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ABSTRACT 

Two classes of tests are proposed for the two-sample scale problem. These 

are the classes of U-statistics based on subsamples of sizes b and d 

respectively from first and second samples. One of the classes of tests is 

based on maxima and the other is based on minima of the subsamples from 

both the samples. The asymptotic distribution and efficacies of the tests are 

derived. The performance of the tests is discussed in terms of their empirical 

power and Pitman asymptotic relative efficiency (ARE). The equivalence of 

proposed classes of tests in terms of ARE is established and application is 

illustrated. 

Keywords: two-sample scale problem, class of tests, subsample maxima, 

subsample minima, U-statistics, Pitman ARE. 

 

1. Introduction 

Two-sample scale problem is one of the basic problems encountered in statistics wherein, two 

populations are tested for the equality of their sparseness against nonequality. Suppose 

           and            are independent samples respectively drawn from absolutely 

continuous distributions with cumulative distribution functions  ( ) and  ( ), where  ( )  

 (
 

 
)     . We consider testing     ( )   ( ) against     ( )   ( ). It is equivalent to 

testing        against       . 

Here, the two populations are tested for their equalities in scales against the population  ( ) having 

more dispersion than  ( ). We assume that the medians of the two populations are zero. 
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Several distribution-free tests exist in the literature for the two-sample scale problem. To mention 

some of them, the tests are due to Lehmann (1951), Rosenbaum (1953), Mood (1954), Kamat 

(1956), Sukhatme (1957, 1958), Siegal and Tukey (1960), Deshpande and Kusum (1984), Kusum 

(1985), Kochar and Gupta (1986), Shetty and Bhat (1993), Bhat (1995), Shetty and Pandit (2004), 

Mahajan et. al. (2011), Kossler and Narinder Kumar (2016) and Bhat et. al. (2018). 

Section 2 deals with defining proposed classes of tests and their alternative expressions, section 3 

with asymptotic distributions of the classes of tests and section 4 with Pitman ARE. In section 5, we 

furnish null distribution and empirical power of the classes of tests for specified samples and 

subsample sizes. Section 6 deals with application of tests along with concluding remarks.  

2. Proposed classes of tests and their alternative expressions 

As the information contained in the tails of the distribution are important for detecting differences 

in the dispersion, we propose two classes of distribution-free tests, one of them   (   ) depending 

on U-statistic being function of maxima and the other   (   ) depending on U-Statistic being 

function of minima of subsamples of sizes   and   respectively drawn from two absolutely 

continuous distributions   ( ) and  ( ). 

For       and      , being two fixed integers, we define the following kernels, 

  (                     )  {

               ( )
   ( )

         

           ( )
   ( )

           

                                             

 (1) 

and   (                     )  {

                ( )
   ( )

         

            ( )
   ( )

           

                                              

 (2) 

where, ( )
     (          ), ( )

     (          ),  ( )
     (          ),  ( )

  

   (        ),  ( )
     (          ),  ( )

     (          ),  ( )
     (          ), 

 ( )
     (          ),           and          .    ( ) stands for maximum and    ( ) 

stands for minimum of the subsamples. 

Based on the above kernels, we define two classes of test statistics   (   ) and   (   ) 

respectively depending on subsample maxima and subsample minima given by 
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 (4) 

where,   denotes the sum over all possible ( 
 
)( 
 
) combinations of X and Y observations. 

The test statistics are distribution-free under    for all values of   and   for       and 

     . Large values of   (   ) and   (   ) are significant for testing    against   . 

Following Bhat (1995) and Shetty et. al. (1997) under the assumption that there are no ties, the 

alternative expressions for proposed classes of tests in terms of ordered ranks are given by 
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where,  ( )
 ( ( )

 ) is the rank of  ( )
 ( ( )

 ) in the joint rankings of   
       

    
       

  and 

 ( )
 ( ( )

 ) is the rank of  ( )
 ( ( )

 ) in the joint rankings of   
       

    
       

  such that 

 ( )
   ( )

     (  )
  ( ( )

   ( )
     (  )

 ) are ordered positive X (Y)-observations, 

 ( )
   ( )

     (  )
  ( ( )

   ( )
     (  )

 ) are ordered negative X (Y)-observations, 

        and        . 

