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ABSTRACT 

The origin and the various steps of the development of modern 

combinatorial theories, as Graph Theory, Hypergraphs and Designs Theory, 

are examined. The most important conjectures and results are pointed out.    
 

1. Introduction 

The modern combinatorial theories had their origin and development in the middle of the 

XIX century, overall for two important problems: the Four Color Problem for Graph Theory and the 

Woolhouse Problem for Steiner systems. The Konigsberg Bridge Problem (1735) had given a 

contribute, but after few things have been done, probably because it was soon solved by Euler. 

The Four Color Problem, become soon afterwards Four Color Conjecture (4CC) was solved in 

1976 and the many attempts to solve it have given a big contribute to the great development of 

Graph Theory.    

The Woolhouse Problem is today still unsolved in its generality and it can be considered 

solved only for few particular cases. 

We see the various steps of the development of these problems and other historical 

combinatorial problems. 

2. Konigsberg Bridge Problem - 1735 

In 1735 the seven bridges problem of Konigsberg was solved by Euler. It is an historical 

problem in combinatorial mathematics. 

The city of Konigsberg was in Prussia. Now it is called Kaliningrad and it is in   Russia. It is 

situated on the banks of the Pregel river, including the two isles Kneiphof and Lomse. The various 
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zones of the city are connected to each other by seven bridges. The problem was to determine, if 

possible, a walk through the city that would cross each of bridges once and only once.  

Someone added the condition that the walk should be a cycle.  

 

Euler proved that the problem has not any no solution. He developed a suitable technique to 

establish this assertion with mathematical rigor. 

The year 1736 is considered the birth date of Graph Theory, because, it seemed that Euler 

used graphs for his proof. But today it seems that this is not true. On August 26, 1735, Euler 

presented a paper containing the solution to the Konigsberg bridge problem, having the title:  

“Solutio problematis ad geometriam situs pertinentis”,  and later he published in 1741 in 

Commentarii Academiae Scientarum Imperialis Petropolitanae 8 (1736), 128-140. 

Precisely for this reason, O. Ore wrote in his book “Graphs and their uses”(1955):  

“Graph Theory is one of the few fields of mathematics with a definite birth date”, even if this 

is questioned today.  

Euler’s paper is divided into twenty-one paragraphs. At first  he introduced the Konigsberg 

Bridge problem.  After Euler stated that he believed that this problem concerned geometry, that not 

involved measurements and calculations, which Leibniz referred to as Geometry of Position.  Then 

Euler indicated the seven distinct bridges by the letters: a, b, c, d, e, f, g and gave his combinatorial 

proof (it seems) without use the term graph. 

In Graph Theory, a cycle in a graph G which contains all the edges exactly once is called an 

eulerian cycle. A graph G which admits an eulerian cycle is said an eulerian graph. 

Euler gave also a characterization of eulerian graphs: 

“A connected graph is eulerian if and only if all its vertices have even degree”. 

3. Woolhouse Design Problem - 1844 

In 1844, Woolhouse pointed out the following problem, where we use a modern 

mathematical language: 

Let X={x1, x2, … , xv} be a v-set, whose elements are called vertices, and let B={E1, E2, … , Eb} be 

a family of k-subsets of X, called blocks,  such that every h-subset H of X is contained in exactly one 

block of F. For which integers h,k,v is it possible to construct a family B ? 
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Today a pair ∑=(X,B), verifying the conditions introduced by Woolhouse, is called a Steiner 

system S(h,k,v). In other words, using hypergraph terminology, a Steiner systems S(h,k,v) is an 

hypergraph of order v, uniform of rank k, in which every h-subset H of X has degree one.   

Therefore in 1844 Woolhouse asked: for which h,k,v does a Steiner System S(h,k,v) exist ? 

This problem remains unsolved in general until today. However several partial results were 

given. Observed that the first significant values of h,k were h=2, k=3, indicated by STS(v) any S(2,3,v), 

in 1847 Kirkman proved that. 

