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ABSTRACT 

In this paper, we study the explicit solutions of the equation A*XB+B*X*A=C 

for linear bounded operators on Hilbert spaces, where X is the unknown 

operator. Based on the block operator matrix technique and the Moore-

Penrose inverse, the sufficient and necessary conditions for the existence of 

solutions to the equation are respectively obtained under one of the four 

cases: R(B*)R(A*) , R(A*)R(B*) , R(B*)N(A)  or R(A*)N(B) .Moreover, 

the general solutions of the considered equation are expressed in terms of 

the Moore-Penrose inverses of A and B. 

AMS classification : 47A62, 47A52 
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1  Introduction 

In this paper H and K denote arbitrary complex Hilbert spaces. We use B(H,K) to denote the set of all 

linear bounded operators from H to K. Also, B(H)=B(H,H). For AB(H,K), the null space, the range and 

the adjoint operator of A are denoted by N(A),R(A) and A*. Let TB(H,K), if there exists an operator 

T+
B(H,K) satisfying the following four operator equations  

 TT+T=T,T+TT+=T+,TT+=(TT+)*,T+T=(T+T)*,  

thenT+ is called the Moore-Penrose inverse of T. It is well known that T has the Moore-Penrose 

inverse if and only if R(T) is closed and the Moore-Penrose inverse of T is unique. Moreover, TT+ is 

the orthogonal projection from K onto R(T) and T+T is the orthogonal projection from H onto R(T*)

(see[1,2]). 
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For given operators A,BB(H,K) and CB(H) , we are interested in finding the solution XB(H) of the 

equation  

 A*XB+B*X*A=C.(1) 

This kind of equations has been studied by several authors because of its multiple applications in 

different areas, for example, control theory and sampling. The equation A*X+X*A=C was studied for 

matrices by Braden [3], and for the Hilbert space operators by D S. Djordjevid[4]. More general 

equations AXXBT=C and AXXF=BY are considered in [5] and [6]. Yuan [7] studied the solvability of 

the operator equation A*XB+B*X*A=C for finite matrices under the condition that R(B*) is contained 

in R(A*). In this article, Using the block operator matrix technique and the generalized inverse of 

operators, we study the solvability of Eq.(1) in infinite Hilbert spaces. When R(B*)R(A*) , 

R(A*)R(B*), R(B*)N(A) or R(A*)N(B), we give the sufficient and necessary conditions for the 

existences of solutions to Eq.(1) and the general forms of these solutions. 

2  Main results and proofs 

To prove the main results of this paper, we begin with the following lemma. 

Lemma 2.1. Let A,BB(H,K) be invertible and CB(H). Then the following statements are equivalent: 

(a) There exists a solution XB(K) of Eq.(1). 

(b) C=C* 

If (a)or(b)is satisfied , then any solution of Eq.(1) has the form  

 X= 
1
2(A*)1CB1+(A*)1ZB1,(2) 

whereZB(H) satisfies Z*=Z. 

Proof.(a)(b):Clearly. 

(b)(a): It is easy to see that any operator X of the form (2) is a solution of Eq.(1). On the other 

hand, let X be any solution of Eq.(1). Then  

 

A*XB= 
1
2(A*XB+B*X*A)+ 

1
2(A*XBB*X*A)

=  
1
2C+ 

1
2(A*XBB*X*A)

. 

Since A*,B are invertible, so X= 
1
2(A*)1CB1+(A*)1[ 

1
2(A*XBB*X*A)]B1. 

Taking Z= 
1
2(A*XBB*X*A), we get Z*=Z. 
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Now, we solve Eq.(1) in the case when A and B have closed ranges. 

Theorem 2.1. Let A,BB(H,K) have closed ranges and CB(H). If R(B*)R(A*), then the 

following statements are equivalent: 

(a) There exists a solution XB(K) of Eq.(1). 

(b) C=C*, R(C)R(A*), A+AC(IA+A)=0, and (A+AB+B)C(A+AB+B)=0. 

If (a)or(b)is satisfied , then any solution of Eq.(1) has the form  

 
X=  

1
2(A*)+B+BCB++(A*)+(A+AB+B)CB+

(A*)+B+BZB++AA+Y(IBB+)+(IAA+)Y
,(3) 

whereZB(H) satisfies B(Z*+Z)B*=0, YB(K) is arbitrary. 

Proof.(a)(b): Obviously, C=C*. Since R(B*)R(A*), so R(C)=R(A*XB)R(A*). Also,  

 
A+AC(IA+A)= A+A(A*XB+B*X*A)(IA+A)

=A*XB(IA+A)+B*X*A(IA+A)=0
, 

 

(A+AB+B)C(A+AB+B)=(A+AB+B)(A*XB+B*X*A)(A+AB+B)

= (A+AB+B)A*XB(A+AB+B)

+ (A+AB+B)B*X*A(A+AB+B)
= 0

. 

