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ABSTRACT 

In health area the prevalence rate p  is considered to be a fraction that 

show positive results out of the entire sampled population when tests are 

done to establish infection of a disease. Tests can be done on individual 

basis or in a group with individual testing being more costly for large 

samples of individuals. Using pooled sampling such challenges can be 

addressed. Group screening was pioneered by Dorfman in 1943 who found 

it to be more economical in testing blood samples of army inductees to 

detect syphilis infection. Effective group screening however require choice 

of optimum values of parameters to guard against obtaining inflated bias in 

their estimation. Beta distribution was considered as prior distribution in 

Bayesian estimation of p . When analyzed for group testing the results 

indicated that Bayes estimates perform much better than maximum 

likelihood estimates (MLE) especially when prevalence rates are low, while 

MLE performed better with large values of p . It was also noted that 

combinations of parameters that lower than the optimum values still 

resulted in more cost effective performance than individual testing. 

Key words: Group screening, prevalence rate, optimum values, MLE and 

Bayes estimate. 

 

1.0 Introduction 

In experimental designs to compare treatment of diseases the analysis can be done through 

comparison of the estimates of the disease transmission probabilities. These prevalence estimates 

are important in planning health services and policies. Many diseases can be detected in blood 
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samples.  The most straight forward method of testing blood could involve one at a time testing for 

N individuals, thus forming N individual tests. The prevalence rate p  therefore can be estimated as 

a fraction of the individuals showing positive results out of the entire population sample N. In terms 

of the cost it follows that the cost of testing is directly proportional to the number of tests done, 

thus making this design to be more costly especially for large samples of individuals under screening. 

The other challenge associated with individual testing is when the diagnostic tests are imperfect 

which can be caused by differences in laboratory techniques, individual characteristics and other 

aspects of study design and implementation. Estimation of  p  using pooled sampling is an area of 

study of great interest as it tends to address the challenges encountered by individual testing. Group 

screening design was pioneered by Dorfman[5] in 1943 as an economical method of testing blood 

samples of army inductees to detect those with venereal disease, syphilis. He proposed that a 

sample of blood from each member could be taken, pooled together and tested. If the test is 

negative then the pooled sample tested would be considered to be free from infection and if pooled 

sample tested positive then the individual samples would be re-tested to determine which inductees 

are infected. The group testing design applied by Dorfman has been applied to many other 

epidemiological research areas including; HIV[6],hepatitis[12] and many others. This paper compares  

group testing design to estimate parameter p using Bayesian technique with Maximum likelihood 

estimate method.Group testing designs can be based on classification and/or on parameter 

estimation. In both cases the main advantage is that there is a chance of making savings in efficiency 

and number of trials. This is possible especially if the prevalence rate p  is small enough so that 

many groups would test negative leading to substantial savings in the total number of tests done. A 

good group testing design will have appropriate group size k, that minimizes mean square error 

(MSE) of estimate 𝑝   and provides estimate p  with MSE smaller than would be obtained in case of 

individual testing. Having too large bias can make estimator to have largely inflated MSE. Bias largely 

depends on the group size k. Therefore k must carefully be chosen to avoid large bias. Choosing the 

value of k that provides small bias can pose a great challenge especially if the value of  p  is not 

specific. It is therefore advisable to select a group testing design that though not optimal can have 

reasonable bias and prove to be better than individual test design. Swallow[18]came up with a 

design that could  effectively be applied to choose the value of k that can minimize MSE P̂  

especially when the value of N is already determined. Swallow came up with a table indicating 

various optimal sizes of k used to estimate prevalence rate of disease infection based on both group 

testing and one to one test. The result indicated better performance with group testing than with 

individual test even with varying values of the sample sizes. Therefore group testing design can be 

more efficient and cost effective than one to one testing technique. 

2.0         Methods of Estimation 

2.1         Maximum Likelihood Estimation (MLE) 

For group screening experiment the observed outcomes are considered to be independently 

and identically distributed Bernoulli  ( p ) random variables from  a sample of N individuals to be 

tested. If N is divided into g  groups each of which is size k (where 𝑘 > 1) then kgN  . 

A group is defective if it has at least one defective (positive) individual. The probability of an 

individual being defective is  p  varying according to a certain distribution. 

