Vol.7.Issue.2.2019 (Apr-June.) ©KY PUBLICATIONS

http://www.bomsr.com Email:editorbomsr@gmail.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

ON THE DIOPHNATINE EQUATION $2^x + p^y = z^2$

GAWKHARE MAHESH¹, VIKITA SINARI²

¹Assistant Professor, Department of Mathematics Government College of Arts, Science and Commerce, Quepem, Goa. Email: maheshgawkhare@gmail.com ²Department of Mathematics, DM's College and Research Centre Assagao, Goa India <u>https://doi.org/10.33329/bomsr.72.36</u>

ABSTRACT

In 2013, Somchit Chotchaisht [4], studied the Diophantine equation $2^{x} + 11^{y} = z^{2}$ and posed an open problem to find all the solutions of the equation $2^{x} + p^{y} = z^{2}$ for any odd prime p. In this paper, we give the solutions of titled equation except the case when both x and y are positive odd integers together.

Keywords: Exponential equation, Diophantine Equation, Catalan's conjecture

1. INTRODUCTION

In recent time many papers are devoted to the study of the Diophantine equations. In 2011, A. Suvarnamani [1], published a paper on finding the solutions of the titled equation. But in 2013, Somchit Chotchaisthit [4], pointed some misleading arguments in [1], and gave all solutions of the equation $2^{x} + 11^{y} = z^{2}$. In the same paper, he stated that finding solutions of titled equation is still an open problem.

In this paper, we give solutions of the titled equation for any odd prime p greater than 3 and x and y are not both positive odd integers together. If p = 3, then the solutions are given in [2]. We use Catalan's conjecture which is proved by P. Mihailescu [3] in 2004.

2. PRELIMINARIES

Proposition 2.1 : (The Catalan's conjecture) (3, 2, 2, 3) is a unique solution (a, b, x, y) of the Diophantine equation $a^x - b^y = 1$ where a, b, x and y are integers with $min\{a, b, x, y\} > 1$.

Proof : See in [3]

Lemma 2.2 : The equation $1 + p^y = z^2$, where p is odd prime greater than 3 and y and z are non negative integers has no solution

Proof : Let p be odd prime and y and z be non negative integers such that $1 + p^y = z^2$. Thus z must be greater than 1. We proceed in the following cases:

Case 1: y = 0, then we get $z^2 = 2$ which has no solution.

Case 2 : y = 1, then we get $1 + p = z^2$, which is possible only if z = 2 and p = 3, but p is greater than 3, a contradiction.

Case 3 : y > 1, then we have $z^2 - p^y = 1$, by Catalan's conjecture, we get p = 2, but this is a contradiction.

3. RESULTS

Theorem 3.1: The Diophantine equation

 $2^x + p^y = z^2 \tag{1}$

where p is odd prime greater than 3 and x, y and z are non negative integers, both x and y are not positive odd integers together, then

- 1. for every prime of the form $p = 2^{m+1} + 1$, Equation (1) has the solutions of the form $(x, y, z) = (2m, 1, 2^m + 1)$.
- 2. for every odd prime p, Equation (1) have the solutions of the form (x, y, z) = (3, 0, 3)
- 3. for every Mersenne prime p, $p = 2^q 1$, has a solution of the form (x, y, z) = (q + 2, 2, p + 2)

Proof: Let p be odd prime greater than 3 and x, y and z are non negative integers, both x and y are not odd integers together, such that $2^x + p^y = z^2$. Thus z must be greater than 1.

If x = 0 then by Lemma 2.2, Equation (1) has no solution. So, let $x \ge 1$. We proceed in two cases:

Case 1 : x is even, let x = 2m where m is positive integer. Equation becomes

$$2^{2m} + p^y = z^2$$

Subcase 1.1: y = 0, then we get $z^2 - 2^{2m} = 1$. By Catalan's conjecture, 2m = 3 which is not possible and thus no solution in this case.

Subcase 1.2: y = 1, then $p = (z + 2^m)(z - 2^m)$, since p is prime, we get $z - 2^m = 1$, then

 $z = 2^m + 1$, and $p = 2^{m+1} + 1$. Thus, for primes of the form $p = 2^{m+1} + 1$, the solutions are given by $(x, y, z) = (2m, 1, 2^m + 1)$.

Subcase 1.3 : y > 1, then $p^y = (z + 2^m)(z - 2^m)$. Thus, there are non negative integers α and β such that $p^{\alpha} = z + 2^m$ and $p^{\beta} = z - 2^m$, where $\alpha + \beta = y$ and $\alpha > \beta$.

Then

$$p^{\beta}(p^{\alpha-\beta}-1)=2^{m+1}$$

If $\beta \neq 0$, then taking above equation modulo p, we get $0 \equiv 2^{m+1} (mod p)$. This is possible only if p = 2 but this is contradiction.

Let $\beta = 0$, then we get $p^{\alpha} - 2^{m+1} = 1$ by Catalan's conjecture p = 3, but this is contradiction.

Case 2 : *x* is odd, then *y* must be either **0** or even.

Subcase 2.1 : y = 0. Then $2^x = (z + 1)(z - 1)$. Thus there are non negative integers α and β such that $2^{\alpha} = z + 1$ and $2^{\beta} = z - 1$, where $\alpha + \beta = x$ and $\alpha > \beta$. Then $2^{\beta}(2^{\alpha-\beta} - 1) = 2$, we get $\beta = 1$ and $2^{\alpha-\beta} = 2$ and thus $\alpha = 2$. Hence for every prime p, we get the solutions of the form (x, y, z) = (3, 0, 3).

Subcase 2.2 : y > 1, y is even say y = 2m.

Then we get $2^x = (z + p^m)(z - p^m)$

Thus there are non-negative integers α and β such that $2^{\alpha} = z + p^m$ and $2^{\beta} = z - p^m$, where $\alpha + \beta = x$ and $\alpha > \beta$. Then $2^{\beta}(2^{\alpha-\beta}-1) = 2p^m$, we get $\beta = 1$ and $2^{\alpha-1} - p^m = 1$. Now if $\min\{\alpha - 1, m\} > 1$, then by Catalan's conjecture, there is no solution. It is easy to check that if $\alpha - 1 = 0$ or $\alpha - 1 = 1$, there is no solution.

Let m = 1, then $p = 2^{\alpha-1} - 1$ which is Mersenne prime. Thus if p is Mersenne prime, $p = 2^q - 1$, then the solutions are given by (x, y, z) = (q + 2, 2, 2 + p)

This completes the proof.

4. CONCLUSION

In this paper, we gave all the solutions of titled equation except the case when both x and y are odd positive integers together. Thus finding all the solutions of the titled equation in non-negative integers is still an open problem.

ACKNOWLEDGEMENTS

The author is very graceful to the referees and editors for their helpful guidance and suggestions.

REFERENCES

- [1]. A. Suvarnamni, 2011 "Solutions of the Diophantine equation $2^x + p^y = z^{2y}$. Int. J. Math. Sci. Appl. 1, 1415-1419.
- [2]. Banyat Sroysang, 2013 "More on the Diophantine equation $2^x + 3^y = z^{2"}$ Int. J. Math. Sci. Appl. Vol. 84, no. 2,133-137.
- [3]. P. Mihailescu, 2004 "Primary cyclotomic units and a proof of Catalan's conjecture". *J. Reine Angew. Math.* 572, 167-195.
- [4]. Somchit Chotchaisthit, 2013 " On the Diophantine equation $2^x + 11^y = z^{2y}$. Maejo Int. J. Sci. Technol. 7(02), 291-293.