3. Asymptotic distribution of proposed classes of tests 

In this section, we derive the mean, null mean, asymptotic variance and asymptotic distribution of 

the proposed classes of tests.  

Theorem 1: The mean of   (   ) and   (   ) is given by 

 [  (   )]    [  (   )]  (7) 

Under   , 

       [  (   )]  
   

   
  (8) 

 and        [  (   )]  
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For    ,          . (10) 
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Therefore, (7) holds. 

Under   , 
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For    , from (8) and (9) we obtain (10). 

Theorem 2: Under   , the asymptotic variances of   (   ) and   (   ) respectively are given by 
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Similarly, defining, 
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and    
   [   (         )     (          )   ] 

we get, 
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It is obvious from (16) and (17) that,   (   )   
 (   ) . (18) 

Therefore,   
  

  (   ) 

 
 
  (   ) 

   
 
  (   ) 

 (   )
. Thus we obtain (11). 

Proceeding on similar arguments and mathematical simplifications, defining 
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From (19) and (20), we obtain (15). 

When     (   ) 
  

 

 (    )
 and   

   
  

  (   )(    )
. (21) 

According to generalized U-statistic theorem due to Lehmann (1951), a two-sample U-statistic with 

square integrable kernel follows asymptotic normal distribution. 

Corollary 1: √ [  (   )     ] is asymptotically normal with mean zero and variance   
 . 

Corollary 2: Since          and   
    

 , √ [  (   )     ] is asymptotically normal with mean 

zero and variance   
 . 

Corollary 3: When    , both   (   ) and   (   ) have asymptotic normal distribution with 

mean zero and variance   
  . 
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4. ARE of the proposed tests 

In this section, we obtain efficacies of   (   ),   (   ) and furnish their large sample performance 
with respect to (wrt) some other distribution-free tests in terms of Pitman ARE. 

Theorem 3: For the sequence of Pitman alternatives,  (
 

  
)       (

 

√ 
), the efficacies of 

  (   ) and   (   ) are respectively given by 
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Therefore, using (11) and (24), we obtain (22). 

Similarly, consider 
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Using (12) and (25), we get (23). 
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Corollary 4: The two classes of test statistics   (   ) and   (   ) are equivalent. That is  

   [  (   )   (   )]   . (26) 

Proof: By definition, Pitman ARE of any test A wrt any other test D is given by, 

   (   )  
 ( )

 ( )
  (27) 

From theorem 2,   
    

 .  

Since (       )
 
 (       )

 
, when             and     exist and by theorem 3, we have 

 [  (   )]   [  (   )] 

Therefore, by using (27), we obtain (26). 

For    ,  [  (   )]  
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To assess the performance of the proposed classes of tests, we consider   test due to Mood (1954), 

   test due to Siegel and Tukey (1960),    test due to Deshpande and Kusum (1984),   test due to 

Kusum (1985),   (     ) test due to Kochar and Gupta (1986),  (   ) test due to Shetty and Bhat 

(1993) and  (     ) test due to Bhat et. al. (2018). We denote         and        . We 

furnish the efficacy values of   (   ) for different values of     and distributions in table 1 given in 

appendix. 

The ARE of   (   ) wrt  (     ) is computed using (27) and ARE of   (   ) wrt other tests ( ) are 

computed using the following chain rule. 

   [  (   ) ( )]     [  (   )  (     )]     [ (     ) ( )]  (29) 

From table 1, we observe that, the efficacy values of   (   ) are decreasing for increasing values of 

     for exponential distribution and are increasing for other distributions. Also, the efficacy values 

are the same for       for varying values of   and  . 

