Vol.7.Issue.4.2019 (Oct-Dec) ©KY PUBLICATIONS

http://www.bomsr.com Email:editorbomsr@gmail.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

(T,S) INTUITIONISTIC FUZZY H-IDEALS IN BCK-ALGEBRAS

SEDA SOYDAŞ¹, SERVET KUTUKCU^{2*}

^{1,2}Department of Mathematics, OndokuzMayis University 55139 Kurupelit, Samsun, Turkey *E-mail: <u>skutukcu@omu.edu.tr</u>

https://doi.org/10.33329/bomsr.74.1

ABSTRACT

Using triangular norms, we present a new classification of fuzzy subalgebras and ideals in BCK/BCI-algebras.

Keywords: t-norm,t-conorm, H-ideal, closed H-ideal, BCK/BCI-algebra. AMS(2010) Subject Classification: 06F35, 03G25, 03E72, 94D05.

1. INTRODUCTION

BCK/BCI-algebras are an important class of logical algebras introduced by Imai and Iseki [2], and was extensively investigated by several researches. BCK/BCI-algebras generalize, on the one hand, the notion of the algebra of sets with the set subtraction as the only fundemental non-nullary operation and, on the other hand, the notion of the implication algebra. In 1986, Atassanov [2] introduced the notion of intiitionistic fuzzy sets and in 1991, Xi [7] applied this notion to BCK/BCI-algebras. In 2018, modifying Xi's idea, Kutukcu and Tuna [5] introduced anti structures in BCK/BCI-algebras.

In the present paper, we introduce the notions of H-ideals and closed H-ideals of BCK/BCIalgebras with respect to arbitrary t-conorms and t-norms. We prove that our definitions are more general than the classical ones. We also prove that an if-subset of a BCK/BCI-algebra is a H-ideal if and only if the complement of this if-subset is a H-ideal. We also discuss some relationships between such notions. Next, let us recall some basic notions.

Definition 1.1. A BCK-algebra is a non-empty set X with a binary operation • and a constant 0 satisfying the following axioms:

(1) $(\alpha \bullet \beta) \bullet (\alpha \bullet \phi) \le (\phi \bullet \beta),$ (2) $\alpha \bullet (\alpha \bullet \beta) \le \beta,$ (3) $\alpha \le \alpha,$

- (4) $\alpha \leq \beta, \beta \leq \alpha \Rightarrow \alpha = \beta$,
- (5) $0 \le \alpha$, where $\alpha \le \beta$ is defined by $\alpha \bullet \beta = 0$.

Example 1.2. Let be $X = \{0,1,2,3,4\}$. • process should be defined as follows

•	0	1	2	3	4
0	0	0 0 2 3 3	0	0	0
1	1	0	1	0	0
2	2	2	0	0	0
3	3	3	3	0	0
4	4	3	4	1	0

Then, $(X, \bullet, 0)$ is

BCK-algebras.

Definition 1.3. An intuitionistic fuzzy set (if-set for short) A in a non-emty set X is an object having the form A={ $(\alpha, \mu_A(\alpha), \lambda_A(\alpha)) : \alpha \in X$ }, where the function $\mu_A : X \to [0,1]$ and $\lambda_A : X \to [0,1]$ denoted the degree of membership (namely $\mu_A(\alpha)$) and the degree of non membership (namely $\lambda_A(\alpha)$) of each element $\alpha \in X$ to the set A respectively, and $0 \le \mu_A(\alpha) + \mu_A(\alpha) \le 1$ for all $\alpha \in X$.

Definition 1.4. An intuitionistic fuzzy set A = (X, μ_A , λ_A) in X is called an intuitionistic fuzzy ideal of X, if it satisfies the following axioms:

 $\begin{array}{l} (\text{IF1}) \ \mu_{\text{A}}(0) \geq \mu_{\text{A}}(\alpha) \ \text{and} \ \lambda_{\text{A}}(0) \leq \lambda_{\text{A}}(\alpha), \\ (\text{IF2}) \ \mu_{\text{A}}(\alpha) \geq \min \left\{ \ \mu_{\text{A}}(\alpha \bullet \ \beta), \ \mu_{\text{A}}(\beta) \right\}, \\ (\text{IF3}) \ \lambda_{\text{A}}(\alpha) \leq \max \{ \ \lambda_{\text{A}}(\alpha \bullet \beta), \ \lambda_{\text{A}}(\beta) \right\}, \ \text{for all} \ \alpha, \beta \in X. \end{array}$

