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e ABSTRACT

: r In health area the prevalence rate p is considered to be a fraction that

BOMSR show positive results out of the entire sampled population when tests are

: s done to establish infection of a disease. Tests can be done on individual

i basis or in a group with individual testing being more costly for large

samples of individuals. Using pooled sampling such challenges can be
addressed. Group screening was pioneered by Dorfman in 1943 who found
it to be more economical in testing blood samples of army inductees to
detect syphilis infection. Effective group screening however require choice
of optimum values of parameters to guard against obtaining inflated bias in
their estimation. Beta distribution was considered as prior distribution in
Bayesian estimation of p. When analyzed for group testing the results
indicated that Bayes estimates perform much better than maximum
likelihood estimates (MLE) especially when prevalence rates are low, while
MLE performed better with large values of p. It was also noted that
combinations of parameters that lower than the optimum values still
resulted in more cost effective performance than individual testing.
Key words: Group screening, prevalence rate, optimum values, MLE and
Bayes estimate.

1.0 Introduction

In experimental designs to compare treatment of diseases the analysis can be done through
comparison of the estimates of the disease transmission probabilities. These prevalence estimates
are important in planning health services and policies. Many diseases can be detected in blood
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samples. The most straight forward method of testing blood could involve one at a time testing for
N individuals, thus forming N individual tests. The prevalence rate p therefore can be estimated as

a fraction of the individuals showing positive results out of the entire population sample N. In terms
of the cost it follows that the cost of testing is directly proportional to the number of tests done,
thus making this design to be more costly especially for large samples of individuals under screening.
The other challenge associated with individual testing is when the diagnostic tests are imperfect
which can be caused by differences in laboratory techniques, individual characteristics and other
aspects of study design and implementation. Estimation of p using pooled sampling is an area of

study of great interest as it tends to address the challenges encountered by individual testing. Group
screening design was pioneered by Dorfman[5] in 1943 as an economical method of testing blood
samples of army inductees to detect those with venereal disease, syphilis. He proposed that a
sample of blood from each member could be taken, pooled together and tested. If the test is
negative then the pooled sample tested would be considered to be free from infection and if pooled
sample tested positive then the individual samples would be re-tested to determine which inductees
are infected. The group testing design applied by Dorfman has been applied to many other
epidemiological research areas including; HIV[6],hepatitis[12] and many others. This paper compares
group testing design to estimate parameter p using Bayesian technique with Maximum likelihood
estimate method.Group testing designs can be based on classification and/or on parameter
estimation. In both cases the main advantage is that there is a chance of making savings in efficiency
and number of trials. This is possible especially if the prevalence rate p is small enough so that
many groups would test negative leading to substantial savings in the total number of tests done. A
good group testing design will have appropriate group size k, that minimizes mean square error
(MSE) of estimate p and provides estimate p with MSE smaller than would be obtained in case of
individual testing. Having too large bias can make estimator to have largely inflated MSE. Bias largely
depends on the group size k. Therefore k must carefully be chosen to avoid large bias. Choosing the
value of k that provides small bias can pose a great challenge especially if the value of p is not
specific. It is therefore advisable to select a group testing design that though not optimal can have
reasonable bias and prove to be better than individual test design. Swallow[18]came up with a

design that could effectively be applied to choose the value of k that can minimize MSE P
especially when the value of N is already determined. Swallow came up with a table indicating
various optimal sizes of k used to estimate prevalence rate of disease infection based on both group
testing and one to one test. The result indicated better performance with group testing than with
individual test even with varying values of the sample sizes. Therefore group testing design can be
more efficient and cost effective than one to one testing technique.
2.0 Methods of Estimation
2.1 Maximum Likelihood Estimation (MLE)

For group screening experiment the observed outcomes are considered to be independently
and identically distributed Bernoulli ( p ) random variables from a sample of N individuals to be

tested. If N is divided into g groups each of which is size k (where k > 1) then N =Kg .

A group is defective if it has at least one defective (positive) individual. The probability of an
individual being defective is p varying according to a certain distribution.

Let S = the number of defective items in a group of size k. Therefore

P(S =5s) :( )ps(l— p) s=012.k L. [1]

k

S
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P(s=0=( Jptt-p)"

=(1— p)k which is the expected fraction of the uninfected group of k individuals. Thus the

probability of a group being defective is

P@Zﬂz}iﬂﬁ@-@“
~1-p(S=0)

=1-(L-p)"
Let

pr=1-1-p} .. 2]

r
If R=r = the number defective groups out of g groups then — is the observed proportion of

g

r

defective groups. Therefore — is an estimator of 1—(1— p)k which can be expressed as
g

— — k —r
1-(1-p) =2
To estimate p we have
kK r

1-(1-p) q

r
—(1-p)f=-1+—
L-p) ;

Therefore

1

1
If’k:l—[l—é)k or 1-(-p)

which is the maximum likelihood estimate of p.