“An STS(v) exists if and only if v   1 or 3,  mod 6”, and constructed systems S(3,4,v), also indicate by 

SQS(v), for v=2n, for every n=2,3,…. In 1853, J.Steiner asked for the existence of systems S(h,h+1,v) 

and probably for this reason these systems are called Steiner systems.  

After many partial results, only in 1960 and using many complicated recursive constructions, 

H. Hanani proved that:    

 “An SQS(v) exists if and only if v   2 or 4,  mod 6”, 

Soon after in 1962 H. Hanani proved also that: 

“An S(2,4,v) exists if and only if v   1 or 4,  mod 12”. 

After the cases h=2 and k=3,4, h=3 and k=4, the only known today solved case is for h=2 and 

k=5: 

“An S(2,5,v) exists if and only if v   1 or 5,  mod 20”. 

For the other cases only some particular systems are known.  Recently  it is proved that any S(4,5,17) 

there exists, while it is open the problem to construct any S(5,6,18). 

4. Kirkman 15 Schoolgirl problem - 1850 

In 1850, the Lady’s and Gentleman’s Diary published on pg.48 the following problem 

proposed by K.T. Kirkman: 

Query n.6: Fifteen young ladies in a college walk out three abreast for seven days in  succession: it is 

required, if it is possible, to arrange them daily, so that no two shall walk twice abreast.  

By this problem Kirkman introduced the theory of resolvable Steiner systems. Indeed, to 

solve that problem it is necessary to construct a resolvable STS(15).  

Let Σ=(X,B) be Steiner system S(h,k,v). Two distinct blocks E’,E” of B are said to be paralleli if 

they have no vertex in common. A parallel class C of Σ is a set of parallel blocks which cover all X. A 

system Σ is said to be resolvable if there exists a partition π of B in parallel classes. 

Therefore, to solve the problem of Kirkman it is necessary to construct a resolvable STS(15). 

Resolvable STS(15) 

Set of schoolgirls X={1, 2, …, 15}: 

Monday:  {1,6,11} - {2,7,12} - {3,8,13} - {4,9,14} - {5,10,1} 

Tuesday:  {1,2,5} - {3,4,7} - {8,9,12} - {10,11,14} - {6,13,15} 

Wednesday:  {1,7,14} - {2,3,6} - {4,5,8} - {9,10,13} - {11,12,15} 

Thursday:  {1,12,13} - {2,4,10} - {3,14,15} - {5,6,9} - {7,8,11} 
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Friday:  {1,8,10} - {2,13,14} - {3,5,11} - {4,6,12} - {7,9,15} 

Saturday: {1,4,15} - {2,9,11} - {3,10,12} - {5,7,13} - {6,8,14} 

Sunday:  {1,3,9} - {2,8,15} - {4,11,13} - {5,12,14} - {6,7,10}    

Resolvable systems of type S(2,3,v) were called Kirkman Triple Systems and they are today indicated 

by KTS(v). Kirkman proved that: 

“A KTS(v) exists if and only if v   3,  mod 6”. 

5. Four Colour Problem - 1852 

The Four Colour problem was born in 1852. The student Francis Guthrie observed that any 

Geographical map in a plane can be coloured using 4 colours in such a way that regions sharing a 

common boundary (no a single point) do not share a same colour. Francis Guthrie was intrigued by 

the problem and passed the problem to his brother, who then asked to his professor De Morgan, 

who pointed out the question to the London Mathematical Society and in particular to Hamilton. So, 

the four colour problem soon became Four Colour Conjecture. There were many attempts of 

solution:  

- A.Cayley in 1872 gave a proof in the paper “On the colouring maps”; 

- A.Kempe in 1879 gave a proof of the conjecture which was considered valid for 11 years; 

- P.Heawood in 1890 found a mistake in the proof of Kempe and proved the “five colours 

theorem”. 