Definition 1.5. An intuitionistic fuzzy set $A = (X, \mu_A, \lambda_A)$ in X called an intionistic fuzzy closed ideal of X, if it satisfies (IF2), (IF3) and the following:

 $(\mathsf{IF4})\ \mu_{\mathsf{A}}(\mathsf{0} \bullet \alpha) \geq \mu_{\mathsf{A}}(\alpha) \text{ and } \lambda_{\mathsf{A}}(\mathsf{0} \bullet \alpha) \leq \lambda_{\mathsf{A}}(\alpha) \text{, for all } \alpha \in \mathsf{X}.$

Definition 1.6. An intuitionistic fuzzy set A = (X, μ_A , λ_A) in X is called an intuitionistic fuzzy H-ideal of X, if

$$\begin{split} & 1. \ \mu_A(0) \geq \mu_A(\alpha), \ \lambda_A(0) \leq \lambda_A \leq \lambda_A(\alpha), \\ & 2. \ \mu_A(\alpha \bullet \varphi) \geq \min\{ \ \mu_A(\alpha \bullet (\beta \bullet \varphi)), \ \mu_A(\beta) \ \} \\ & 3. \ \lambda_A(\alpha \bullet \varphi) \leq \max\{ \ \lambda_A(\alpha \bullet (\beta \bullet \varphi)), \ \lambda_A(\beta) \ \}, \ \text{for all } \alpha, \beta, \varphi \in X. \end{split}$$

Definition 1.7. Let A = (X, μ_A , λ_A) be an intuitionistic fuzzy set in X. Then i) $\neg A = (X, \mu_A, \overline{\mu}_A)$, ii) $\Diamond A = (X, \overline{\lambda}_A, \lambda_A)$.

Definition 1.8. A triangular norm (t-norm for short) is a binary operation T on the unit interval [0,1], i.e., a function $T : [0,1]^2 \rightarrow [0,1]$, such that for all $\alpha,\beta,\phi \in [0,1]$ the following four axioms are satisfied:

(T1) $T(\alpha, \beta) = T(\beta, \alpha)$, (T2) $T(\alpha, T(\beta, \phi)) = T(T(\alpha, \beta), \phi)$, (T3) $T(\alpha, \beta) \le T(\alpha, \phi)$ whenever $\beta \le \phi$, (T4) $T(\alpha, 1) = \alpha$.

(commutativity) (associativity) (monotonicity) (boundary condition)

Some basic t-norms are $T_M(\alpha, \beta) = \min(\alpha, \beta)$, $T_P(\alpha, \beta) = \alpha$. β and $T_L(\alpha, \beta) = \max(\alpha + \beta - 1, 0)$.

Definition 1.9. A triangular conorm (t-conorm for short) is a binary operation A on the unit interval [0,1], i.e., a function S : $[0,1]^2 \rightarrow [0,1]$, which, for all $\alpha,\beta,\phi \in [0,1]$, satisfies (T1) – (T3) and (S4) $S(\alpha,0) = \alpha$.

Some basic t-conorms are $S_M(\alpha, \beta) = \max(\alpha, \beta)$, $S_P(\alpha, \beta) = \alpha + \beta - \alpha$. β and $S_L(\alpha, \beta) = \min(\alpha + \beta, 1)$.

2. (T,S) INTUITIONISTIC FUZZY H-IDEAL

Next, we will introduce notions of intuitionistic fuzzy H-ideals and intuitionistic fuzzy closed H-ideals with arbitrary t-norms and t-conorms, then, exemine some relationships between them.

Definition 2.1. An intuitionistic fuzzy set A = (X, μ_A , λ_A) in a BCK algebra X is called an (T,S) intuitionistic fuzzy H-ideal of X, if

(IFH 1) $\mu_A(0) \ge \mu_A(\alpha)$ and $\lambda_A(0) \le \lambda_A(\alpha)$,

 $(\mathsf{IFH}\ 2)\ \mu_{\mathsf{A}}(\alpha \bullet \varphi) \geq \mathsf{T}(\mu_{\mathsf{A}}(\alpha \bullet (\beta \bullet \varphi)),\ \mu_{\mathsf{A}}(\beta)),$

(IFH 3) $\lambda_A(\alpha \bullet \phi) \leq S(\lambda_A(\alpha \bullet (\beta \bullet \phi)), \lambda_A(\beta))$, for all $\alpha, \beta, \phi \in X$.