Hence we furnish the ARE of   (   ) wrt other tests under various distributions for different values 

of   in table 2 and 3 in appendix. From table 2, we find that   (   ) performs better than         

and   tests for normal distribution. It performs better than   and    tests respectively for     

and     for uniform distribution. Table 3 reflects that the proposed classes of tests are better than 

 (     )    (     ) for exponential distribution and better than  (     )   (     ),  (   ) for 

normal distribution. They are better than  (     ) and  (   ) respectively under uniform 

distribution for     and    . 

5. Null distribution and Empirical Power 

In this section, for   
 (   ) and   

 (   ) we obtain null distribution, critical values with attained 

level of significance (  ) and empirical power of proposed classes of tests at specified level of 

significance ( ) for different values of             and   using Monte-Carlo simulation. The null 

distributions for   
 (   ) and   

 (   ) respectively are presented in figure 1 and figure 2.  

Their critical values for specified levels of significance are obtained using the null distribution and are 

presented in table 4 in appendix. The empirical powers of   
 (   ) and   

 (   ) respectively are 

presented in table 5 and 6 in appendix for various distributions and values of  . 



Bull .Math.&Stat.Res  ( ISSN:2348-0580)  
 

   27 
 

Vol.7.Issue.3.2019 (July -Sept.) 

SHARADA V. BHAT & SHASHANK D. SHINDHE 

From figure 1 and 2, we observe that the null distributions of both   
 (   ) and   

 (   ) are 

symmetric with the tails of the null distribution of   
 (   ) being slightly heavier than the tails of the 

null distribution of   
 (   ). From table 4, it can be seen that the critical values of   

 (   ) are less 

than the critical values of   
 (   ) for    .  

Table 5 and 6 reveal that   
 (   ) has higher power for smaller values of     under uniform 

distribution for      . For given     the empirical power of   
 (   ) is increasing for increasing 

values of    and  . The empirical power of   
 (   ) is increasing whereas that of   

 (   ) is 

decreasing for the increasing values of  .   
 (   ) has higher empirical power than   

 (   ) for 

smaller values of     and for       for all the distributions under consideration. 

 

Fig 1: Null distribution of   
 (   ). 
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Fig 2: Null distribution of   
 (   ). 

6. Application and Conclusions 

To illustrate the application of   (   ) and   (   ), we consider the following example given in 

Gibbons and Chakraborti (1992). 
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Example: Given are two sets of measurements of thicknesses of microscope slides from two 

suppliers (X and Y). The observations are made using a micrometer and are recorded as the 

deviation from specified median thickness. 

Supplier X Supplier Y 

-0.002, 0.016, 0.005, -0.001, 0.000, 

0.008, -0.005, -0.009, 0.001,-0.019 

0.028, 0.029, 0.011, -0.030, 0.017,  

-0.012,-0.027,-0.018,0.022,-0.023 

 

Various tests are applied to solve this example using R-package and R-programming. 

Tests      (   )   
 (   )   

 (   )   
 (   )   

 (   ) 

p-value 0.0113 0.0013 0.0414 0.0608 0.1011 0.4190 0.5541 

We observe that, the p-values for   
 (   ) and   

 (   ) are lesser than those of   
 (   ) and   

 (   ). 

The test based on subsample maxima with smaller subsamples suggests rejecting the null hypothesis 

for an error around 6 percent. 

We conclude that,  

 The proposed classes of tests are distribution-free and their large values are significant for 

rejecting the null hypothesis. 

 The asymptotic distributions of both the classes of tests are normal distributions with equal 

variances. 

 The classes of tests   (   ) and   (   ) have equal performance in terms of Pitman ARE 

and admit some members of their classes performing better than their competitors under 

consideration.  

 The null distribution of the proposed classes of tests are symmetric with null distribution of 

  
 (   ) having slightly lighter tails than that of   

 (   ) for    . 

