝐹𝑟2

𝑠
). 

𝑏) 𝐼f 
𝑟1
𝑠
𝑖𝑠 𝑎𝑛𝑦 𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑛𝑑  

𝑟2
𝑠
=  𝑙 ∈ ℤ ∖ {0}, tℎ𝑒𝑛, 

i)  𝐹𝑟1
𝑠
+𝑙+1 = 𝐹𝑟1

𝑠
+1𝐹𝑙+1 + 𝐹𝑟1

𝑠
𝐹𝑙 ,                       ii)  𝐹𝑟1

𝑠
+𝑙 = 𝐹𝑟1

𝑠
+1𝐹𝑙 + 𝐹𝑟1

𝑠
𝐹𝑙−1, 

iii)  𝐹𝑟1
𝑠
+𝑙 = 𝐹𝑟1

𝑠
𝐹𝑙+1 + 𝐹𝑟1

𝑠
−1𝐹𝑙 ,                         iv)  𝐹𝑟1

𝑠
+𝑙−1 = 𝐹𝑟1

𝑠
𝐹𝑙 + 𝐹𝑟1

𝑠
−1𝐹𝑙−1, 

v)  𝐹𝑟1
𝑠
+𝑙 =

1

2
(𝐿𝑟1

𝑠
𝐹𝑙 + 𝐹𝑟1

𝑠
𝐿𝑙),                            vi)  𝐿𝑟1

𝑠
+𝑙 =

1

2
(𝐿𝑟1

𝑠
𝐿𝑙 + 5𝐹𝑟1

𝑠
𝐹𝑙), 

It seems that analogous identities of the Fibonacci and the Lucas numbers with integers 
subscripts hold for the Fibonacci and the Lucas numbers with rational subscripts. 
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