Vol.6.Issue.2.2018 (April-June) ©KY PUBLICATIONS

http://www.bomsr.com Email:editorbomsr@gmail.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

ON INTUITIONISTIC MENGER SPACES

SERVET KUTUKCU

Department of Mathematics, Faculty of Science and Arts, Ondokuz Mayis University, Kurupelit, 55139 Samsun, Turkey.

Email:skutukcu@omu.edu.tr

ABSTRACT

In this paper, we obtain the class of topological intuitionistic Menger spaces coincides with semi-metrizable topological spaces.

Key words and phrases. t-norm; t-conorm; semi-metric; intuitionistic probabilistic metric; intuitionistic Menger space, topology.

2000 Mathematics Subject Classi. cation. 54H70, 54A40.

Introduction

In 2007, the authors [3] defined non-distance distribution function, using that they introduced intuitionistic Menger spaces as a generalization of Menger spaces, discussed to what topological spaces are intuitionistic Menger metrizable and whether this can be discerned by the t-norm and t-conorm on the space in Menger triangle relations. Building of that work, we prove the class of topological intuitionistic Menger spaces coincides with semi-metrizable topological spaces and no conditions weaker than $\sup\{T(t, t): t < 1\} = 1$ and $\inf\{S(t, t): t > 0\} = 0$ can guarantee that an intuitionistic Menger space is topological. Let us call same basic definitions,

Definition 1 A binary operation $T: [0,1] \times 0,1] \rightarrow 0,1$ is a t-norm if T is satisfying the following conditions:

(a) T is commutative and associative,

(b) T(a, 1) = a for all $a \in 0, 1$],

(c) $T(a, b) \leq T(c, d)$ whenever $a \leq c$ and $b \leq d$, and $a, b, c, d \in [0,1]$.

Definition 2 A binary operation $S: [0,1] \times 0,1] \rightarrow 0,1$ is a t-conorm if S is satisfying the following conditions:

(a) S is commutative and associative,

(b) S(a, 0) = a for all $a \in 0, 1$],

(c) $S(a, b) \leq S(c, d)$ whenever $a \leq c$ and $b \leq d$, and $a, b, c, d \in [0, 1]$.

Remark 1 The concepts of t-norms and t-conorms are known as the axiomatic skeletons that we use for characterizing fuzzy intersections and unions, respectively [2]. These concepts were originally introduced by Menger [5] in his study of statistical metric spaces developed by Schweizer and Sklar [7,8], and Morrel and Nagata [6]. In literature, several properties and examples for these concepts were proposed.

Definition 3 ([8]) A distance distribution function is a function $F: [-\infty, \infty] \to 0, 1$ which is left continuous on \mathbb{R} , non-decreasing and $F(-\infty) = 0$, $F(\infty) = 1$.

We denote by \triangle the family of all distance distribution functions on $[-\infty, \infty]$ and by D the subsets of \triangle containing functions F such that $\lim_{t\to\infty} F(t) = 1$. H is a special element of D defined by

$$H(t) = \begin{cases} 0, & \text{if } t \le 0\\ 1, & \text{if } t > 0 \end{cases}$$

If X is a nonempty set, $F: X \times X \to \triangle$ is called a probabilistic distance on X and F(x, y) is usually denoted by F_{xy} .

Definition 4 ([3]) A non-distance distribution function is a function $L: [-\infty, \infty] \to 0, 1]$ which is right continuous on \mathbb{R} , non-increasing and $L(-\infty) = 1$, $L(\infty) = 0$.

We will denote by ∇ the family of all non-distance distribution functions on $[-\infty, \infty]$ and denote by E the subsets of ∇ containing functions L such that $\lim_{t\to\infty} L(t) = 0$. G is a special element of E defined by

$$G(t) = \begin{cases} 1, & \text{if} t \le 0\\ 0, & \text{if} t > 0 \end{cases}$$

If X is a nonempty set, $L: X \times X \to \nabla$ is said to be a probabilistic non-distance on X and L(x, y) will be denoted by L_{xy} .