 The small sample performance of the proposed classes of tests in terms of empirical power 

differs. 

 The empirical power of   
 (   ) is higher than the empirical power of   

 (   ) for      . 

   
 (   ) and   

 (   ) reject the null hypothesis respectively for 6 percent and 10 percent 

error. 

 At the outset, the two classes of tests   (   ) depending on the subsample maxima and 

  (   ) depending on subsample minima seem to be identical. In terms of large samples 

they are equivalent. However,   (   ) outperforms   (   ) when the samples are small. 
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Appendix 

Table 1: Efficacy of   (   ) for different values of     and various distributions. 

b d Uniform Exponential Normal Logistic Laplace 

2 2 1.5556 0.4564 2.1727 0.0804 0.0432 

2 3 2.5313 0.4632 3.3037 0.1215 0.0657 

2 4 3.5200 0.4626 4.2067 0.1533 0.0837 

2 5 4.5139 0.4581 4.9142 0.1774 0.0977 

3 2 2.5313 0.4632 3.3037 0.1215 0.0657 

3 3 3.5200 0.4626 4.2067 0.1533 0.0837 

3 4 4.5139 0.4581 4.9142 0.1774 0.0977 

3 5 5.5102 0.4517 5.4679 0.1955 0.1087 

4 2 3.5200 0.4626 4.2067 0.1533 0.0837 

4 3 4.5139 0.4581 4.9142 0.1774 0.0977 

4 4 5.5102 0.4517 5.4679 0.1955 0.1087 

4 5 6.5078 0.4443 5.9027 0.2090 0.1174 

5 2 4.5139 0.4581 4.9142 0.1774 0.0977 

5 3 5.5102 0.4517 5.4679 0.1955 0.1087 

5 4 6.5078 0.4443 5.9027 0.2090 0.1174 

5 5 7.5062 0.4364 6.2454 0.2192 0.1242 

 

Table 2: ARE of   (   ) wrt M and ST tests 

  
Uniform Normal 

M ST M ST DK K 

4 0.3111 0.5186 1.4296 1.7870 1.7883 1.2934 

5 0.5063 0.8438 2.1738 2.7173 2.7193 1.9667 

6 0.7040 1.1734 2.7679 3.4600 3.4626 2.5043 

7 0.9028 1.5047 3.2335 4.0420 4.0450 2.9255 

8 1.1020 1.8369 3.5978 4.4974 4.5007 3.2551 

9 1.3016 2.1694 3.8838 4.8550 4.8586 3.5139 

10 1.5012 2.5022 4.1094 5.1369 5.1407 3.7180 
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Table 3: ARE of   (   ) wrt  (     )   (     ) and  (   ). 

c 
 (     )   (     )  (   ) 