Definition 2.2 An intuitionistic fuzzy set A = (X, μ_A , λ_A) in a BCK algebra X is called a (T,S) intuitionistic fuzzy closed H-ideal of X, if it satisfies (IFH 2),(IFH 3) and the following: (IFH 4) $\mu_A(0 \bullet \alpha) \ge \mu_A(x)$ and $\lambda_A(0 \bullet \alpha) \le \lambda_A(\alpha)$, for all $\alpha \in X$.

Definition 2.3 Let A = (X, μ_A , λ_A) be a (T,S) intuitionistic fuzzy set in a BCK algebra X. The set U(μ_A ; s) = { $\alpha \in X : \mu_A(\alpha) \ge s$ } is called upper s-level of μ_A and the set L(λ_A ;t) = { $\alpha \in X : \lambda_A(\alpha) \le t$ } is called lower t-level of λ_A .

Lemma 2.4 If A = (X, μ_A , λ_A) is an intuitionistic fuzzy H-ideal of a BCK algebra X, then we have the following $\alpha \le a \Rightarrow \mu_A(\alpha) \ge \mu_A(a)$ and $\lambda_A(\alpha) \le \lambda_A(a)$, for all α , $a \in X$.

Proof. Let α , $a \in X$ such that $\alpha \leq a \Rightarrow \alpha \bullet a = 0$. Consider $\mu_A(\alpha) = \mu_A(\alpha \bullet 0) \geq T(\mu_A(\alpha \bullet (a \bullet 0)), \mu_A(a)) = T(\mu_A(\alpha \bullet a), \mu_A(a)) = \mu_A(a)$ and $\lambda_A(\alpha) = \lambda_A(\alpha \bullet 0) \leq S(\lambda_A(\alpha \bullet (a \bullet 0)), \lambda_A(a)) = S(\lambda_A(\alpha \bullet a), \lambda_A(a)) = \lambda_A(a)$.

Theorem 2.5 Let A = (X, μ_A , λ_A) be an intuitionistic fuzzy H-ideal of a BCK-algebra X. Then so is $\neg A = (X, \mu_A, \overline{\mu}_A)$.

Proof. We have

$$\begin{split} & \mu_{A}(0) \geq \mu_{A}(\alpha) \Rightarrow 1 - \overline{\mu}_{A} \ (0) \geq 1 - \overline{\mu}_{A} \ (\alpha) \Rightarrow \overline{\mu}_{A} \ (0) \leq \overline{\mu}_{A} \ (\alpha), \\ & \text{for any } \alpha \in X. \text{ Consider, for any } \alpha, \beta, \phi \in X, \end{split}$$

$$\begin{split} & \mu_{A}(\alpha \bullet \phi) \geq \mathsf{T}(\mu_{A}(\alpha \bullet (\beta \bullet \phi)), \mu_{A}(\beta)) \\ & \Rightarrow 1 - \overline{\mu}_{A} (\alpha \bullet \phi) \geq \mathsf{T}(1 - \overline{\mu}_{A} (\alpha \bullet (\beta \bullet \phi)), 1 - \overline{\mu}_{A} (\beta)) \\ & \Rightarrow \overline{\mu}_{A} (\alpha \bullet \phi) \leq 1 - \mathsf{T}(1 - \overline{\mu}_{A} (\alpha \bullet (\beta \bullet \phi)), 1 - \overline{\mu}_{A} (\beta)) \\ & \Rightarrow \overline{\mu}_{A} (\alpha \bullet \phi) \leq \mathsf{S}(\overline{\mu}_{A} (\alpha \bullet (\beta \bullet \phi)), \overline{\mu}_{A} (\beta)). \end{split}$$

Hence $\neg A = (X, \mu_A, \overline{\mu}_A)$ is an IFH-ideal of X.

Theorem 2.6 Let A = (X, μ_A , λ_A) be an intuitionistic fuzzy H-ideal of a BCK-algebra X. Then so is $\Diamond A = (X, \overline{\lambda}_A, \lambda_A)$.