Definition 5 ([3]) A triple (X, F, L) is said to be an intuitionistic probabilistic metric space (IPM-space) if X is a nonempty set, F is a probabilistic distance and L is a probabilistic non-distance on X satisfying the following conditions: for all $x, y, z \in X$ and t, s > 0

1.
$$F_{xy}(t) + L_{xy}(t) \le 1;$$

2.
$$F_{xy} = H$$
 if and only if $x = y$;

3.
$$F_{xy} = F_{yx}$$
;

4. If
$$F_{xz}(t) = 1$$
 and $F_{zy}(s) = 1$, then $F_{xy}(t + s) = 1$;

5.
$$L_{xy} = G$$
 if and only if $x = y$;

6.
$$L_{xy} = L_{yx}$$
;

7. If
$$L_{xz}(t) = 0$$
 and $L_{zy}(s) = 0$, then $L_{xy}(t+s) = 0$.

In addition, if Menger triangle inequalities

- 1. $F_{xy}(t+s) \ge T(F_{xz}(t), F_{zy}(s));$
- 2. $L_{xv}(t+s) \leq S(L_{xz}(t), L_{zv}(s)),$

where T is a t-norm and S is a t-conorm are verified, then (X, F, L, T, S) is called an intuitionistic Menger space. The functions $F_{xy}(t)$ and $L_{xy}(t)$ denote the degree of nearness and the degree of non-nearness between x and y with respect to t, respectively.

Remark 2 Every Menger space (X, F, T) is an intuitionistic Menger space of the form (X, F, 1 - F, T, S) such that t-norm T and t-conorm S are associated [3], i.e. S(x, y) = 1 - T(1 - x, 1 - y) for any $x, y \in X$.

Example 1 ([3]) Let (X, d) be a metric space. Then the metric d induces a distance distribution function F defined by $F_{xy}(t) = H(t - d(x, y))$ and a non-distance distribution function L defined by $L_{xy}(t) = G(t - d(x, y))$ for all $x, y \in X$ and t > 0. If t-norm T is $T(a, b) = min\{a, b\}$ and t-conorm S is $S(a, b) = min\{1, a + b\}$ for all $a, b \in 0, 1]$ then (X, F, L, T, S) is an intuitionistic Menger space.

We call this intuitionistic Menger space induced by a metric d the induced intuitionistic Menger space.

Remark 3 Note the above example holds even with the t-norm $T(a, b) = min\{a, b\}$ and t-conorm $S(a, b) = max\{a, b\}$, and hence (X, F, L, T, S) is an intuitionistic Menger space with respect to any t-norm and t-conorm. Also note that, in the above example, t-norm T and t-conorm S are not associated.

1 Some Properties of Intuitionistic Menger Spaces

In [3], we proved given a t-norm T and a t-conorm S of an intuitionistic Menger space (X, F, L, T, S)satisfying $\sup\{T(t, t): t < 1\} = 1$ and $\inf\{S(t, t): t > 0\} = 0$, the family $\{N_x(\epsilon, \lambda): \epsilon > 0, \lambda \in (0,1)\}$ taken as a neighborhood base at x gives rise to a metrizable topology. In this section, we shall prove that the class of topological intuitionistic Menger spaces coincides with semi-metrizable topological spaces, and no conditions on T and S weaker than $\sup\{T(t, t): t < 1\} = 1$ and $\inf\{S(t, t): t > 0\} =$ 0, respectively, can guarantee that an intuitionistic Menger space is topological.

Definition 6 ([4]) A topological space (X, d, τ) is a semi-metric space if d is a semi-metric, i.e. $d: X \times X \to \mathbb{R}$ is a binary function satisfying $d(x, y) \ge 0$, d(x, y) = 0 iff x = y, and d(x, y) = d(y, x) such that for each x in X the balls $B_{\epsilon}(x) = \{y \in X: d(x, y) < \epsilon, \epsilon > 0\}$ form a neighborhood base at x with regard to the topology τ .