2.2 Bayes Estimate
Here the Bayes inference is about the parameter p which is a random variable in the

binomial mixture. This parameter p is considered to have a beta prior distribution since it is a
conjugate to the mixed distribution and it has a domain that is fairly small (0,1) and is given as
1
B(a,b)

Let r =the number of defective groups out of g groups. Then the distribution of r takes binomial

g(p) = p*l-p)Pto<p<l. .. [4]

distribution. Thus
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P(R=r)= [g]p*r (1— p*)g_r ....... [5]

The joint distribution of (r, p) becomes

e LR WA ST
1

oL A N SN

== (a11 5P p)“[j[l—(l— o) la-p) ™

) .

LR A S S

f(r,p) = U p* - p)* - p)]

B(a,b)

Marginal distribution of r becomes

f(r)=[f(r, p)dp

f(r) =

{J ey e

B(a’ b) 1=0

Posterior distribution is the probability of varying parameter p given the random variabler . It tells

much about parameter p given that the sample data has occurred.

The posterior distribution becomes
f(r,p)
f(plr)=
f(r)
(ng(a, b)—l pa—l(l_ p)k(g—r)+b—1|:1_ (1_ p)k ]f

r

U I O (a.k(g+1-r)+b)
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B pa—l(l_ p)k(gfr)mfl[l_(l_ p)k ]f o
Zr:(—l)'(er(a, K(g+1-r)+b)
1=0 I

And the j" moment of the posterior distribution becomes

j‘ pj+a—1(1_ p)k(g—r)+b—1[1_(1_ p)k ]rdp

"= Z(—l)'(lr]B(a,k(g f1-1)+b)

(-1 jB(j +a,gk +kl—gr+b)

> (-1) C)B(a, gk +kl—gr+b)

Then the expected value of parameter pis
Z(—l)'( jB(1+ a, gk + kI — gr +b)

E(P|X)=p =" T [10]
(—1)'( jB(a,gk+kI—gr+b)
0 |

2.3 Estimatesof p, a and b

Estimation of the parameters p, a and b can be achieved based on the theorem below.

Theorem1; The marginal density of r is

(9 arbk(g—r)
f(r)=k (JW ....... [11]

Proof: From Muhua....... [13]
f(r) = I(JWaM>pHa—mmwmﬁ—a—mﬂwp

Forsmall p, (1—p)‘ ~1—kp

Therefore

0~ fet@m) o e o) 0

( j B(a b) lJ- pa+rfl(l p) g-1)+b- ldp

0

= (jB(ab) B(a+r,k(g—r)+b)
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B k,(gj I(a+b)r(a+r)r(k(g—r)+b)
- rarbr(a+r+k(g—r)+b)

;

I'(N+a

Using Abramowitz and Stegun[1] technique in which for large N ¥z NP
(N +b)

therefore
* 9 arbk(gir)
f(r=k| |——
) (@+p) ™0™
To obtain the maximum likelihood estimate of the parameter b equation [11] is differentiated

partially with respect to b and equated to zero

kr[gj[(a-i— b)r+k(9—r) r.ark(g _ r)bk(g—r)—l _ arbk(g—r)(r +k(g - r))(a + b)r+k(g—r)—1]

di (r) o
do (a+ by @) =
On further simplification

b= M ....... [12]
which is easier to apply.

When a =1 then the joint equation[6] becomes

g v i ~
unp):(jh_a_py]@_py@>ba_pf1 ....... (13]
And the marginal density is
1 r
£(r) = b(gj (b-a-py]R-ple a0 .. [14]
)
Using transformation technique, let
1
u=(@1-p), p=1-uXanddp=—(1-p)"du
Therefore equation [14] becomes
Lol
f(r) = bklﬁjug (L-u) du
/o

_br(g+1r(a-r+2)

kr(g-r+1)r(g+2)

NM r=02..9. L. [15]

k(g + %)I‘Jrl
To obtain estimate of b using MLE equation [15] is differentiated with respect to b and

equated to zero.

iﬂg ) gy -nla 1o m

(o]
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L
r
....... [16]
Posterior distribution based on special case when a =1becomes
o= 00 o ppeasag g py]
r(g-r+8)r(r+1)
g gk r
__krlg+zy) @-pfoh-g-pffo<p<t . [17]

“Tlg-r+2)r(r+2)