Proof. We have

$$\begin{split} \lambda_{A}(0) &\leq \lambda_{A}(\alpha) \Rightarrow 1 - \bar{\lambda}_{A} \ (0) \leq 1 - \bar{\lambda}_{A} \ (\alpha) \Rightarrow \bar{\lambda}_{A} \ (0) \geq \bar{\lambda}_{A} \ (\alpha), \\ \text{for any } \alpha \in X. \ \text{Consider, for any } \alpha, \beta, \phi \in X, \\ \lambda_{A}(\alpha \bullet \phi) &\leq S(\lambda_{A}(\alpha \bullet (\beta \bullet \phi)), \lambda_{A}(\beta)) \\ &\Rightarrow 1 - \bar{\lambda}_{A} \ (\alpha \bullet \phi) \leq S(1 - \bar{\lambda}_{A} \ (\alpha \bullet (\beta \bullet \phi)), 1 - \bar{\lambda}_{A} \ (\beta)) \\ &\Rightarrow \bar{\lambda}_{A} \ (\alpha \bullet \phi) \geq 1 - S(1 - \bar{\lambda}_{A} \ (\alpha \bullet (\beta \bullet \phi)), 1 - \bar{\lambda}_{A} \ (\beta)) \\ &\Rightarrow \bar{\lambda}_{A} \ (\alpha \bullet \phi) \geq T(\bar{\lambda}_{A} \ (\alpha \bullet (\beta \bullet \phi)), \bar{\lambda}_{A} \ (\beta)). \\ \text{Hence } \Diamond A = (X, \bar{\lambda}_{A}, \lambda_{A}) \text{ is an IFH-ideal of } X. \end{split}$$

Corollary 2.7 A = (X, μ_A , λ_A) be an intuitionistic fuzzy H-ideal of a BCKalgebra X if and only if $\neg A = (X, \mu_A, \overline{\mu}_A)$ and $\Diamond A = (X, \overline{\lambda}_A, \lambda_A)$ are intuitionistic fuzzy H-ideals of a BCK-algebra X.

Theorem 2.8 If A = (X, μ_A , λ_A) be an intuitionistic fuzzy closed H-ideal of a BCK-algebra X, then so is $\neg A = (X, \mu_A, \overline{\mu}_A)$.

Proof. For any $\alpha \in X$, we have

$$\mu_{A}(0 \bullet \alpha) \ge \mu_{A}(\alpha) \Rightarrow 1 - \overline{\mu}_{A} (0 \bullet \alpha) \ge 1 - \overline{\mu}_{A} (\alpha) \Rightarrow \overline{\mu}_{A} (0 \bullet \alpha) \le \overline{\mu}_{A} (\alpha).$$
Hence $\neg A = (X, \mu_{A}, \overline{\mu}_{A})$ is closed H-ideal of X.

Theorem 2.9 If A = (X, μ_A , λ_A) be an intuitionistic fuzzy closed H-ideal of a BCK-algebra X, then so is $\Diamond A = (X, \overline{\lambda}_A, \lambda_A)$.

Proof. For any $\alpha \in X$, we have

 $\lambda_A(0 \bullet \alpha) \leq \lambda_A(\alpha) \Rightarrow 1 - \overline{\lambda}_A \ (0 \bullet \alpha) \leq 1 - \overline{\lambda}_A \ (\alpha) \Rightarrow \overline{\lambda}_A \ (0 \bullet \alpha) \geq \overline{\lambda}_A \ (\alpha).$ Hence, $\Diamond A = (X, \overline{\lambda}_A, \lambda_A)$ is an intuitionistic fuzzy closed H-ideal of X.

Corollary 2.10 A = (X, μ_A , λ_A) be an intuitionistic fuzzy closed H-ideal of a BCK-algebra X if and only if $\neg A = (X, \mu_A, \overline{\mu}_A)$ and $\Diamond A = (X, \overline{\lambda}_A, \lambda_A)$ are intuitionistic fuzzy closed H-ideals of BCK-algebra X.

Theorem 2.11 A = (X, μ_A , λ_A) be an intuitionistic fuzzy H-ideal of a BCK-algebra X if and only if the non-empty upper s-level cut U(μ_A ; s) and the non-empty lower t-level cut L(λ_A ;t) are H-ideals of X, for any s, t \in [0, 1].