  Uniform Exponential Normal   Exponential Normal   Uniform Normal 

4 

6 0.4411 1.3613 1.0303 5 3.1939 1.3875 2 0.6666 1.8304 

8 0.4817 1.4040 1.0687 6 3.0859 1.3379 5 0.5664 1.6977 

10 0.5104 1.4371 1.0981 7 2.9904 1.2936 7 0.4601 1.5537 

5 

6 0.7177 1.3815 1.5666 5 3.2414 2.1098 2 1.0848 2.7833 

8 0.7838 1.4249 1.6251 6 3.1319 2.0344 5 0.9217 2.5815 

10 0.8306 1.4585 1.6697 7 3.0349 1.9670 7 0.7487 2.3625 

6 

6 0.9981 1.3796 1.9948 5 3.2369 2.6865 2 1.5085 3.5441 

8 1.0899 1.4229 2.0693 6 3.1274 2.5905 5 1.2817 3.2871 

10 1.1551 1.4565 2.1261 7 3.0307 2.5047 7 1.0411 3.0082 

7 

6 1.2799 1.3663 2.3303 5 3.2058 3.1384 2 1.9345 4.1402 

8 1.3977 1.4092 2.4173 6 3.0974 3.0262 5 1.6436 3.8400 

10 1.4812 1.4425 2.4837 7 3.0015 2.9260 7 1.3351 3.5142 

8 

6 1.5624 1.3472 2.5928 5 3.1609 3.4920 2 2.3614 4.6066 

8 1.7062 1.3895 2.6897 6 3.0540 3.3671 5 2.0063 4.2727 

10 1.8081 1.4223 2.7636 7 2.9595 3.2556 7 1.6298 3.9101 

9 

6 1.8453 1.3251 2.7990 5 3.1090 3.7696 2 2.7890 4.9729 

8 2.0150 1.3667 2.9035 6 3.0039 3.6349 5 2.3696 4.6124 

10 2.1355 1.3989 2.9833 7 2.9109 3.5145 7 1.9248 4.2210 

10 

6 2.1284 1.3016 2.9615 5 3.0539 3.9885 2 3.2168 5.2617 

8 2.3242 1.3425 3.0722 6 2.9507 3.8459 5 2.7331 4.8802 

10 2.4631 1.3742 3.1565 7 2.8594 3.7186 7 2.2201 4.4661 
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Table 4: Critical values and    of   
 (   ) and   

 (   ) for different values of                    

              
5% 10% 

  (   )   (   )   (   )   (   ) 

7 9 4 4 3 3 
15 

(0.0278) 
12 

(0.0201) 
12 

(0.0895) 
10  

(0.0657) 

8 8 2 2 2 2 
-14 

(0.0457) 
-20 

(0.0487) 
-28 

(0.0986) 
-31  

(0.0981) 

8 8 4 4 2 2 
22 

(0.0479) 
21 

(0.0414) 
18 

(0.0785) 
17  

(0.0925) 

8 8 4 4 2 3 
19 

(0.0440) 
22 

(0.0389) 
16 

(0.0782) 
20  

(0.0636) 

8 8 4 4 3 2 
17 

(0.0455) 
16 

(0.0451) 
14 

(0.0883) 
10  

(0.0817) 

8 8 4 4 4 2 
5 

(0.0299) 
5 

(0.0484) 
4 

(0.0732) 
3 

(0.0673) 

10 10 5 5 2 2 
53 

(0.0485) 
50 

(0.0499) 
42 

(0.0975) 
40 

(0.0969) 

10 10 5 5 2 3 
64 

(0.0487) 
79 

(0.0482) 
53 

(0.0995) 
66  

(0.0985) 

10 10 5 5 3 2 
57 

(0.0497) 
48 

(0.0490) 
44 

(0.0966) 
35  

(0.0944) 

10 10 5 5 2 4 
37 

(0.0480) 
76 

(0.0499) 
32 

(0.0942) 
70 

(0.0856) 

10 10 5 5 3 4 
41 

(0.0476) 
45 

(0.0319) 
35 

(0.0843) 
35 

(0.0981) 

10 10 5 5 4 4 
21 

(0.0409) 
20 

(0.0137) 
20 

(0.0591) 
15  

(0.0750) 

10 10 5 5 4 2 
32 

(0.0495) 
25 

(0.0477) 
25 

(0.0995) 
15 

(0.0900) 

10 10 5 5 4 3 
40 

(0.0396) 
35 

(0.0476) 
34 

(0.0996) 
20 

(0.0793) 

10 10 5 5 5 2 
7 

(0.0473) 
6 

(0.0392) 
6 

(0.0820) 
3 

(0.0908) 

10 10 5 5 5 3 
9 

(0.0311) 
9 

(0.0460) 
7 

(0.0925) 
4 

(0.0593) 

16 16 8 8 2 2 
300 

(0.0494) 
299 

(0.0494) 
232 

(0.0995) 
230 

(0.0992) 

16 16 8 8 3 3 
1585 

(0.0499) 
1392 

(0.0499) 
1268 

(0.0999) 
1090 

(0.0999) 

16 16 8 8 4 4 
3089 

(0.0499) 
2470 

(0.0498) 
2450 

(0.0984) 
1940 

(0.0998) 

16 16 8 8 5 5 
2266 

(0.0498) 
1910 

(0.0498) 
1959 

(0.0996) 
1386 

(0.0994) 

Values of    are given in braces. 
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Table 5: Empirical power of   
 (   ) for different values of             ,   for various 

distributions and various values of   at       . 

