Vol.8.Issue.3.2020 (July -Sept) ©KY PUBLICATIONS

http://www.bomsr.com Email:editorbomsr@gmail.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

GENERALIZED DERIVATIONS IN RITT ALGEBRA

Dr. K.L. Kaushik Associate Professor in Mathematics, Aggarwal College, Ballabgarh Faridabad, India DOI: 10.33329/bomsr.8.3.27

ABSTRACT

We prove that $f(x^n) = f(e)x^n + D(x^n) \quad \forall f \in GD(U)$, the set of all generalized derivations on an arbitrary non-associative algebra U over a fixed field K. Finally we prove a theorem in Ritt algebra from which Kaplansky's [3] two lemmas page 12 can be derived immediately.

Keywords Non-associative algebra, Generalized derivations, Radical ideal, Generalized Ritt algebra,

Introduction

We have used Havala [1] definition

"Let *R* be a ring. The additive map $f : R \rightarrow R$ will be called a generalized derivation if \exists a derivation d of *R* s.t. $f(xy) = f(x)y + xd(y) \forall x, y \in R$ "

Let U be an arbitrary non-associative algebra over a field K and GD(U) be the set of all generalized derivations on U then in section 1.

We proved that if $ab \in I$ then $af(b) \in I$ and $f(a)b \in I$, where I be any radical generalized differential ideal.

Finally we prove in Theorem 2.2 "If *I* is a generalized differential Ideal in a generalized Ritt algebra and *a* be any element with $a^n \in I$. Then $(f(a))^{2n-1} \in I$. From this theorem we immediately derive Kaplansky's [3] two lemmas page 12 as Corollaries".

1 Generalized Differential Algbera

Let U be an arbitrary non-associative algebra over a field K. A generalized derivation f in U is a linear mapping of U onto U satisfying

 $f(xy) = f(x)y + xD(y) \ \forall x,y \in \mathbb{U}$

where *D* is the derivation in U.

Let GD(U) be the set of all generalized derivation of U.

1. In this section we prove a Lemma 1.4 which we shall use in next section 2.

Definitions

1.1 (Generalized Differential Ring) A commutative ring with unit element together with a generalized derivation is called Generalized differential ring.

1.2 (Generalized differential Ideal) Let *I* be an Ideal in a generalized differential ring *A*. Then *I* is said to be generalized differential Ideal if for $a \in I \Rightarrow f(a) \in I$ or $f(I) \subset I$, where *f* is the generalized derivation on *A*.

1.3 Radical Ideal An Ideal *I* in *A* is said to be Radical Ideal if $a^n \in I \Rightarrow a \in I$.

Now we prove

1.4 Lemma Let *I* be any radical generalized differential Ideal and if $ab \in I$ then $af(b) \in I$ and $f(a)b \in I$.

Proof We have $f(ab) = f(a)b + aD(b) \in I$

Also $ab \in I \Rightarrow (aD(b))^2 \in I$ and hence $aD(b) \in I$ Finally we get $f(a)b \in I$. Similarly $af(b) \in I$.

Corollary 1.4.1. Now we immediately get $aD(b) \in I$ and $D(a)b \in I$.

Lemma 1.5. Let *R* be a non commutative ring and $f: R \rightarrow C$ be a generalized derivation then f = 0.

Proof Since $f : R \rightarrow C$ is a generalized derivation, Then

$$f(xy) = f(x)y + xD(y)$$

$$\Rightarrow f(xy)y = f(x)yy + xD(y)y$$

$$\Rightarrow yf(xy) = yf(x)y + yxD(y)$$

Now $f(xy)$ commutes with y

 $\Rightarrow f(xy)y = yf(xy)$ $\Rightarrow f(x)yy + xD(y)y = yf(x)y + yxD(y)$

Also *f*(*x*)*y* commutes with *y*

=	f(x)yy + yxD(y)
=	0
=	0 (∵ R is non commutative)
=	0
=	$f(x)y \ \forall x, y \in R$
=	$0 (: f: R \rightarrow C \text{ and} R \text{ is non commutative})$
	= = =

2. Generalized RITT algebra Definition

A generalized differential ring containing the field of rationals is called generalized Ritt algebra.

Now we prove a proposition 2.1, though simple but in our opinion, would be very useful in getting deep results in generalized derivation.

We know that for every integer $n \ge 1$ and for every x in a ring R

$$D(x^n) = nx^{n-1}D(x)$$

Now we generalizes it in the following proposition.

Proposition 2.1 If GD(U) has unit element *e* then $f(x^n) = f(e)x^n + D(x^n) \forall f \in GD(U)$.

Proof Note that D(e) = 0 as $D(e) = D(e^2) = 2eD(e) = 2D(e)$. Also (f-D)(x) = f(e)x

 $\forall x \in GD(U)$. Now

$$(f - D)(x) = (f - D)(ex)$$

= $f(ex) - D(ex)$
= $f(e)x + eD(x) - D(x)$
 $(f - D)(x) = f(e)x$

Now

$f(x^2)$	=	<i>f</i> (<i>xx</i>)	
	=	f(x)x + xD(x)	
	=	f(x)x - D(x)x + D(x)x + xD(x)	
	=	$((f-D)(x))x+D(x^2)$	
	=	$(f(e)(x))x + D(x^2)$	
	$f(x^2) =$	$f(e)x^2 + D(x^2)$	
	Again		
<i>f</i> (<i>x</i> ³)	= f(x)	² x)	
	= f	$f(x^2)x + x^2D(x)$	

$$= (f(e)x^{2} + D(x^{2}))x + x^{2}D(x)$$

 $= f(e)x^3 + D(x^2)x + x^2D(x)$

 $\Rightarrow f(x^3) \qquad \qquad = \qquad f(e)x^3 + D(x^3)$

Then by induction on *n*, we get

$$f(x^n) = f(e)x^n + D(x^n)$$

Corollary 2.1.1. If $f \in GD(U)$ Then $f(1) \neq 0$, A = any ring.