(b)(a): Let X be any operator of the form (3), then  

 

A*XB+B*X*A= [ 
1
2B+BCB+B+(A+AB+B)CB+B+B+BZB+B]

+[ 
1
2B+BCB+B+B+BC(A+AB+B)+B+BZ*B+B]

= A+ACB+B+B+BCA+AB+BCB+B

= A+ACA+A+A+AC(IA+A)=A+AC=C

. 

On the other hand, suppose that X is a solution of Eq.(1). Since R(A),R(B) are closed, we have 

the matrix forms of A,X and B with respect to the proper space decompositions, 

A= 








 
A10

0 0
:  









 
R(A*)
N(A)

 








 
R(A)

N(A*)
;

X= 








 
X11X12
X21X22

: 








 
R(B)

N(B*)
 









 
R(A)

N(A*)
;

B= 








 
B10

0 0
:  









 
R(A*)
N(A)

 








 
R(B)

N(B*)
;

 

whereA1B(R(A*),R(A))  is invertible, R(B1) is closed. Since  
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 C= 








 
C11C12
C21C22

: 








 
R(A*)
N(A)

 








 
R(A*)
N(A)

, 

thenA*XB+B*X*A=C implies  

 A1
*X11B1+B1

*X11
*A1=C11, 

Where X11B(R(B),R(A))  is unknown and C11
*=C11. Let Y1=X11

*A1, then we solve the 

equation  

 B1
*Y1+Y1

*B1=C11. 

Since R(B*)R(A*), we obtain R(A*)=R(B*)(R(A*)⊖R(B*)). Now, B1,Y1,C11 have the following 

operator matrix forms  

 

B1= ( ) B110 :  








 
R(B*)

R(A*)⊖R(B*)
R(B);

Y1= ( ) Y11Y12 :  








 
R(B*)

R(A*)⊖R(B*)
R(B);

C11= 











 
C11

0C12
0

C21
0C22

0 : 








 
R(B*)

R(A*)⊖R(B*)
 









 
R(B*)

R(A*)⊖R(B*)
;

 

whereB11 is invertible. Hence  

 B1
*Y1+Y1

*B1= 









 
B11

*Y11+Y
*
11B11B11

*Y12

Y12
*B11 0

= 











 
C11

0C12
0

C21
0C22

0 . 

Because B11 is invertible and (C11
0)*=C11

0, so by Lemma 2.1 we have  

 Y11= 
1
2(B11

*)1C11
0+(B11

*)1Z11,Y12=(B11
*)1C12

0, 

whereZ11B(R(B*)) and Z11
*=Z11. Noting X11

*A1=Y1=Y11+Y12, then  

 X11=(A1
*)1[ 

1
2C11

0+(C12
0)*]B11

1
(A1

*)1Z11B11
1. 

Hence the solution X has the following form  

X= 








 
(A

1

*)1[ 
1
2C

11

0+(C
12

0)*]B
11

1(A
1

*)1Z
11

B
11

1 X
12

X
21

X
22

;
 

whereX
12

,X
21

, and X
22

 can be taken arbitrary. Now, we express the solution X in terms of the 

Moore-Penrose inverses of A and B. Let  

 Y= 








 
Y

11
X

12

X
21

X
22

: 








 
R(B)

N(B*)
 









 
R(A)

N(A*)
 

and 
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 Z= 








 
Z

11
Z

12

Z
21

Z
22

: 








 
R(B*)
N(B)

 








 
R(B*)
N(B)

 

whereY
11

 is arbitrary and B(Z+Z*)B*=0. Then  

 

 
1
2(A*)+B+BCB++(A*)+(A+AB+B)CB+

=  










 
(A

1

*)1[ 
1
2C

11

0+(C
12

0)*]B
11

10

0 0

, 

 (A*)+B+BZB+= 








 
(A

1

*)1Z
11

B
11

10

0 0
, 

and 

 AA+Y(IBB+)+(IAA+)Y= 








 
0 X

12

X
21

X
22

. 

Consequently, X has the form (3). 

Theorem 2.2. Let A,BB(H,K) have closed ranges and CB(H). If R(A*)R(B*), then the 

following statements are equivalent: 

(a) There exists a solution XB(K) of Eq.(1). 

(b) C=C*, R(C)R(B*), B+BC(IB+B)=0, and (B+BA+A)C(B+BA+A)=0. 