              Distributions 
  

1.2 1.5 2 2.5 3 4 5 

7 9 4 4 3 3 

Uniform 0.1693 0.2184 0.2313 0.2321 0.2436 0.2427 0.2419 

Normal 0.1828 0.2023 0.2124 0.2149 0.2093 0.1962 0.1889 

Logistic 0.1796 0.1937 0.2005 0.1993 0.1942 0.1894 0.1872 

Laplace 0.1830 0.1851 0.1937 0.1875 0.2025 0.1914 0.1804 

8 8 4 4 2 2 

Uniform 0.1078 0.1489 0.1803 0.2016 0.2002 0.2050 0.2084 

Normal 0.1272 0.1486 0.1615 0.1689 0.1714 0.1797 0.1715 

Logistic 0.1244 0.1423 0.1528 0.1645 0.1721 0.1663 0.1634 

Laplace 0.1204 0.1275 0.1482 0.1551 0.1542 0.1550 0.1562 

8 8 4 4 2 3 

Uniform 0.0999 0.1405 0.1663 0.1727 0.1857 0.1867 0.1898 

Normal 0.1195 0.1308 0.1478 0.1574 0.1633 0.1604 0.1489 

Logistic 0.1139 0.1298 0.1377 0.1494 0.1507 0.1486 0.1477 

Laplace 0.1063 0.1233 0.1319 0.1322 0.1402 0.1453 0.1424 

8 8 4 4 3 2 

Uniform 0.0960 0.1434 0.1550 0.1724 0.1796 0.1830 0.1896 

Normal 0.1168 0.1331 0.1475 0.1553 0.1584 0.1546 0.1452 

Logistic 0.1175 0.1226 0.1399 0.1487 0.1478 0.1447 0.1498 

Laplace 0.1059 0.1193 0.1251 0.1371 0.1329 0.1376 0.1415 

16 16 8 8 2 2 

Uniform 0.1060 0.1711 0.2101 0.2461 0.2714 0.2675 0.2709 

Normal 0.1288 0.1553 0.1870 0.2017 0.2180 0.2143 0.2136 

Logistic 0.1225 0.1493 0.1657 0.1846 0.1902 0.2024 0.1915 

Laplace 0.1152 0.1363 0.1534 0.1619 0.1766 0.1776 0.1838 

16 16 8 8 3 3 

Uniform 0.0955 0.1590 0.1807 0.1973 0.2115 0.2195 0.2276 

Normal 0.1109 0.1348 0.1607 0.1669 0.1742 0.1663 0.1591 

Logistic 0.1182 0.1275 0.1464 0.1546 0.1558 0.1513 0.1465 

Laplace 0.1097 0.1139 0.1293 0.1312 0.1436 0.1497 0.1462 

16 16 8 8 4 4 

Uniform 0.0977 0.1443 0.1670 0.1801 0.1866 0.1787 0.1846 

Normal 0.1188 0.1292 0.1416 0.1466 0.1472 0.1353 0.1295 

Logistic 0.1127 0.1162 0.1354 0.1417 0.1370 0.1423 0.1274 

Laplace 0.1126 0.1150 0.1249 0.1335 0.1302 0.1325 0.1304 

16 16 8 8 5 5 

Uniform 0.0962 0.1399 0.1668 0.1754 0.1821 0.1837 0.1863 

Normal 0.1220 0.1371 0.1442 0.1617 0.1558 0.1510 0.1429 

Logistic 0.1127 0.1251 0.1401 0.1344 0.1505 0.1430 0.1325 

Laplace 0.1123 0.1139 0.1329 0.1326 0.1409 0.1334 0.1304 
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Table 6: Empirical power of   
 (   ) for different values of             ,   for various 

distributions and various values of   at       . 

