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ABSTRACT 

The Lehmann / proportional hazards family of distributions is a well-known 

family of distributions generated from a given distribution/survival function 

by raising it by a positive power and is found to be useful in lifetime studies. 

Several known distributions are generalized using this method. In this paper 

a new class of random coefficient first order autoregressive minification 

process is introduced which generates these types of generalized 

distributions as marginals. Several random coefficient minification models 

with distributions like generalized logistic, Burr Type XII, generalized 

exponential etc. as marginals are subclasses of this model. A random 

coefficient generalized semi-logistic process is also introduced. A special 

case is considered and the estimation of the parameters discussed. 

Key words: Lehmann family of distributions, Minification processes, Random 

coefficient processes, Markov processes. 

 

1. Introduction 

 The minification models, introduced by Tavares (1980) has led to the development of 

several non-Gaussian time series models. The minification models are developed and studied using 

the survival function of the underlying random variable. The autoregressive minification process 

introduced by Tavares (1980) is  
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where 1k  is a constant and }{ n  is an innovation process of independent and 

identically (i.i.d.) random variables such that  nX  is a stationary Markov process. He considered 

a particular case, where ...},2,1,{ nn  is a sequence of i.i.d. exponential random variables 
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with mean  1k   and 0X  is exponential with mean .  This model generates first order 

autoregressive exponential process with mean   and it finds useful in hydrological applications. 

One may refer to  Sim (1986), Yeh et al. (1988), Arnold (1989), Arnold and Robertson (1989), 

Arnold and Hallett (1989), Pillai (1991), Lewis and McKenzie (1991), Pillai et al. (1995), Jayakumar and 

Pillai (2002), Krishnarani and Jayakumar (2008a, 2008b, 2013), Ristic (2006,2008) etc. for an  

excellent exposition of minification models with different marginals. 

Krishnarani and Jayakumar (2008b) introduced a new class of autoregressive minification 

model 
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where  n  is a sequence of i.i.d. random variables, n  is independent of 
.10),('  pnisX i  

Extensions of the additive and minification models have been proposed by replacing the 

coefficients by random variables to get random coefficient autoregressive models. An example is the 

random coefficient model introduced and studied by Nicholls and Quinn (1982). Such models can be 

found in Gaver and Lewis (1980), Dewald and Lewis (1985), Lawrance and Lewis (1985), Sim (1986), 

Ristic (2008) and Han et al. (2018). 

Estimation of parameters of the minification processes can be seen in Balakrishna (1998), 

Balakrishna and Jacob (2003)  and Ristic (2008). 

Now we consider some known distributions which are used in the following sessions. 

It is well known that Lehmann family of distributions is generated from a given survival 

function in the following manner. 

Let )(xF  be an arbitrary known survival function. If   is positive then, 

   ,)()( xFxS              

is also a survival function. 

In particular if   is a positive integer then, it represents the survival function of 

 nXXX ...,,,min 21  where iX ’s are i.i.d. random variables with F(x) as the common distribution 

function. 

The density function corresponding to )(xS  is 
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and the failure rate is  
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where )(xh  is the failure rate of ).(xF  Thus hazards are proportional.  Hence Lehmann family is 

also known as proportional hazards family.  

A random variable X on  ,0  is said to have semi- logistic distribution denoted by SL if it has 

the survival function    
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where )(x  satisfies the functional equation  
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A random variable X on  ,0  is said to have generalized semi- logistic distribution if it has 

the survival function    
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where )(x  satisfies the functional equation (1.3). 

We denote this distribution as GSL( ) . 

In the present study our aim is to construct random coefficient minification models, which 

can generate any marginal from the Lehmann family of distributions. In section 2, a generalized 

random coefficient minification model is  constructed which can generate these types of generalized 

distributions as marginals. Some properties of the process are discussed. Several examples are given. 

In section 3, a random coefficient generalized semi-logistic process is introduced. Special cases are 

considered and estimation of the parameters is done in the last section. 

2.  A Generalized  Random Coefficient Lehmann Minification Process 

Here we introduce a new class of random coefficient process, which generates several 

known minification models. Let F(.) be a non-degenerate distribution function with 0)( F  and 

.1)( F  

Consider the monotone transformation,   
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 where )( , )(  and ).(1)( xFxF      
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Let (.)G  be a survival function with Lehmann structure given by              
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We call this distribution as  generalized Lehmann logistic distribution and denote it by GLL )( . 

 Consider the process with the structure 

   ...,2,1,ln)(min 1
1  
 nVXX nnnn                                                      (2.3)  

where  nV  and  n  are two independent sequences of i.i.d. random variables such that nV  has 

the distribution .0,10,)(   vvvF
nV  

The process (2.3) is called the generalized random coefficient Lehmann minification process.  

Next we develop a result on the stationarity of the process (2.3). 

