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ABSTRACT 

We consider the problem of finding an interval estimate for system 

reliability via the CHA algorithm when the component reliabilities are 

estimated from arbitrarily right censored data. The system is assumed to be 

composed of independent components. A closed form expression for the 

standard error of the system reliability, for a given mission of duration, is 

obtained. Some well known systems like series, parallel and 2-out-of-3 are 

considered to illustrate the method of calculating the required lower 

confidence limit.  
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1. Introduction 

In this paper, we consider a coherent structure composed of independent  components. The 

problem is to find a lower confidence limit for the system reliability. We confine our attention to the 

lower confidence limit of system reliability, since it is of most interest to the reliability practitioners 

in the context of interval estimation of system reliability.  

An excellent account on the topic of interval estimation of system reliability is available in 

[5]. The first step in obtaining the lower confidence limit of a coherent system is to get a point 

estimate of the system reliability R(t). The basis of estimation of system reliability is the following 

model (under the assumption of independence of components, see [4]: 

R(t) =  
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which connects the system reliability R(t) with the component reliabilities )(tr i , ,,...,1 ni  for a 

mission of duration t. If )(
^

t
r i

denotes  the MLE  of ith component reliability, then the MLE of R(t) is 

given by: 
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In principle, one can obtain 









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RVar from (1.2), and thus, the lower 100(1-)% confidence limit is 

calculated as  
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where z is the -fractile of the standard normal distribution (see [6]). Unfortunately, this does 

not work well, because the distribution of R
^

is basically skewed and a skewed distribution is 

approximated by a symmetric distribution that is normal here. As a result the confidence intervals 

may be outside the interval [0,1] as noted by Easterling [6]. Dissatisfaction with this approximation 

led Easterling to consider the use of a binomial distribution with parameters n
^

and R
^

where n
^

= 

. This is justified in the light of the following observation: since R
^

is a probability and it is 

obtained via binomial sampling, it is logical to treat R
^

as a binomial estimate based on n
^

 trials. 

Thus, the component test results can be thought of as being equivalent to system results of n
^

 tests 

with n
^

R
^

successes. From this consideration one can now easily obtain a lower confidence limit for 

R(t) as follows.  

Consider a hypothetical single binomial experiment (see [5]) where Y denotes the number of 

system survivals for mission time t such that Y follows a binomial distribution with parameters n
^

and R
^

where  

 n
^

= .                    (1.4)  

Thus, we can determine a 100(1- )% lower confidence interval limit for R that satisfies  
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where . Using a relationship between the binomial CDF and the incomplete beta function 

one can solve the equation (4.2).  Hence, the required lower confidence limit is obtained from: 
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where  baB ,; is the  -fractile of the beta distribution with parameters a and b not being 

necessarily integers.  

The component reliabilities can be estimated from two types of failure data viz.  (i) Binomial 

Test Data and (ii) arbitrarily right censored data.   

Suppose we have a binomial test data where ni number of items of component i tested for 

t hours. Let f i
denote the number of failures of component i  during the test. If we record the 

status (failed/ not failed) of an item during test, then we have a sequence of  ni Bernoulli trials with 

success probability .,...,1),( nitrp ii
 Thus, 
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In the two papers in ([1] and [2]) , we have treated the same problem as we are discussing here for 

the cases (i) components with exponential distribution and (ii) component reliabilities are estimated 

from binomial test data. In the present paper, we use Kaplan-Meier estimation procedure to get 

estimates of the component reliabilities. 

The paper is organized as follows. In section 2, we define the Kaplan-Meier estimate for 

arbitrarily right censored data. Section 3 contains the analytical expression for the standard error of 

the estimate of reliability of a coherent system and the corresponding formulas for series, parallel 

and 2-out-of-3 systems are worked out. Three examples are given in section 4 to illustrate the 

technique involved in calculating the lower confidence limit using the CHA algorithm [4].  