Let s  the number of defective items in a group of size k. Therefore 

  ksppsSP
sks

k

s

,...2,1,01)( 







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
                                                            .......[1] 
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 kp1 which is the expected fraction of the uninfected group of k individuals. Thus the 
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    .......[2] 

If rR  the number defective groups out of g  groups then 
g

r
 is the observed proportion of 

defective groups. Therefore 
g

r
 is an estimator of   kp11  which can be expressed as 

1 −  1 − 𝑝 𝑘 = 𝑟

𝑔
 . 
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Therefore 
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
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which is the maximum likelihood estimate of  p . 

 

2.2         Bayes Estimate 

Here the Bayes inference is about the parameter p  which is a random variable in the 

binomial mixture. This parameter  p  is considered to have a beta prior distribution since it is a 

conjugate to the mixed distribution and it has a domain that is fairly small (0,1) and is given as  

11 )1(
),(

1
)(   ba pp

baB
pg 0 < 𝑝 < 1.                          .......[4] 

Let r the number of defective groups out of g  groups. Then the distribution of r  takes binomial 

distribution. Thus 
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The joint distribution of  pr,  becomes 
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Marginal distribution of r  becomes 
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Posterior distribution is the probability of varying parameter p given the random variable r . It tells 

much about parameter p  given that the sample data has occurred. 

The posterior distribution becomes 
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And the jth moment of the posterior distribution becomes 
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Then the expected value of parameter p is 
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2.3 Estimates of bandap,  

Estimation of the parameters bandap,  can be achieved based on the theorem below. 

Theorem1; The marginal density of r  is  
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Proof:  From Muhua.......[13] 
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To obtain the maximum likelihood estimate of the parameter b  equation [11] is differentiated 

partially with respect to b  and equated to zero  
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On further simplification 

 
r

rgak
b


ˆ         .......[12]      

which is easier to apply. 
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To obtain estimate of  b  using MLE equation [15] is differentiated with respect to b  and 

equated to zero. 

   

0

11
1

2
1

)1(
1



























































r

r

k

rr
r

r

k

b
g

k

b
ggbg

k

b
g

k
 



Bull .Math.&Stat.Res ( ISSN:2348 -0580)  

   7 

Vol.6.Issue.3.2018 (July-Sept) 

ANDREA OTWANDE et al., 

r

gk
b ˆ

          

          
.......[16] 

Posterior distribution based on special case when 1a becomes 
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The expected value of p becomes 
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And using Abramowitz and Stegun technique 

k

g

rg
p

1

1
1ˆ 












          .......[18] 

as obtained by Muhua[13]. 

For example, In a study conducted by Liu et al. in 1997 the results of 1875 blood donors screened for 

anti HCV at the blood transfusion in China were tested individually (k=1) to examine the 

effectiveness of pooling and compared with a group of size k=5 and g=375, they got r=37. 

Using Bayes estimate technique, from equation [17] we have 

r

gk
b ˆ . 

6757.50
37

1875
  

And the expected value of p  using equation [18] becomes, 
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5

1

376

37375
11ˆ 







 
p  

97891.01  

021083.0  

2.4 Optimal choice of Parameter b and the Mean Squared Error  

Since the choice of the parameter b  has strong influence over the bias and MSE in 

estimating the value p , an appropriate value of b  must be considered in order to obtain bias that is 

as small as possible. From Xing[22] it is noted that the Bayes estimate p  decrease as parameter b  

increases and vise versa. Thus with a low parameter b  the posterior mean overestimates the 

parameter p  and with large b  it underestimates the parameter p . 

The tables 1 -2 below show optimal values of parameter b  with their corresponding mean 

squared errors obtained using  simulated data under different combinations of  k, g and p when 

1a  
Table 1: Optimal b  based on the smallest MSE of Bayes estimator by using 10g  

withcombinations of different k, and p. 