The expected value of P becomes

E(If’|x)=j'pf(p|r,b)dp

f s

Using change of variable technique, let
1

—(t-p),  p=l-ukanddp=—(-p)du

kF(g +%+1) Jl‘l(l—uiJug_Hi_l(l—u)r du

B Tlg-r+8r(r+1)3k

et et el
0

F(g —r+ %)F(r +1)

o) {r(g+ﬁ—r)r<r+1>_r(g+ﬁ+¢fr)r<r+1>}

- F(g —r+§)l“(r +1)

Tg+E+)rlg-r+8+3)
Mlg—r+2)rlg+2+4+1)

And using Abramowitz and Stegun technique

1
|@=1—(g—_r]k ....... [18]
g+1

as obtained by Muhua[13].
For example, In a study conducted by Liu et al. in 1997 the results of 1875 blood donors screened for
anti HCV at the blood transfusion in China were tested individually (k=1) to examine the
effectiveness of pooling and compared with a group of size k=5 and g=375, they got r=37.
Using Bayes estimate technique, from equation [17] we have

LS

r
1875
7 =50.6757

And the expected value of P using equation [18] becomes,
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1
51| 375-37
376

=1-0.97891
=0.021083

24 Optimal choice of Parameter b and the Mean Squared Error

Since the choice of the parameter D has strong influence over the bias and MSE in
estimating the value p, an appropriate value of b must be considered in order to obtain bias that is
as small as possible. From Xing[22] it is noted that the Bayes estimate p decrease as parameter b
increases and vise versa. Thus with a low parameter b the posterior mean overestimates the
parameter p and with large b it underestimates the parameter p .

The tables 1 -2 below show optimal values of parameter b with their corresponding mean
squared errors obtained using simulated data under different combinations of k, g and p when

a=1

Table 1: Optimal b based on the smallest MSE of Bayes estimator by using g =10

withcombinations of different k, and p.

Optimal Value

k b MSE

5 34 1.196E-03
P=005 10 42 8.509E-04

15 46 2.404E-03

5 131 2.212E-04
P=001 10 151 1.159E-04

15 166 8.058E-05

5 19 2.807E-03
P=01 10 23 1.291E-02

15 26 -

5 11 1.768E-02
P=02 10 12 0.2068155

15 11 -

Table2: Optimal b based on the smallest MSE of Bayes estimator by using g = 20

withcombinations of different k, and p.

Optimal Value
k b MSE

5 37 2.375E-03
P =0.005

10 43 3.346E-04

15 50 2.750E-04

5 153 1.056E-04
P=0.01

10 167 5.470E-05

15 183 3.768E-05

5 20 1.224E-03

P=0.1
10 26 1.087E-03
15 32 -
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5 12 3.365E-03
P=0.2

10 16 6.763E-02

15 14 -

Mean squared error (MSE) is a measure of average squared deviation between the estimated
parameters and the true parameter.

Bias = E(P) - P
MSE = E[(IS _ Pﬂ

Where E(IS) is the estimated parameter and p is the true parameter.

The tables above indicate various group sizes k showing different MSE under specific optimal
values of parameter b from the prior Beta distribution which contain information about parameter
P to be estimated using maximum likelihood estimate and Bayes estimate. Therefore the choice of
parameter b is critical in estimating the parameter p .

The following table 3 compares the MSE of Bayes and Maximum Likelihood estimators from
simulated data using statistical software R, with different groups (g), group sizes (k) and parameter (
p ) which are not necessarily optimal values.