Theorem 1 If (X, d, τ) is a semi-metric space, then there exist F and L such that (X, F, L, T, S) is an intuitionistic Menger space and such that the family of neighborhoods $\{N_x(\epsilon, \lambda): \epsilon > 0, \lambda \in (0,1)\}$ induces the topology $\tau_{(F,L)}$.

Proof. For each $x, y \in X$, define

$$F_{xy}(t) = \begin{cases} 1 - \frac{d(x, y)}{t + d(x, y)}, & \text{if } t > 0\\ 0, & \text{if } t \le 0 \end{cases}$$
$$I_{xy}(t) = \begin{cases} 1 - \frac{t}{t + d(x, y)}, & \text{if } t > 0 \end{cases}$$

$$L_{xy}(t) = \begin{pmatrix} t + u(x, y) \\ 1, & \text{if } t \le 0 \\ y \in X \end{pmatrix}$$
 and $\{L_{xy}: x, y \in X\}$ satisfies (a)-(g) of Definition 5, and (h) and (i) are satisfies

 $\{F_{xy}: x, y \in X\}$ and $\{L_{xy}: x, y \in X\}$ satisfies (a)-(g) of Definition 5, and (h) and (i) are satisfied for the t-norm T:

$$T(a,b) = \begin{cases} a, & b = 1 \\ b, & a = 1 \\ 0, & a \neq 1 \text{ and } b \neq 1 \end{cases}$$

and for the t-conorm S:

$$S(a,b) = \begin{cases} a, & b = 0\\ b, & a = 0\\ 1, & a \neq 0 \text{ and } b \neq 0 \end{cases}$$

Moreover, $N_x(\epsilon, \lambda) = B_{\lambda \epsilon/1 - \lambda}(x)$ for $\epsilon > 0$ and $\lambda \in (0,1)$. Thus, the resulting intuitionistic Menger space is topological with regard to the neighborhoods $N_x(\epsilon, \lambda)$ and this topology is precisely $\tau_{(F,L)}$.

Theorem 2 If (X, F, L, T, S) is an intuitionistic Menger space such that there exists a topology $\tau_{(F,L)}$ on X for which $\{N_x(\epsilon, \lambda): \epsilon > 0, \lambda \in (0,1)\}$ is a neighborhood base at x for each x in X, then $(X, \tau_{(F,L)})$ is semi-metrizable.

Proof. Let $x, y \in X$. We define a semi-metric d as follows

$$d(x, y) = \min\{1 + \epsilon - F_{xy}(\epsilon), \epsilon + L_{xy}(\epsilon)\}$$

for all $\epsilon > 0$. Then d(x, x) = 0 and if d(x, y) = 0 then for each $\delta > 0$ there exists $\epsilon > 0$ such that $1 + \epsilon - F_{xy}(\epsilon) < \delta$ and $\epsilon + L_{xy}(\epsilon) < \delta$. Thus $\epsilon < \delta$ and $y \in N_x(\epsilon, \delta) \subseteq N_x(\delta, \delta)$. So, by (b) and (e) in Definition 5,

$$\bigcap_{x \geq 0} N_x(\delta, \delta) = \{x\}$$

and therefore x = y. And d is symmetric. Thus, d is a semi-metric on X. $N_x(\frac{\delta}{2}, \frac{\delta}{2}) \subset B_\delta(x)$ because $F_{xy}(\frac{\delta}{2}) > 1 - \frac{\delta}{2}$ and $L_{xy}(\frac{\delta}{2}) < \frac{\delta}{2}$ imply $1 + \frac{\delta}{2} - F_{xy}(\frac{\delta}{2}) < \delta$ and $\frac{\delta}{2} + L_{xy}(\frac{\delta}{2}) < \delta$, and $B_\delta(x) \subset N_x(\epsilon, \epsilon)$ because $d(x, y) < \epsilon$ implies $1 + \epsilon^{|} - F_{xy}(\epsilon^{|}) < \epsilon$ and $\epsilon^{|} + L_{xy}(\epsilon^{|}) < \epsilon$ for some $\epsilon^{|} > 0$. Thus, $\epsilon^{|} < \epsilon$ and we have $F_{xy}(\epsilon) \ge F_{xy}(\epsilon^{|}) > 1 + \epsilon^{|} - \epsilon > 1 - \epsilon$, $L_{xy}(\epsilon) \le L_{xy}(\epsilon^{|}) < \epsilon - \epsilon^{|} < \epsilon$