Since that years, the attempts to prove that “every map is 4-colorable” or that “there exist 

maps 5-colorable but not 4-colorable” were multiple, but the demonstrations were all wrong.   

These gave a great contribute to the knowledge of the problem and at the same time gave a 

great contribute to the development of Graph Theory. Associating with every geographical map a 

planar graph and colouring its vertices, the problem of colouring a map became a problem of vertex-

colouring of graph theory as follows:  

“Every planar graph is 4 colourable”. 

The four colour problem was solved in 1976 by Appel and Heken, using big and powerful 

computers. The proof of 4CC is published in:  

K.Appel, W.Haken, Illinois Journal of Mathematics, 84 (1977)-I, 429-490 

K.Appel, W.Haken, J.Koch, Illinois Journal of Mathematics, 84 (1977)-II, 491-567 

K.Appel, W.Haken, Scientific American, 237 (1977), 108-121 

The authors arrived to the result, by 3 steps. 

1) Definition and determination of main maps, which it was proved were 1476. 

2) Demonstration that the colouring of any map can be traced back reduced to the colouring of 

a main map. 

3) Check by computer that the main maps are all 4-colorable. 
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The idea used by the authors was the same of Kempe. But Kempe had proved that the number of 

main maps was exactly 4.  

We can observe that step 1 and step 2 are of mathematical character, while in step 3 there is the use 

of computers. Therefore, the proof is only in part mathematical and there are many mathematicians 

who ask for a proof completely mathematical. 

6. Hamilton Dodecahedron problem - 1859 

In 1859, the Irish mathematician W. R. Hamilton devised a wood puzzle with a regular 

dodecahedron.  He labelled the vertices with the names of important cities and he formulated the 

following problem: 

Determine, if it is possible, a cycle along the edges of the dodecahedron which visites every 

city exactly once and returnes to the start.  

The problem has solutions and it gave origin to the so-called hamiltonian graphs. It is easy to 

see that it is possible to represent the dodecahedron by a graph. A cycle on the dodecahedron , as 

requested by Hamilton, is a cycle which contains every vertex exactly once. In a graph, a cycle of this 

kind is called an hamiltonian cycle and a graph which admits an hamiltonian cycle is said an 

hamiltonian graph. From Hamilton Dodecahedron problem it is born one of the most important 

open problem in the modern graph theory: the characterization of hamiltonian graphs. 

 The problem of Hamilton is very similar to the Konigsberg bridges problem. In the eulerian 

graphs, the condition regards the edges of the graph (determination of a cycle which contains all the 

edges exactly once), in the hamiltonian graphs the condition regards the vertices (determination of a 

cycle which contains all the vertices exactly once). However, while eulerian graphs have been 

characterize by Euler (the necessary and sufficient condition is that in the connected graph every 

vertex has even degree), we do not know until today a necessary and sufficient condition for 

hamiltonian graphs.    

7. Nine Prisoners problem – 1917 

 In 1917, the mathematician H.E.Dudeney formulated the following puzzle (called by himself):     

In a jail there were 9 prisoners, indicated by integer numbers 1, 2, …, 9, having a particularly 

character. Each morning they were allowed to walk handcuffed in the prison yard. On Monday they 

walked as follows: 

1 — 2 — 3 

4 — 5 — 6 

7 — 8 — 9 

Could you arrange them for Tuesday — Saturday so that no pair of prisoners is handcuffed together 

twice ? 

Note that the prisoners 1 and 3 are not handcuffed together on Monday, so that this puzzle 

is, as Dudeney remarks, an interesting puzzle similar to the problem of 15 schoolgirls of Kirkman. 