If (a)or(b)is satisfied , then any solution of Eq.(1) has the form  

 
X= 

1
2(A*)+CA+AB++(A*)+C(B+BA+A)B+

+(A*)+ZA+AB++(IAA+)YBB++Y(IBB+)

.(4) 

whereZB(H) satisfies A(Z*+Z)A*=0, YB(K) is arbitrary. 

Proof. Obviously, Eq.(1) is equivalent to  

 B*X*A+A*(X*)*B=C,  

whereX*
B(K) is the unknown operator. Since R(A*)R(B*), then by Theorem 2.1 we have  

 
X*=  

1
2(B*)+A+ACA++(B*)+(B+BA+A)CA+

(B*)+A+AZA++BB+Y(IAA+)+(IBB+)Y

, 

whereZB(H) satisfies B(Z*+Z)B*=0, YB(K) is arbitrary. 



Bull .Math.&Stat.Res ( ISSN:2348 -0580)  

   66 

Vol.7.Issue.1.2019 (Jan-Mar) 

XUEGANG TIAN,  SHAOYING WANG 

Consequently, X has the form (4). 

Remark 2.1 As a special case of Eq.(1), we consider the solvability of the operator equation  

 A*X+X*A=C.(5) 

In Theorem 2.2, let B=I, clearly R(A*)R(B*), then we obtain the following Corollary, which is the 

result of D S. Djordjevid in [4]. 

Corollary 2.1. Let AB(H,K) have closed range and CB(H). Then the following statements are 

equivalent: 

(a) There exists a solution XB(H,K) of Eq.(5). 

(b) C=C*and(IA+A)C(IA+A)=0. 

If (a)or(b)is satisfied , then any solution of Eq.(5) has the form  

 X= 
1
2(A*)+CA+A+(A*)+C(IA+A)+(A*)+ZA+A+(IAA+)Y,  

whereZB(H) satisfies A(Z*+Z)A*=0, YB(H,K) is arbitrary. 

Theorem 2.3. Let A,BB(H,K) have closed ranges and CB(H). If R(B*)N(A), then the following 

statements are equivalent: 

(a) There exists a solution XB(K) of Eq.(1). 

(b) C=C*, R(C)H0, B+BCB+B=0, and A+ACA+A=0,  where H0=R(A*)R(B*). 

If (a)or(b)is satisfied , then any solution of Eq.(1). has the form  

 X=(A*)+CB++AA+Y(IBB+)+(IAA+)Y,(6)  

whereYB(K) is arbitrary. 

Proof.If R(B*)N(A), then we have the space decomposition H=R(A*)R(B*)(N(A)⊖R(B*)). Let A,B 

have the following operator matrix forms  

 

A= 








 
A100

0 00
:  









 

R(A*)

R(B*)

N(A)⊖R(B*)

 








 
R(A)

N(A*)
;

B= 








 
0B10

0 0 0
:

 









 

R(A*)

R(B*)

N(A)⊖R(B*)

 








 
R(B)

N(B*)
;
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whereA1,B1 are invertible operators. Also, X has the similar operator matrix form as in Theorem 2.1. 

Consequently, Eq.(1) is equivalent to the following equation  

 









 

0 A1
*X11B10

B1
*X11

*A1 0 0

0 0 0

= 









 

C11C12C13
C21C22C23
C31C32C33

,(7) 

with respect to the space decomposition H=R(A*)R(B*)(N(A)⊖R(B*)). Noting that R(C)H0 is 

equivalent to C31=0,C32=0,C33=0 and C1100=A+ACA+A,0C220=B+BCB+B  it is easy to 

prove that condition (a) is equivalent to (b) in Theorem 2.3. 

From equation (7), we can obtain any solution of Eq.(1) has the form  

 X= 










 
(A1

*)1C12B1
1X12

X21 X22
, 

X12,X21,andX22 can be taken arbitrary. 

Using the Moore-Penrose inverses of A and B to express X, we obtain X has the form (6). 

Theorem 2.4. Let A,BB(H,K) have closed ranges and CB(H). If R(A*)N(B), then the following 

statements are equivalent: 

(a) There exists a solution XB(K) of Eq.(1). 

(b) C=C*, R(C)H0, B+BCB+B=0, and A+ACA+A=0,  where H0=R(A*)R(B*). 

If (a)or(b)is satisfied , then any solution of Eq.(1) has the form  

X=(B*)+CA++BB+Y(IAA+)+(IBB+)Y,  

whereYB(K) is arbitrary. 

Proof. By exactly similar arguments, we obtain the analogue of Theorem 2.3, in which B is replaced 

by A. 
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