Proof Now $1 \in A$

$$\Rightarrow aa^{-1} = 1$$
$$\Rightarrow f(aa^{-1}) = f(1)$$

 $\Rightarrow f(a)a^{-1} + aD(a^{-1}) = f(1)$ (1) $\Rightarrow f(a)a^{-1} - a^{-1}D(a) = f(1)$

Also $D(aa^{-1}) = D(1)$ $\Rightarrow D(a)a^{-1} - a^{-1}D(a) = 0$ $\Rightarrow D(a)a^{-1} = a^{-1}D(a)$ Putting in (1) we get $(f - D)aa^{-1} = f(1)$ We know that (f - D)x = f(e)x $\Rightarrow (f - D)a = f(1)a$ $f(1)aa^{-1} = f(1)$ $\Rightarrow f(1)(aa^{-1} - 1) = 0$ $\Rightarrow f(1) \neq 0 \qquad (\because aa^{-1} \neq 0)$

Hence proved.

We use it to prove the nice Theorem 2.2 which generalizes Kapalansky's [3] results page 12 (let *I* be a differential Ideal in a Ritt algebra and let *a* be an element with $a^n \in I$ then $(a')^{2n-1} \in I$)

Theorem 2.2 Let *I* be the generalized differential Ideal in a Generalized Ritt algebra if *a* be any element with $a^n \in I$ then $(f(a))^{2n-1} \in I$.

Proof

=

<i>f</i> (<i>a</i> ^{<i>n</i>})	=	$f(e)a^n + D(a^n)$		
		$f(e)a^n + na^{n-1}D(a)$		

since $a^n \in I$

	$\Rightarrow f(a^n)$	=	$f(e)a^n + na^{n-1}D(a) \in I$
⇒			$f(e)a^n \in I$
⇒			$f(e)aa^{n-1} \in I$
⇒			$(f-D)(a)a^{n-1}\in I$
⇒			$f(a)a^{n-1}\in I$

By induction on *k*, we get

$$(f(a))^{2k-1} a^{n-k} \in I$$

 $\Rightarrow f((f(a))^{2k-1} a^{n-k}) \in I$
 $\Rightarrow f(f(a))^{2k-1} a^{n-k} + (f(a))^{2k-1} D(a^{n-k})) \in I$

Multiplying by *a*, we get

$$\begin{array}{l} \Rightarrow \quad f\left(f(a)\right)^{2k-1}a^{n-k+1} \in I \\ \Rightarrow \quad \left[f(e)(f(a))^{2k-1} + D((f(a)^{2k-1})\right]a^{n-k+1} \in I \\ \Rightarrow \quad f(e)(f(a))^{2k-1}a^{n-k+1} \in I \\ \Rightarrow \quad f(e)a(f(a))^{2k-1}a^{n-k} \in I \\ \Rightarrow \quad (f-D)(a)(f(a))^{2k-1}a^{n-k} \in I \\ \Rightarrow \quad (f(a))^{2k}a^{n-k} \in I \end{array}$$

Multiplying by *f*(*e*)

$$\Rightarrow f(e)a(f(a))^{2k}a^{n-k+1} \in I$$

$$\Rightarrow (f - D)(a)(f(a))^{2k}a^{n-k-1} \in I$$

$$\Rightarrow (f(a))^{2k+1}a^{n-k+1} - D(a)(f(a))^{2k}a^{n-k+1} \in I ($$

Now

 $f(a^{n}) = f(e)a^{n} + D(a^{n})$ $\Rightarrow f(a) = f(e)a + D(a)$ $\Rightarrow f(a) - f(e)a = D(a)$

Putting this value of D(a) in 2nd term of (S), we get

$$f(a)^{2k+1}a^{n-k-1} \in \mathsf{I}$$
$$\Rightarrow f(a)^{2k-1}a^{n-k} \in \mathsf{I}$$

Putting k = n

$$\Rightarrow (f(a))^{2n-1} \in I$$
 Hence proved.

Corollary 2.3 In a generalized Ritt algebra, radical Ideal of a generalized differential Ideal is a generalized differential Ideal.

Corollary 2.4 Kaplansky's [3] results page 12 is immediately follows by replacing *f* by *D*.

Conclusion

In this paper, we proved the most important result "If *I* is a generalized differential Ideal in a generalized Ritt algebra and *a* be any element with $a^n \in I$. Then $(f(a))^{2n-1} \in I$." from which Kaplansky's [3] two lemmas page 12 comes out as Corollaries".

References

- [1] Havala, B. *generalized Derivations in rings,* Communication in Algbera 26 (4), 11471166 (1998).
- [2] Jacobson, N. Lie Algebras, Interscience Publishers, New York (1992).
- [3] [3] Kaplansky, I. An introduction to differential algebra, Hermann, Paris (1957)
- [4] [4] Jacobson Nathan, Lie algebras. Interscience Publishers, New York (1979).