 We observe that this problem can be considered the primitive question from which  the 

entire G-design theory had its origin.  
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Further, 15 schoolgirls problem of Kirkman and 9 prisoners problem of Dudeney  point out the 

considerable difference between sets and graphs and their use. In Kirkman’s problem  the triples of 

schoolgirls are all sets and as such, if {A,B,C} is one of them, it contains le pairs of schoolgirls 

{A,B},{B,C},{A,C} (which cannot appear in other triples). In Dudeney problem, the triples are not sets, 

indeed if A,B,C are the prisoners, in this order, the triples is made up of pairs {A,B},{B,C}. Therefore, 

we can say that it is a path P3, that is the graph having vertices A,B,C and edges {A,B},{B,C}. From this 

point of view, a set as {A,B,C}can be seen as the complete graph K3. 

In other words, this show how graphs can and will replace sets.      

Well, following design theory terminology, we observe that to solve Dudeney’s problem it is 

necessary to construct a resolvable P3-designs. 

Resolvable P3-design of order  15 

Set of prisoners X={1, 2, …, 15}: 

 Monday:  1 — 2 — 3   Tuesday:  5 — 1 — 6  

4 — 5 — 6      7 — 2 — 8 

7 — 8 — 9      9 — 3 — 4 

 

Wednesday:  2 — 5 — 8   Thursday:  2 — 4 — 1 

   9 — 1 — 3      5 — 3 — 8 

   4 — 6 — 7      7 — 9 — 6 

 

Friday:   1 — 7 — 5   Saturday:  5 — 9 — 2 

   2 — 6 — 3      1 — 8 — 6 

   9 — 4 — 8      4 — 7 — 3 

It is well-known that: 

(1)  P3-designs exists if and only if v   0 or 1, mod 4. 

(2) Resolvable P3-designs exists if and only if v   9, mod 12. 

8. Edge-colouring - 1880  and  Classification Problem - 1960 

In the past, problems involving vertex-colorings and chromatic number received 

considerable attention mainly because the 4CC. After some studies about vertex-colorings, it was 

naturally to define edge-coloring and chromatics index. Although the origins of chromatic theory 

may be traced back to 4CC (1852) and the first papers on edge-colorings appeared in 1880, when P. 

G. Tait published two brief abstracts in the Proceedings of the Royal Society of Edimburg. 

In this paper Tait proved that: 

“If the 4CC is true, then the edges of every trivalent planar graph can be properly coloured 

using only 3 colours” 
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After this, little was done until D. Konig, who in 1916 proved that: 

“If G is a bipartite graph having maximum degree Δ, then its edges can be properly coloured using 

exactly Δ colours” 

It was soon evident that it was not possible to colour edges of a graph by Δ-1 colours and a 

curious fact was that every graph was always colourable by Δ  or  Δ +1 colours. 

So, the great news arrived in 1964, when V.G.Vizing proved that: 

“In every graph G, the chromatic index is always Δ or Δ+1”  

Observe that this fact is completely different from what happens with the vertex- colourings. 

The Theorem of Vizing gave a criterion to classify graphs. A graph G is of class 1 if its chromatic index 

is Δ, it is of class 2 if its chromatic index is Δ+1. 

 The problem to characterize if a graph is of class 1 or of class 2 is the  Classification Problem 

of Graphs and it is one of the most important open problem of the modern Graph Theory. 

9. Vizing’s Conjecture for classification of planar graphs – 1965 

 Although the classification problem is far from solved in general, appreciable  progress has 

been done in the particular case of planar graphs.  

 Even cycles are planar graph of class 1. Odd cycles are planar graphs of class 2. In 1965 Vizing 

proved the following surprising result: 

“Every planar graph with Δ ≥ 8 is necessary of class 1” 

The problem of determining what happens when the maximum degree is either 6 or   7 

remains open and, in this connection, Vizing formulated the following conjecture: 

“Every planar graph with Δ=6 or Δ=7 is of class 1” 

We can see a different situation between vertex-colorings and edge-colorings. Given a graph 

G, the minimum possible value for chromatic index is Δ (maximum degree), while the minimum 

possible value for chromatic number is  the density ω (the maximum number of vertices generating 

a complete subgraph), For edge colorings the possible values for the chromatic index χ’ are only two 