Theorem 2.1   

Let  nX  be defined by (2.3). Then if 0X follows  GLL )(  and n  has distribution function F,  then 

the process  nX  is stationary with GLL )(  marginals. 

Proof:  

Assuming the structure of  nX  given by (2.3) the survival function is, 
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Suppose 0X follows  GLL )(  and n  has distribution F. 

Then for  n=1, (2.4) becomes, 
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That is, 1X follows GLL )( . 

Similarly we can prove that if 1nX follows  GLL )( , then nX  follows GLL )( . 

Now we develop a necessary and sufficient condition for the generalized random coefficient 

Lehmann minification process. 

Theorem 2.2 

 Let {Xn} be defined as (2.3), where  nV  and  n are two independent sequences of i.i.d. 

random variables such that nV  has the distribution function .0,10,)(   vvvF
nV  

Suppose that the process is stationary. Then nX  follows GLL )(  if and only if n  follows F. 
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Proof: 

Suppose that {Xn} is stationary. Then from (2.4), we have 
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Differentiating both sides with respect to x, and simplifying we get, 
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Integrating the above now yields 
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Conversely assume {Xn} is stationary and nX  has distribution GLL )( . Then it follows that, 
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That is, n  has distribution function F.  Hence the proof.  

Also we derive the following expressions concerning the generalized random coefficient Lehmann 

minification process. 
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  We can see that several minification models with marginals from the Lehmann family can be 

deduced as special cases from the process defined in (2.3). For instance we have the following 

generalized models already reported in the literature. 

Example 2.1 

On taking 
xe

xF



1

1
)( , (2.3) takes the form, 

    nnnn VXX ,lnmin 1           (2.9) 

which generates generalized Lehmann logistic marginals where  nV  and  n are two independent 

sequences of i.i.d. random variables such that nV  has the distribution 

0,10,)(   vvvF
nV  and  n  follows logistic distribution. 

Example 2.2 

When 0
1

1
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 x

x
xF ,  we have 
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which generates generalized Lehmann Pareto marginals where  n  has the Pareto survival function 

and  nV  has the power function distribution with distribution function 

0,10,)(   vvvF
nV . 

Example 2.3 

If  10),1()(  xxxF , then (2.3) becomes, 
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which generates generalized Lehmann uniform marginals when  n  is a sequence of uniform 

random variables and  nV  has the power function distribution with distribution function 

0,10,)(   vvvF
nV . 

Example 2.4 

If   xexF x 0,)( ,  then the process is  

    n
X
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neVX ,11lnmin 11
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     (2.12) 

which generates generalized Lehmann exponential marginals when  n  is a sequence of 

exponential random variables and  nV  has the power function distribution with distribution 

function 0,10,)(   vvvF
nV . 
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3.  Random Coefficient Generalized Semi-Logistic Process 

  Consider the process with the structure 

  ...,2,1,lnmin 1   nVXX nnnn    (3.1)  

where  nV  and  n  are two independent sequences of i.i.d. random variables such that nV  has 

the distribution .0,10,)(   vvvF
nV  

 The minification process (3.1) can be used to generate generalized semi-logistic distributions 

as marginals. Proceeding on similar arguments as in the previous section it is easy to obtain 

conditions for stationarity, necessary and sufficient condition for the generalized semi- logistic 

distribution to be maginals of (3.1) and these results are stated in the following theorems. 

Theorem 3.1 

Let 0X  has GSL( ) distribution with survival function (1.4) and n  has survival function (1.2),  then 

the process  nX  is stationary with GSL( ) as marginals. 

Theorem 3.2 

Let {Xn} be defined as (3.1), where  nV  and  n are two independent sequences of i.i.d. random 

variables such that nV  has the distribution function .0,10,)(   vvvF
nV  Suppose that 

the process is stationary. Then nX  follows GSL( )  if and only if n  follows SL. 

4. A particular case 

   Now we consider a particular case where   takes only positive integer values and  nV  is 

not random.  

We define a model having the structure, 
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Next we seek a necessary and sufficient condition for the  nX  to be stationary. 
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Theorem 5.1 

Let X0 has survival function )(xF


. The process  nX  in (4.1) is a strictly stationary markov process 

if and only if sn '  in (4.2) are i.i.d. with survival function )(xF . 

For the stationary AR(1)  Lehmann process, 
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Again  if 1  in (4.1) we have the autoregressive model  
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where  n  is a sequence of i.i.d. random variables, n  is independent of .10),('  pnisX i  

This model is given in (1.1)  

Now we estimate the parameters p and  of this model where )(x  is as defined in (2.1), 

)( , )(  and ).(1)( xFxF   Suppose we know a realization  NXXX ...,,, 10  

from the above-defined process. 

Consider the process  nU  defined by, 
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Hence an estimator of p is obtained by solving, 
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Therefore p̂  is an unbiased and consistent estimator. 

To estimate , we define the level crossing process  )(tZn  associated with  nX  by, 
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Hence, the desired estimator is  
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