which implies $y \in N_x(\epsilon, \epsilon)$. If $\{N_x(\epsilon, \lambda): \epsilon > 0, \lambda \in (0,1)\}$ is a neighborhood base at x for each x for a topology, then so is the family $\{B_{\epsilon}(x): \epsilon > 0\}$, proving our assertion.

Remark 4 Theorems 1 and 2 result in the fact that those intuitionistic Menger spaces which are topological in the aforementioned sense are precisely those semi-metrizable topological spaces.

As mentioned, there is a sufficient condition on a t-norm T and a t-conorm S such that an intuitionistic Menger space (X, F, L, T, S) with these norms be metrizable, no weaker condition on T and S can guarantee the space be topological:

Theorem 3 Let T and S be a t-norm and t-conorm, respectively. If $sup_{t<1}T(t,t) < 1$ and $inf_{t>0}S(t,t) > 0$ then there exists an intuitionistic Menger space (X, F, L, T, S) such that the family $\{N_x(\epsilon, \lambda): \epsilon > 0, \lambda \in (0,1)\}$ can not be a neighborhood base at x for any topology.

Proof. Choose $\alpha > 0$ such that $\sup_{t < 1} T(t, t) \le \alpha < 1$ and $\inf_{t > 0} S(t, t) \ge 1 - \alpha > 0$. Let $X := \{(p, q) \in \mathbb{R}^2 : 0 \le p, q < 1 - \alpha\}.$

For given $x = (p_1, q_1)$ and $y = (p_2, q_2)$ define F_{xy} and L_{xy} as follows: If $p_1 = p_2$ or $q_1 = q_2$,

$$F_{xy}(\epsilon) = \begin{cases} 0, & \text{if } \epsilon \le 0\\ 1 - \max\{|p_1 - p_2|, |q_1 - q_2|\} & \text{if } 0 < \epsilon \le 1\\ 1, & \text{if } \epsilon > 1 \end{cases}$$

$$L_{xy}(\epsilon) = \begin{cases} 1, & \text{if } \epsilon \le 0\\ \max\{|p_1 - p_2|, |q_1 - q_2|\} & \text{if } 0 < \epsilon \le 1\\ 0, & \text{if } \epsilon > 1 \end{cases}$$

If $p_1 \neq p_2$ and $q_1 \neq q_2$,

$$F_{xy}(\epsilon) = \begin{cases} 0, & \text{if} \epsilon \leq 0\\ \alpha & \text{if} 0 < \epsilon \leq 1\\ 1, & \text{if} \epsilon > 1 \end{cases}$$

$$L_{xy}(\epsilon) = \begin{cases} 1, & \text{if}\epsilon \leq 0\\ 1-\alpha & \text{if}0 < \epsilon \leq 1\\ 0, & \text{if}\epsilon > 1 \end{cases}$$

Since the conditions of Definition 5 are satisfied, (X, F, L, T, S) is an intuitionistic Menger space with T and S as a t-norm and a t-conorm, respectively.