Proof. Suppose A = (X, μ_A , λ_A) is an IFH-ideal of a BCK-algebra X. For any s, t \in [0, 1], define the sets U(μ_A ; s) = { $\alpha \in X : \mu_A(\alpha) \ge s$ } and L(λ_A ;t) = { $\alpha \in X : \lambda_A(\alpha) \le t$ }. Since L(λ_A ;t) = φ , for $\alpha \in L(\lambda_A;t) \Rightarrow \lambda_A(\alpha) \le t$

 $\Rightarrow \lambda_{A}(0) \leq t \Rightarrow 0 \in L(\lambda_{A};t). \text{ Let } \alpha \bullet (\beta \bullet \phi) \in L(\lambda_{A};t) \text{ and } \beta \in L(\lambda_{A};t) \text{ implies } \lambda_{A}(\alpha \bullet (\beta \bullet \phi)) \leq t \text{ and } \lambda_{A}(\beta) \leq t. \text{ Since, for all } \alpha, \beta, \phi \in X, \lambda_{A}(\alpha \bullet \phi) \leq S(\lambda_{A}(\alpha \bullet (\beta \bullet \phi)), \lambda_{A}(\beta)) \leq S(t, t) = t \Rightarrow \lambda_{A}(\alpha \bullet \phi) \leq t. \text{ Therefore } \alpha \bullet \phi \in L(\lambda_{A};t), \text{ for all } \alpha, \beta, \phi \in X. \text{ Hence } L(\lambda_{A};t) \text{ is an H-ideal of } X. \text{ Similarly, we can prove } U(\mu_{A}; s) \text{ is an H-ideal of } X. \text{ Conversly, suppose that } U(\mu_{A}; s) \text{ and } L(\lambda_{A};t) \text{ are H-ideal of } X, \text{ for any } s, t \in [0, 1]. \text{ If possible, assume } \alpha_{0}, \beta_{0} \in X \text{ such that } \mu_{A}(0) < \mu_{A}(x_{0}) \text{ and } \lambda_{A}(0) > \lambda_{A}(y_{0}). \text{ Put}$

 $s_0 = 1/2 \ [\mu_A(0) + \mu_A(\alpha_0)] \Rightarrow s_0 < \mu_A(\alpha_0), \ 0 \le \mu_A(0) < s_0 < 1 \Rightarrow \alpha_0 \in U(\mu_A; s_0).$

Since $U(\mu_A; s_0)$ is an H-ideal of X, we have $0 \in U(\mu_A; s_0) \Rightarrow \mu_A(0) \ge s_0$, which is contradiction. Therefore $\mu_A(0) \ge \mu_A(\alpha)$, for all $\alpha \in X$. Similarly by taking $t_0 = 1/2 [\lambda_A(0) + \lambda_A(\beta_0)]$, we can show $\lambda_A(0) \le \lambda_A(\beta)$, for any $\beta \in X$. If possible assume α_0 , β_0 , $\phi_0 \in X$ such that $\mu_A(\alpha_0 \bullet \phi_0) < T(\mu_A(\alpha_0 \bullet (\beta_0 \bullet \phi_0)), \mu_A(\beta_0))$. Put $s_0 = 1/2[\mu_A(\alpha_0 \bullet \phi_0) + T(\mu_A(\alpha_0 \bullet (\beta_0 \bullet \phi_0)), \mu_A(\beta_0))]$ $\Rightarrow s_0 > \mu_A(\alpha_0 \bullet \phi_0)$ and $s_0 < T(\mu_A(\alpha_0 \bullet (\beta_0 \bullet \phi_0)), \mu_A(\beta_0))$ $\Rightarrow s_0 > \mu_A(\alpha_0 \bullet \phi_0)$, $s_0 < \mu_A(\alpha_0 \bullet (\beta_0 \bullet \phi_0))$ and $s_0 < \mu_A(\beta_0)$

 $\Rightarrow \alpha_0 \bullet \phi_0 \in U(\mu_A; s_0), \alpha_0 \bullet (\beta_0 \bullet \phi_0) \in U(\mu_A; s_0) \text{ and } \beta_0 \in U(\mu_A; s_0),$

which is contradiction to H-ideal U(μ_A ; s₀).

Therefore $\mu_A(\alpha \bullet \phi) \ge T(\mu_A(\alpha \bullet (\beta \bullet \phi)), \mu_A(\beta))$, for any $\alpha, \beta, \phi \in X$. Similarly we can prove $\lambda_A(\alpha \bullet \phi) \le S(\lambda_A(\alpha \bullet (\beta \bullet \phi)), \lambda_A(\beta))$, for any $\alpha, \beta, \phi \in X$. Hence $A = (X, \mu_A, \lambda_A)$ is an intuitionistic fuzzy H-ideal of a BCK-algebra X.