 
 

k 

Optimal Value 

b  

 
MSE 

P = 0.05 
 

5 
10 
15 

34 
42 
46 

1.196E-03 
8.509E-04 
2.404E-03 

P = 0.01 
 

5 
10 
15 

131 
151 
166 

2.212E-04 
1.159E-04 
8.058E-05 

P = 0.1 
 

5 
10 
15 

19 
23 
26 

2.807E-03 
1.291E-02 

- 

P = 0.2 
 

5 
10 
15 

11 
12 
11 

1.768E-02 
0.2068155 

- 

 

Table2: Optimal b  based on the smallest MSE of Bayes estimator by using 20g  

withcombinations of different k,  and p. 

 
 

k 

Optimal Value 

b  

 

MSE 

P = 0.005 

 

5 

10 

15 

37 

43 

50 

2.375E-03 

3.346E-04 

2.750E-04 

P = 0.01 

 

5 

10 

15 

153 

167 

183 

1.056E-04 

5.470E-05 

3.768E-05 

P = 0.1 

 

5 

10 

15 

20 

26 

32 

1.224E-03 

1.087E-03 

- 
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P = 0.2 

 

5 

10 

15 

12 

16 

14 

3.365E-03 

6.763E-02 

- 

 

Mean squared error (MSE) is a measure of average squared deviation between the estimated 

parameters and the true parameter. 

PPEBias  )ˆ(  

 




 

2
ˆ PPEMSE  

Where )ˆ(PE  is the estimated parameter  and p  is the true parameter. 

The tables above indicate various group sizes k showing different MSE under specific optimal 

values of parameter b  from the prior Beta distribution which contain information about parameter 

p  to be estimated using maximum likelihood estimate and Bayes estimate. Therefore the choice of 

parameter b  is critical in estimating the parameter p . 

The following table 3 compares the MSE of Bayes and Maximum Likelihood estimators from 

simulated data using statistical software R, with different groups (g), group sizes (k) and parameter (

p )  which are not necessarily optimal values. 

Table 3   

   Number of groups g  

 Group size k MSE 5 10 15 20 

005.0P  5 

 

 

10 

)ˆ( BP  

)ˆ( mleP  

)ˆ( BP  

)ˆ( mleP  

2.245E-06 

2.410E-04 

 

3.331E-06 

1.184E-04 

4.036E-06 

6.836E-05 

 

4.451E-06 

5.482E-05 

4.036E-06 

6.836E-05 

 

4.990E-06 

3.778E-05 

4.605E-06 

5.400E-05 

 

4.891E-06 

2.681E-05 

05.0P  5 

 

 

10 

)ˆ( BP  

)ˆ( mleP  

)ˆ( BP  

)ˆ( mleP  

4.709E-04 

3.455E-03 

 

4.210E-04 

1.256E-02 

4.146E-04 

1.172E-03 

 

3.206E-04 

8.486E-04 

3.536E-04 

7.687E-04 

 

2.520E-04 

4.516E-04 

2.989E-04 

5.414E-04 

 

2.091E-04 

3.325E-04 

01.0P  5 

 

 

10 

)ˆ( BP  

)ˆ( mleP  

)ˆ( BP  

)ˆ( mleP  

1.372E-05 

4.940E-04 

 

1.820E-05 

2.677E-04 

1.775E-05 

2.144E-04 

 

1.994E-05 

1.167E-04 

1.936E-05 

1.424E-04 

 

1.910E-05 

7.130E-05 

2.034E-05 

1.099E-04 

 

1.795E-05 

5.354E-05 

1.0P  5 

 

 

10 

)ˆ( BP  

)ˆ( mleP  

)ˆ( BP  

)ˆ( mleP  

1.620E-03 

1.629E-02 

 

1.225E-03 

9.640E-02 

1.204E-03 

2.990E-03 

 

9.236E-04 

1.330E-02 

9.600E-04 

1.700E-03 

 

6.835E-04 

1.618E-03 

8.091E-04 

1.262E-03 

 

5.731E-04 

1.337E-03 
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The result from the table3  above indicate that MSE of Bayes estimate generally perform better than 

their corresponding estimates obtained using MLE when p  is smaller as MLE does better for bigger 

values of p .It is important to note that, although the choice of optimal values of k , g and p  are  

critical to minimize MSE,use of values smaller than the optimal still remain cost effective much more 

than greater values as it also  minimizes MSE. However the choice of k  that is larger than the 

optimal   may produce larger bias. Swallow[18] demonstrated that most of the advantage of group 

testing over one to one test designs can be realized much better with group sizes smaller than the 

optimal size k . The paper illustrates how when the cost of increasing group size is not negligible, 

then using smaller size than the optimal size of k is likely to be more cost effective than using the 

optimal size k . This idea is more illustrated from the following tables of results of relative bias and 

relative efficiency for selected values of p , k and g . 