2. Kaplan-Meier Estimate 

We follow the treatment given in Hoyland and Rausand (1994). In an incomplete data set, 

we have the data of the following kind  ),(  iiY , i=1,…,n, where n items are put on test at time 0 and 

the censoring time for item i is S i
which is stochastic. Here ),min( STY iii

 , where T i
is the lifetime 

of component i if it is not exposed to censoring and 1 i
if ST ii

 and 0 i
otherwise.  

In this scenario, the Kaplan-Meier estimate of the component reliability r(t) is given by: 
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where d j
represents the number of items fail at time t j )(

and n j
is the number of items at risk 

immediately before time t j )(
. An estimate of variance of 

^

r (t) is given by: 
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3.  Variance of R
^

: 

If 
^

r i
is an estimate of ith component reliability, then an obvious estimate of R is given by: 
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RVar can be calculated from (3.3) and (3.4). 

The computations involved in (3.5) are straightforward in the light of the CHA algorithm described in 

[4]. Few examples are given below: 
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(i) Series system: 
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(iii) 2-out-of-3 system: 
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4. Illustrative Examples: 

Example 4.1: Series system with two identical components 

Let r denote the reliability of each component. Then, 
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One can easily show that 
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We use the component failure  data in Table 9.3, ([7], p.397) to get a Kaplan-Meier estimate of r, the 

component reliability. The SPSS survival analysis of the data is given below:    

Table 4.1: SPSS analysis of the failure data in Hayland and Rausand ([7]) 

Time Cumulative survival  Standard error 

31.70 .9375 .0605 

39.20 .8750 .0827 

57.20 .8125 .0976 

65.00* .8125 .0976 

65.80 .7445 .1105 

70.00 .6771 .1194 

75.00* .6771 .1194 

75.20* .6771 .1194 

87.50* .6771 .1194 

88.30* .6771 .1194 

94.20* .6771 .1194 

101.70* .6771 .1194 

105.80 .5078 .1718 

109.20* .5078 .1718 

110.00 .2539 .1990 

130.00* .2539 .1990 

                                   * indicates the censoring observation 
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Thus,  
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0.708.650258.
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Table 4.2:Calculations of the lower confidence limit )1,;05.0(
^

 xnxBRL  

RVar
^

 R
^

 n
^

 
x  RL

 

.0101 .8798 10.4659 9.2084 .5906 

.0173 .7656 10.3652 7.9359 .4639 

.0221 .6609 10.1314 6.6965 .3593 

.0257 .5550 9.5858 5.3203 .2600 

.0273 .4583 9.0857 4.1642 .1796 

.0447 .2580 4.2786 1.1041 .0168 

.0447 .0645 1.3498 .0871 3.78E-16 

Example 4.2: Consider a system with a single component. Let the component failure data be the 

same as remission times of leukemia patients under drug Placebo given in ([8],p.81). This example 

generates more confidence in the Easterling’s approach (*6+). The results are given in the following 

table. 

Table 4.2: 95% lower confidence limit for R (10+) and R (20+). 

Method R(10+) R(20+) 

Easterling Approach .20 .02 

Normal approximation .17 0.0 

Log(-log) transformation  .18 .016 

Likelihood ratio .20 .016 

The values for R(10+) and R(20+) correspond to Normal approximation, Log(-log) transformation and 

Likelihood ratio method respectively.  The details of the methods are available in ([8], p.90).  

Example 4.3: Consider now a parallel system with two components. Let the failure times of the 

components be the same as that of the remission times for two groups of leukemia patients 

subjected to two kinds of drugs---- one under 6-MP and the other under Placebo (see [8], for 

details), so that  
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For component 2:  0112.
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where  )10()10(
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. The time point 10 is taken for sake of illustration only. 

Then, the variance of the system reliability can be calculated to be using the CHA algorithm: 
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Thus, the 95% lower confidence limit )1,;05.0(
^

 xnxBRL  is given in the following table: 

Table 4.3: The 95% lower confidence limit for the parallel system considered in Example 4.3: 


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
)10(

^

RVar  
)10(

^

R  n
^

 
x  

)1,;05.0(
^

 xnxBRL  

0.0282 0.847107 4.592792 3.890586 0.362789 
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