(Theorem of Vizing): χ’= Δ or χ’= Δ+1. For vertex-colorings, there is a Mycielski construction for which 

it happens that: 

 “For every positive integer h, there exists graphs G such that χ= ω+h” 

10.  Berge’s Conjecture for Linear Hypergraphs - 1975 

Let X={x1,x2,...,xn} be a finite set of cardinality n. Let Π be a family of non-empty subset of X, 

such that two different subsets of Π are disjoint or have only one element in common. Let Π* be the 

family of all the subsets of X, containing Π and containing all the non-empty subsets of the subsets of 

Π. In other words, Π* is obtained from Π, adding to every E that belongs to Π all its non-empty 

subsets. 

Prove that it is always possible to define a partition Ω={E1,E2,...,En}  of  Π* so that: 

1) For every i=1,2,…,n, if F’, F” belong to Ei then F’ and F” are disjoint; 
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2) There exists at least an element x of X such that for every i=1,2,…,n there exists an Ei of Π* 

containing x; 

The problem so formulated is an open problem. It is due to Berge, who formulated it using 

hypergraph terminology. 

Let H=(X,B) be an hypergraph. H is said linear if two different edges of B are always disjoint 

or have only one vertex in common. The closure of H is the hypergraph H*=(X,B*), having the same 

vertices of H and any F is an edge of H* if and only if it is a non-empty subset of an edge of H. Given 

H, the symbol Δ(H) indicates the maximum degree of the vertices of H. 

Conjecture of Berge: 

If H is a linear hypergraph then the chromatic index of H* is equal to Δ(H*) 

Observe that a Steiner system of type S(2,k,v) is a linear hypergraph. Therefore, Berge’s 

conjecture can be formulated for S(2,k,v) as follows: 

“The closure of every S)(2,k,v) is resolvable” 

Example:  Let H=(X,B) be an hypergraph, where X={1,2,…,7} and B is the family of edges so defined: 

E1={1,2,3}, E2={1,4,5}, E3={1,6,7},  

 E4={2,4,6}, E5={2,5,7}, E6={3,4,7}  

The hypergraph H*, closure of  H, is always defined in X and has for edges all the edges of H with also 

all their non-empty subsets: 

1,2   1,3   1,4   1,5   1,6   1,7    

2,3   2,4   2,5   2,6   2,7   3,4    

3,7   4,5   4,6   4,7   5,7   6,7 

1,  2,  3,  4,  5,  6,  7 

 

A partition of the closure H* of H in parallel classes, verifying the conjectures   (classes must be red 

horizontally), is: 

1 2 3  4 5  6 7 

1 4 5  2 6   3 7 

1 6 7  2 4  3 5 

2 4 6  1 3  5 7 

2 5 7  1 6  3 4 

3 4 7  1 2  5 6 

3 5 6  1 4  2 7 

1 5  2 3  4 6   7 

4 7  1  2   5   

1 7  2 5  3   4   6  
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11.  The conjecture of Erdos-Strauss - 1948 

There is a famous conjecture due to Erdos-Strauss regarding Number Theory.  

For every positive integer n ≥ 2 there exist positive integers x, y, z such that: 

 

 
  
 

 
  
 

 
  
 

 
 

It is not clear if there is a demonstration of the truth of conjecture. However, it is easy to see 

that the conjecture is true for n=4k, n=4k+2, n=4k+3. Indeed: 

- for n=4k, it is sufficient to take: x=2k, y=2k, z=4k 

- for n=4k+2, it is sufficient to take: x=2k+1, y=2k+1, z=4k+2 

- for n=4k+3, it is sufficient to take: x=2k+2, y=2k+2, z=(k+1)(4k+3). 

For n=4k+1, again, it is not clear if there is a demonstration or not, however there are cases which 

confirm that the conjecture is true. Indeed, for n=5, n=45, n=81, we have respectively: 
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