Tables4-5 below display the relative bias and relative efficiency respectively for selected 

values of p , k  and g  which are not necessarily optimal. Relative bias and relative efficiency can as 

well be used to compare performance of parameter estimators.  

Relative bias of the estimate p  is  

  
P

PPE
PRB




ˆ
ˆ  

And the relative efficiency of p  is 


PMSE

PMSE
PRE

)ˆ(ˆ  . 

Table 4; Relative bias for selected values of  p , k  and 10g . 

g=10 

p 
k mleP̂   ba,  BP̂  

0.25   (1,3)  

 1 0.00000  0.00000 

 5 0.21661  0.09552 

 10 1.57583  0.29291 

 15 2.56691  0.37393 

 20 2.88854  0.35010 

0.10   (1,9)  

 1 0.00000  0.00000 

 5 0.05731  0.03843 

 10 0.19010  0.08031 

 15 0.90474  0.14572 

 20 2.39111  0.23484 

0.05   (1,19)  

 1 0.00000  0.00000 

 5 0.04851  0.02363 

 10 0.06713  0.04351 

 15 0.11444  0.06241 

 20 0.29962  0.08494 

0.01   (1,99)  

 1 0.00000  0.00000 
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 5 0.04360  0.00452 

 10 0.05082  0.01180 

 15 0.05451  0.01821 

 20 0.05734  0.02374 

 

 

Table 5; Relative Efficiency for selected values of  p , k  and 10g . 

g=10 

p 
k mleP̂   ba,  BP̂  

0.25   (1,3)  

 1 1.00000  1.96000 

 5 1.03260  4.69672 

 10 0.99481  19.03341 

 15 0.99862  35.90983 

 20 0.99971  59.85294 

0.10   (1,9)  

 1 1.00000  4.00000 

 5 1.17922  1.70664 

 10 1.04641  7.82342 

 15 1.00283  35.66633 

 20 0.99924  71.11520 

0.05   (1,19)  

 1 1.00000  9.00000 

 5 1.12490  2.19461 

 10 1.19852  1.89812 

 15 1.07565  5.68040 

 20 1.01584  24.86763 

0.01   (1,99)  

 1 1.00000  121.00000 

 5 1.09484  9.85463 

 10 1.11742  4.47010 

 15 1.13311  3.14221 

 20 1.14780  2.57100 

 

From table4above  the relative bias of Bayes estimators are generally lower than MLE indicating that 

Bayes estimators perform much better than MLE. Table 5 shows that the relative efficiency reduce 

with reduction in the values of p and increase in size of k .  

3.0 Discussion 

This article asserts the significance of group testing especially in areas such as health and 

other research industries. It is noted that the size of group ( k ) and the value of p  play a critical role 

in determining a group screening design that is precise and consistent. Small group size with large 

values of p  results in a relatively large bias while small values of p  and k produce small bias. Mean 

squared error is considered as the means to determine the optimal group sizes and parameter p . It 

is observed that optimal group size k  and  p  produce minimum MSE as shown in the tables 1-2. 
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When Maximum likelihood estimate and Bayesian approach are compared in estimating prevalence 

rates, Bayesian procedure seems to perform much better for low values of p  for experiments 

assumed to have no errors. This is because estimating low prevalence using MLE require large 

sample to obtain estimate that is above zero, which turns out to be costly hence the need for 

Bayesian approach. 

4.0  Conclusion 

Group testing is where units are pooled together and tested as a group instead of 

individually. Individual testing can be too time consuming making group testing be more cost 

effective. Using simulated studies in the application of results from Bayesian procedure performs 

better when compared with MLE in estimating prevalence rates especially for cases where 

prevalence rate is low. This method can be relevant in health area to test for diseases that are in 

blood samples to reduce the cost and improve effectiveness in diagnosis and treatment of some 

diseases. 
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