Table 3
Number of groups ¢
Group size k MSE 5 10 15 20
P=0.005 5 (PB) 2.245E-06  4.036E-06  4.036E-06  4.605E-06
. 2.410E-04  6.836E-05  6.836E-05  5.400E-05
(Pmle)
10 (PB) 3.331E-06  4.451E-06  4.990E-06  4.891E-06
(Pmle) 1.184E-04  5.482E-05  3.778E-05  2.681E-05
P=005 5 (PB) 4.709E-04  4.146E-04  3.536E-04  2.989E-04
. 3.455E-03  1.172E-03  7.687E-04  5.414E-04
(Pmle)
10 (PB) 4.210E-04  3.206E-04  2.520E-04  2.091E-04
(Pmle) 1.256E-02  8.486E-04  4.516E-04  3.325E-04
P=001 5 (PB) 1.372E-05  1.775E-05  1.936E-05  2.034E-05
. 4.940E-04  2.144E-04  1.424E-04  1.099E-04
(Pmle)
10 (PB) 1.820E-05  1.994E-05  1.910E-05  1.795E-05
(Pmle) 2.677E-04  1.167E-04  7.130E-05  5.354E-05
P=0.1 5 (PB) 1.620E-03  1.204E-03  9.600E-04  8.091E-04
. 1.629E-02  2.990E-03  1.700E-03  1.262E-03
(Pmle)
10 (PB) 1.225E-03  9.236E-04  6.835E-04  5.731E-04
(Pmle) 9.640E-02  1.330E-02  1.618E-03  1.337E-03
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The result from the table3 above indicate that MSE of Bayes estimate generally perform better than
their corresponding estimates obtained using MLE when p is smaller as MLE does better for bigger
values of p .It is important to note that, although the choice of optimal values of K, g and p are
critical to minimize MSE,use of values smaller than the optimal still remain cost effective much more
than greater values as it also minimizes MSE. However the choice of K that is larger than the
optimal may produce larger bias. Swallow[18] demonstrated that most of the advantage of group
testing over one to one test designs can be realized much better with group sizes smaller than the
optimal size K. The paper illustrates how when the cost of increasing group size is not negligible,
then using smaller size than the optimal size of K is likely to be more cost effective than using the
optimal size K. This idea is more illustrated from the following tables of results of relative bias and
relative efficiency for selected values of p,Kand g.

Tables4-5 below display the relative bias and relative efficiency respectively for selected
values of p, K and g which are not necessarily optimal. Relative bias and relative efficiency can as
well be used to compare performance of parameter estimators.

Relative bias of the estimate p is

RB(P)= EfP-p)

P
And the relative efficiency of p is
Re(p)= MSE(P)
MSE(P)

Table 4; Relative bias for selected values of p, k and g =10.
i_lo k Pmle (a,b) PB
0.25 (1,3)

1 0.00000 0.00000
5 0.21661 0.09552
10 1.57583 0.29291
15 2.56691 0.37393
20 2.88854 0.35010
0.10 (1,9)
1 0.00000 0.00000
5 0.05731 0.03843
10 0.19010 0.08031
15 0.90474 0.14572
20 2.39111 0.23484
0.05 (1,19)
0.00000 0.00000
0.04851 0.02363
10 0.06713 0.04351
15 0.11444 0.06241
20 0.29962 0.08494
0.01 (1,99)
1 0.00000 0.00000
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5 0.04360 0.00452
10 0.05082 0.01180
15 0.05451 0.01821
20 0.05734 0.02374

Table 5; Relative Efficiency for selected values of p, k and g =10.

i"m k Pmle (a,b) PB
0.25 1.3)
1 1.00000 1.96000
1.03260 4.69672
10 0.99481 19.03341
15 0.99862 35.90983
20 0.99971 59.85294
0.10 (1,9)
1 1.00000 4.00000
1.17922 1.70664
10 1.04641 7.82342
15 1.00283 35.66633
20 0.99924 71.11520
0.05 (1,19)
1 1.00000 9.00000
5 1.12490 2.19461
10 1.19852 1.89812
15 1.07565 5.68040
20 1.01584 24.86763
0.01 (1,99)
1 1.00000 121.00000
1.09484 9.85463
10 1.11742 4.47010
15 1.13311 3.14221
20 1.14780 2.57100

From tabledabove the relative bias of Bayes estimators are generally lower than MLE indicating that
Bayes estimators perform much better than MLE. Table 5 shows that the relative efficiency reduce
with reduction in the values of p and increase in size of K .
3.0 Discussion

This article asserts the significance of group testing especially in areas such as health and
other research industries. It is noted that the size of group (K ) and the value of p play a critical role
in determining a group screening design that is precise and consistent. Small group size with large
values of p results in a relatively large bias while small values of p and K produce small bias. Mean

squared error is considered as the means to determine the optimal group sizes and parameter p . It

is observed that optimal group size K and p produce minimum MSE as shown in the tables 1-2.

ANDREA OTWANDE et al., 11
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When Maximum likelihood estimate and Bayesian approach are compared in estimating prevalence
rates, Bayesian procedure seems to perform much better for low values of p for experiments

assumed to have no errors. This is because estimating low prevalence using MLE require large

sample to obtain estimate that is above zero, which turns out to be costly hence the need for

Bayesian approach.

4.0 Conclusion
Group testing is where units are pooled together and tested as a group instead of

individually. Individual testing can be too time consuming making group testing be more cost

effective. Using simulated studies in the application of results from Bayesian procedure performs

better when compared with MLE in estimating prevalence rates especially for cases where

prevalence rate is low. This method can be relevant in health area to test for diseases that are in

blood samples to reduce the cost and improve effectiveness in diagnosis and treatment of some

diseases.
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