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ABSTRACT 

A class of life-time distribution is considered. The classical maximum 

likelihood estimator has been obtained. Bayesian method of estimation is 

employed in order to estimate the scale parameter of the class of life-time 

distributions by using quasi and inverted gamma priors. In this paper, the 

Bayes estimators of the scale parameter have been obtained under squared 

error and precautionary loss functions.  
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1. Introduction 

The class of life-time distributions is very imperative concept when we study the reliability of the 

system. Let us consider the class of life-time distributions whose probability density function is given 

by 
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      (1) 

(Ahmad et al. [1]). 

The following values of the constants k and p are of particular interest. 

(i)   For k=1, the density given in equation (1) reduces to Gamma distribution. 

(ii)  For p=1, the density given in equation (1) reduces to Weibull distribution. 

(iii) For k=1, p=1, the density given in equation (1) reduces to Negative exponential distribution. 

(iv) For k=2, p=1, the density given in equation (1) reduces to Rayleigh distribution. 
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(v)  For k=2, p=3/2, the density given in equation (1) reduces to Maxwell distribution. 

(vi) For k=1, with β (positive integer), the density given in equation (1) reduces to Erlang distribution. 

2. Classical Method of Estimation 

In classical approach, mostly we use the method of maximum likelihood. The alternative approach is 

the Bayesian approach which was first discovered by Rev. Thomas Bayes. In this approach, 

parameters are treated as random variables and data is treated as fixed. Recently Bayesian approach 

to estimation has received great attention by most researchers. 

Theorem 1. Let 1 2 nx ,x ,..........,x  be a random sample of size n having probability density function 

(1), then the maximum likelihood estimator of parameter θ is given by 
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Proof. The joint density function or likelihood function of (1) is given by 
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        (3) 

The log likelihood function is given by 
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Differentiating (4) with respect to θ and equating to zero, we get 
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3. Bayesian Method of Estimation 

In Bayesian analysis the fundamental problem are that of the choice of prior distribution g (θ) and a 

loss function L , 
 

 
 

. The squared error loss function for the scale parameter θ are defined as 
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          (6) 

The Bayes estimator under the above loss function, say, s


 is the posterior mean, i.e, 

  S E 


            (7) 
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This loss function is often used because it does not lead to extensive numerical computations but 

several authors ( Zellner [2], Basu and Ebrahimi [3]) have recognized that the inappropriateness of 

using symmetric loss function. J.G.Norstrom [4] introduced an alternative asymmetric precautionary 

loss function and also presented a general class of precautionary loss functions with quadratic loss 

function as a special case. A very useful and simple asymmetric precautionary loss function is given 

as 

 

2

L ,

 

 









 
 

    
 

 .         (8)  

The Bayes estimator under precautionary loss function is denoted by p


 and is obtained by solving 

the following equation. 
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           (9) 

Let us consider two prior distributions of θ to obtain the Bayes estimators. 

(i) Quasi-prior: For the situation where the experimenter has no prior information about the 

parameter θ, one may use the quasi density as given by 
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                         (10)  

where d = 0 leads to a diffuse prior and d = 1, a non-informative prior. 

(ii) Inverted gamma prior: The most widely used prior distribution of θ is the gamma distribution 

with parameters   and  0   with probability density function given by 
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3.1 Bayes Estimators under  1g 
 

The posterior density of θ under  1g  , on using (3), is given by 
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Theorem 2. Assuming the squared error loss function, the Bayes estimate of the scale parameter θ, 

is of the form 
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Proof. From equation (7), on using (12), 
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Theorem 3. Assuming theprecautionary loss function, the Bayes estimate of the scale parameter θ, 

is of the form 
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Proof. From equation (9), on using (12), 
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3.2 Bayes Estimators under  2g   

Under  2g  , the posterior density of θ, using equation (3), is obtained as 
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Theorem 4. Assuming the squared error loss function, the Bayes estimate of the scale parameter θ, 

is of the form 
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Proof. From equation (7), on using (15), 

    S E f x  d    
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Theorem 5. Assuming theprecautionary loss function, the Bayes estimate of the scale parameter θ, 

is of the form 
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Proof. From equation (9), on using (15), 
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Conclusion 

In this paper, we have obtained a number of estimators of parameter. In equation (6) we have 

obtained the maximum likelihood estimator of the parameter. In equation (13) and (14) we have 

obtained the Bayes estimators under squared error and precautionary loss function using quasi 

prior. In equation (16) and (17) we have obtained the Bayes estimators under squared error and 

precautionary loss function using inverted gamma prior. In the above equation, it is clear that the 

Bayes estimators depend upon the parameters of the prior distribution. 
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