              Distributions 
  

1.2 1.5 2 2.5 3 4 5 

7 9 4 4 3 3 

Uniform 0.1131 0.0939 0.0902 0.0852 0.0871 0.0806 0.0828 

Normal 0.1029 0.1032 0.0944 0.0917 0.0888 0.0976 0.1001 

Logistic 0.1081 0.1007 0.1009 0.1019 0.0939 0.1033 0.1023 

Laplace 0.1073 0.1076 0.1102 0.0971 0.1033 0.1023 0.1062 

8 8 4 4 2 2 

Uniform 0.1086 0.0821 0.0636 0.0654 0.0561 0.0522 0.0524 

Normal 0.1022 0.0925 0.0762 0.0707 0.0605 0.0515 0.0466 

Logistic 0.1023 0.1001 0.0808 0.0742 0.0650 0.0562 0.0554 

Laplace 0.0995 0.0982 0.0858 0.0784 0.0755 0.0632 0.0575 

8 8 4 4 2 3 

Uniform 0.1129 0.1043 0.0990 0.0981 0.0953 0.0883 0.0873 

Normal 0.1198 0.1067 0.1098 0.0979 0.0956 0.0945 0.0916 

Logistic 0.1154 0.1175 0.1122 0.1057 0.0997 0.1011 0.0996 

Laplace 0.1113 0.1153 0.1151 0.1126 0.1141 0.1080 0.0957 

8 8 4 4 3 2 

Uniform 0.1089 0.0790 0.0689 0.0665 0.0579 0.0519 0.0508 

Normal 0.1045 0.0880 0.0729 0.0620 0.0546 0.0532 0.0519 

Logistic 0.1012 0.0887 0.0768 0.0663 0.0674 0.0526 0.0551 

Laplace 0.1077 0.1020 0.0889 0.0774 0.0693 0.0612 0.0601 

16 16 8 8 2 2 

Uniform 0.1008 0.0617 0.0425 0.0393 0.0317 0.0251 0.0249 

Normal 0.0872 0.0666 0.0482 0.0336 0.0306 0.0235 0.0183 

Logistic 0.0913 0.0714 0.0536 0.0423 0.0403 0.0293 0.0245 

Laplace 0.0926 0.0840 0.0662 0.0545 0.0477 0.0366 0.0294 

16 16 8 8 3 3 

Uniform 0.0995 0.0623 0.0506 0.0431 0.0393 0.0402 0.0387 

Normal 0.0883 0.0751 0.0587 0.0521 0.0479 0.0483 0.0485 

Logistic 0.0893 0.0794 0.0664 0.0585 0.0557 0.0521 0.0553 

Laplace 0.0947 0.0888 0.0794 0.0685 0.0665 0.0602 0.0552 

16 16 8 8 4 4 

Uniform 0.1075 0.0772 0.0587 0.0546 0.0551 0.0582 0.0573 

Normal 0.0935 0.0861 0.0719 0.0699 0.0737 0.0786 0.0790 

Logistic 0.0964 0.0890 0.0755 0.0725 0.0734 0.0811 0.0800 

Laplace 0.0935 0.0902 0.0909 0.0824 0.0802 0.0826 0.0862 

16 16 8 8 5 5 

Uniform 0.0964 0.0776 0.0781 0.0777 0.0726 0.0682 0.0816 

Normal 0.0926 0.0903 0.0887 0.0907 0.0907 0.0994 0.1017 

Logistic 0.0927 0.0973 0.0985 0.0942 0.0935 0.0988 0.1081 

Laplace 0.0965 0.1004 0.0926 0.0983 0.0963 0.0984 0.1073 
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