Now consider $x, y, z \in X$ and $t, s \ge 0$. If $F_{xy}(t+s) = 1$ and $L_{xy}(t+s) = 0$, then $F_{xy}(t+s) \ge T(F_{xz}(t), F_{zy}(s))$ and $L_{xy}(t+s) \le S(L_{xz}(t), L_{zy}(s))$. Also, if $F_{xy}(t+s) = 0$ and $L_{xy}(t+s) = 1$,

then t + s = 0 thus t = s = 0, and $F_{xz}(t) = 0 = F_{zy}(s)$ and $L_{xz}(t) = 1 = L_{zy}(s)$ so that $F_{xy}(t + s) \ge T(F_{xz}(t), F_{zy}(s))$ and $L_{xy}(t + s) \le S(L_{xz}(t), L_{zy}(s))$. If $0 \ne F_{xy}(t + s) \ne 1$ and $0 \ne L_{xy}(t + s) \ne 1$ then $F_{xy}(t + s) \ge \alpha$ and $L_{xy}(t + s) \le \alpha$. If x = z then $F_{xy}(t + s) \ge F_{xy}(s) = T(1, F_{xy}(s)) \ge T(F_{xz}(t), F_{zy}(s))$

$$L_{xy}(t+s) \le L_{xy}(s) = S(0, L_{xy}(s)) \le S(L_{xz}(t), L_{zy}(s))$$

likewise if y = z. In the case $x \neq z$ and $y \neq z$ since $\sup_{t < 1} T(t, t) \leq \alpha$, $\inf_{t > 0} S(t, t) \geq 1 - \alpha$ and monotonicity holds for T and S, it suffices to show that $F_{xz}(t) < 1$, $F_{zy}(s) < 1$, $L_{xz}(t) > 0$ and $L_{zy}(s) > 0$; but we have $F_{xy}(t + s) < 1$ and $L_{xy}(t + s) > 0$, thus $t \leq 1$ and $s \leq 1$ which implies $F_{xz}(t) < 1$, $F_{zy}(s) < 1$, $L_{xz}(t) > 0$ and $L_{zy}(s) > 0$ since x, y, z are distinct. Thus triangle inequalities in Definition 5 are satisfied. We omit rest of the proof because, it is the same as the classical case.

Remark 5 Theorems 1 and 2 can be generalized for the neighborhood systems of ϵ -spheres of a semimetric and the neighborhoods of an IPM-space regardless of whether they are compatible with a topology in the classical sense, since a neighborhood system, in the terminology of Mamuzic [4], generates a g-topology. A further generalization of Theorem 6 is possible by considering the neighborhoods

 $N_{x}^{\varphi}(\epsilon,\lambda) = \left\{ y \in X : F_{xy}(\epsilon) > \varphi(\epsilon) - \lambda, L_{xy}(\epsilon) < \lambda \right\}$

for a profile function φ on \mathbb{R}^+ , as defined by Fritsche [1]. The proof is analogous to that of Theorem 6.

Conclusion 1: *Is it possible to apply Theorem 3 to other intuitionictic spaces built on triangular norm system?*

References

- [1]. R. Fritsche, *Topologies for probabilistic metric spaces*, Fundamenta Mathematica **72** (1971), 7-16.
- [2]. E.P. Klement, R. Mesiar, E. Pap, *Triangular norms*, Kluwer Academic Pub. Trends in Logic 8 (Dordrecht, 2000).
- [3]. S. Kutukcu, A. Tuna, A.T. Yakut, Generalized contraction mapping principle in intuitionistic Menger spaces and application to differential equations, Appl. Math. Mech. 28 (2007), 799-809.
- [4]. Z. Mamuzic, Introduction to general topology, P. Noordhoff (Groningen, 1963).
- [5]. K. Menger, *Statistical metric spaces*, Proc. Nat. Acad. Sci. 28 (1942), 535-537.
- [6]. B. Morrel, J. Nagata, Statistical metric spaces as related to topological spaces, Gen. Top. Appl. 9 (1978), 233-237.
- [7]. B. Schweizer, A. Sklar, *Statistical metric spaces*, Pacific J. Math. **10** (1960), 314-334.
- [8]. B. Schweizer, A. Sklar, *Probabilistic metric spaces*, North-Holland (New York 1983).