Theorem 2.12 A = (X, μ_A , λ_A) is an intuitionistic fuzzy closed H-ideal of a BCK-algebra X if and only if the non-empty upper s-level cut U(μ_A ; s) and the non-empty lower t-level cut L(λ_A ;t) are closed H-ideal of X, for any s, t \in [0, 1].

Proof. Suppose A = (X, μ_A , λ_A) is an intuitionistic fuzzy closed H-ideal of a BCK-algebra X. We have $\mu_A(0 \bullet \alpha) \ge \mu_A(\alpha)$ and $\lambda_A(0 \bullet \alpha) \le \lambda_A(\alpha)$, for any $\alpha \in X$.

For $\alpha \in U(\mu_A; s) \Rightarrow \alpha \in X$ and $\mu_A(\alpha) \ge s \Rightarrow \mu_A(0 \bullet \alpha) \ge s \Rightarrow 0 \bullet \alpha \in U(\mu_A; s)$. And $\alpha \in L(\lambda_A;t) \Rightarrow \alpha \in X$ and $\lambda_A(\alpha) \le t \Rightarrow \lambda_A(0 \bullet \alpha) \le t \Rightarrow 0 \bullet \alpha \in L(\lambda_A;t)$. Therefore $U(\mu_A; s)$ and $L(\lambda_A;t)$ are closed H-ideals of X. Converse, it is enough to show that $\mu_A(0 \bullet \alpha) \ge \mu_A(\alpha)$ and $\lambda_A(0 \bullet \alpha) \le \lambda_A(\alpha)$, for any $\alpha \in X$. If possible, assume $\alpha_0 \in X$ such that $\mu_A(0 \bullet \alpha_0) < \mu_A(\alpha_0)$. Take $s_0 = 1/2 [\mu_A(0 \bullet \alpha) + \mu_A(\alpha_0)] \Rightarrow \mu_A(0 \bullet \alpha_0) < s_0 < \mu_A(\alpha_0)$ $\Rightarrow \alpha_0 \in U(\mu_A; s_0)$, but $0 \bullet \alpha_0 \in U(\mu_A; s_0)$, which is contradiction to closed H-ideal. Hence $\mu_A(0 \bullet \alpha) \ge \mu_A(\alpha)$, for any $\alpha \in X$.

Corollary 2.13 If A = (X, μ_A , λ_A) be an intuitionistic fuzzy closed H-ideal of X, then the sets J = { $\alpha \in X : \mu_A(\alpha) = \mu_A(0)$ } and K = { $\alpha \in X : \lambda_A(\alpha) = \lambda_A(0)$ } are H-ideal of X.

Proof. Since $0 \in X$, $\mu_A(0) = \mu_A(0)$ and $\lambda_A(0) = \lambda_A(0)$ implies $0 \in J$ and $0 \in K$, So $J = \Phi$ and $K = \Phi$. Let $\alpha \bullet (\beta \bullet \phi) \in J$ and $\beta \in J \Rightarrow \mu_A(\alpha \bullet (\beta \bullet \phi)) = \mu_A(0)$ and $\mu_A(\beta) = \mu_A(0)$. Since $\mu_A(\alpha \bullet \phi) \ge T(\mu_A(\alpha \bullet (\beta \bullet \phi)), \mu_A(\beta)) = \mu_A(0) \Rightarrow \mu_A(\alpha \bullet \phi) \ge \mu_A(0)$, but $\mu_A(0) \ge \mu_A(\alpha \bullet \phi)$. It follows that $\alpha \bullet \phi \in J$, for all $\alpha, \beta, \phi \in X$. Hence J is H-ideal of X. Similarly we can prove K is H-ideal of X.

Definition 2.14 Let f be a mapping on a set X and A = (X, μ_A , λ_A) an intuitionistic fuzzy set in X. Then the fuzzy sets u and v on f(X) defined by u(y) = $\sup_{\alpha \in f^{-1}(y)} \mu_A(x)$ and v(β) = $\inf_{\alpha \in f^{-1}(y)} \lambda_A(\alpha)$ for all y \in

f(X), is called image of A under f. If u, v are fuzzy sets in f(X) then the fuzzy sets μ_A = uof and λ_A = vof is called the pre-image of u and v under f.

Theorem 2.15 Let $f : X \rightarrow X$ be an onto homomorphism of BCK algebras. If A = (X, u, v) is an intuitionistic fuzzy H-ideal of X, then the pre-image of A under f is an intuitionistic fuzzy H-ideal of X.

Proof. Let $A = (X, \mu_A, \lambda_A)$, where $\mu_A = uof$ and $\lambda_A = vof$ is the pre-image of A = (X, u, v) under f. Since A = (X, u, v) is an intuitionistic fuzzy H ideal of X, we have $u(0) \ge u(f(\alpha)) = \mu_A(\alpha)$ and $v(0) \le v(f(\alpha)) = \lambda_A(\alpha)$. On other hand $u(0) = u(f(0)) = \mu_A(0)$ and $v(0) = v(f(0)) = \lambda_A(0)$. Therefore $\mu_A(0) \ge \mu_A(\alpha)$ and $\lambda_A(0) \le \lambda_A(\alpha)$, for all $\alpha \in X$. Now we show that

(1). $\mu_A(\alpha \bullet \phi) \ge T(\mu_A(\alpha \bullet (\beta \bullet \phi)), \mu_A(\beta)),$

(2). $\lambda_A(\alpha \bullet \phi) \leq S(\lambda_A(\alpha \bullet (\beta \bullet \phi)), \lambda_A(\beta))$, for any $\alpha, \beta, \phi \in X$.

We have

 $\mu_A(\alpha \bullet \phi) = u(f(\alpha \bullet \phi)) = u(f(\alpha) \bullet f(\phi)) \ge T(u(f(\alpha) \bullet (\beta \bullet f(\phi))), u(\beta)), \text{ for } \beta \in X \text{ . Since } f \text{ is onto homomorphism, there is } \beta \in X \text{ such that } f(\beta) = \beta \text{ . Thus}$

$$\begin{split} & \mu_{A}(\alpha \bullet \phi) \geq \mathsf{T}(\mathsf{u}(\mathsf{f}(\alpha) \bullet (\beta \bullet \mathsf{f}(\phi))), \, \mathsf{u}(\beta)) \\ & = \mathsf{T}(\mathsf{u}(\mathsf{f}(\alpha) \bullet (\mathsf{f}(\beta) \bullet \mathsf{f}(\phi))), \, \mathsf{u}(\mathsf{f}(\beta))) \\ & = \mathsf{T}(\mathsf{u}(\mathsf{f}(\alpha \bullet (\beta \bullet \phi)), \, \mathsf{u}(\mathsf{f}(\beta))) \\ & = \mathsf{T}(\mu_{A}((\alpha \bullet (\beta \bullet \phi)), \, \mu_{A}(\beta)), \end{split}$$

for all $\alpha, \beta, \phi \in X$. Therefore, the result $\mu_A(\alpha \bullet \phi) \ge T(\mu_A(\alpha \bullet (\beta \bullet \phi)), \mu_A(\beta))$, is true for all $\alpha, \beta, \phi \in X$, because β is an arbitrary element of X and f is onto mapping. Similarly, we can prove $\lambda_A(\alpha \bullet \phi) \le S(\lambda_A(\alpha \bullet (\beta \bullet \phi)), \lambda_A(\beta))$, for any $\alpha, \beta, \phi \in X$. Hence the pre-image $A = (X, \mu_A, \lambda_A)$, of A is an intuitionistic H-ideal of X.

REFERENCES

- [1]. K.T Atanassov, Intuitionistic fuzzy sets, Fuzzy sets ans Systems, 20(1986), 87-96.
- [2]. K. Iseki, T. Shotaro, An introduction to the theory of BCK-algebras, Math. Japon, 23(1978), 1-26.
- [3]. Y.B. Jun, K.H. Kim, Intuitionistic fuzzy ideals of BCK-algebras, Internat J. Math and Mtha. Sci., 24(2000), 839-849.
- [4]. B. Satyanarayana, U. B. Madhavi, R. D. Prasad, On Intiutionistic Fuzzy H-Ideals In BCK-Algebras, International Journal of algebra, 4(2010), 15, 743-749.
- [5]. S. Kutukcu, A. Tuna, Anti Imlicative IF-Ideals In BCK/BCI algebras, J.Comput. Anal. Appl. 25(2018), 270-282.
- [6]. E.P. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer Academic Publishers, 2000.
- [7]. O.G. Xi, Fuzzy BCK-algebras, Math. Japon. 36(5)(1991), 935-942.