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ABSTRACT 

In this study, we have introduced a new three-parameter Lindley inverse 

Weibull distribution using Lindley family of distributions. The mathematical 

and statistical properties of the new distribution such as probability density 

function, cumulative distribution function, survival function, hazard rate 

function, quantile, the measure of skewness, and kurtosis are illustrated. 

The parameters of the new distribution are estimated using maximum 

likelihood estimation (MLE), least-square (LSE) and Cramer-Von-Mises (CVM) 

methods. By using the maximum likelihood method, we have constructed 

the asymptotic confidence interval for the model parameters. All the 

computations are performed in R software. A real data set is analyzed for 

illustration and application.The potentiality of the proposed distribution is 

evaluated by goodness of fit in contrast with some other existing 

distributions using a real life data. 

Keywords: Lindley-G-family, Inverse Weibull, Maximum likelihood 
estimation, Hazard function. 
 

 

1. INTRODUCTION 

In the probability distribution and applied statistics literature, we can found so many 

continuous univariate distributions. Most of the classical distributions have been widely used over 

the past decades for modeling data in several areas such as actuarial, environmental and medical 

sciences, life sciences, demography, economics, finance, insurance, etc. However, in many applied 

areas like survival analysis, finance, and insurance, there is a clear need for modified forms of more 

flexible distributions to model real data that can address a high degree of skewness and kurtosis. 
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The Weibull distribution has been extensively used in survival analysis and in applications of 

several different fields. For a detailed study, the learners can go through Lai et al. (2003) and 

Nadarajah (2009). Even though its widespread use, it has some drawbacks that is the limited shape 

of its hazard rate function (HRF) that can only be monotonically increasing or decreasing or constant. 

Usually, practical problems require a wider range of possibilities in the medium risk, for example, 

when the lifetime data produces a bathtub shaped hazard function such as human mortality and 

machine’s component life cycles.  

The inverse Weibull distribution has been used to model, many real-life applications for 

example degradation of mechanical components such as pistons, crankshafts of diesel engines, as 

well as the breakdown of insulating fluid (Khan et al., 2008, Pararai et al., 2014). Akgül et al. (2016) 

has introduced the inverse Weibull distribution for modeling the wind speed data. Kumar & Kumar 

(2019) has presented the estimation of the parameters and reliability characteristics in inverse 

Weibull distribution based on the random censoring model. 

Hence the researchers in the last few years developed various extensions and modified 

forms of the Weibull distribution to obtain more flexible distributions. Some generalizations of the 

Weibull (W) distribution are available in the statistical literature such as the exponentiated W 

(Mudholkar et al. 1996), additive W (Xie and Lai 1995), Marshall–Olkin extended W (Ghitany et al. 

2005), modified W (Lai et al. 2003, Sarhan and Zaindin 2009), beta-W (Lee et al. 2007), beta modified 

W (Silva et al. 2010), transmuted W (Aryal and Tsokos 2011), Kumaraswamy inverse W (Shahbaz et 

al. 2012), exponentiated generalized W (Cordeiro et al. 2013), beta inverse W (Hanook et al. 2013), 

transmuted complementary W geometric (Afify et al. 2014), transmuted exponentiated generalized 

W (Yousof et al. 2015), Marshall–Olkin additive W (Afify et al. 2018), Kumaraswamy transmuted 

exponentiated additive W (Nofal et al. 2016), Topp-Leone generated W (Aryal et al. 2017) and 

Kumaraswamy complementary W geometric (Afify et al. 2017) distributions.  

Recently,Okasha et al. (2017) has introduced the extended inverse Weibull distribution with 

reliability application Cordeiro et al. (2018) has introduced the Lindley Weibull distribution which 

accommodates unimodal and bathtub, and a broad variety of monotone failure rates, Basheer 

(2019) also introduced the alpha power inverse Weibull distribution with reliability application and 

Abd EL-Baset& Ghazal (2020) has presented the exponentiated additive Weibull distribution. 

The one parameter Lindley distribution was developed by (Lindley, 1958) in the context of 

Bayesian statistics, as a counterexample to fiducial statistics. In recent years, many studies have 

been focused to obtain various modified forms of the baseline distribution using Lindley family 

presented by Zografas and Balakrishnan (2009) with more flexible density and hazard rate functions. 

A detailed study on the Lindley distribution was done by (Ghitany et al., 2008). 

 A random variable T follows Lindley distribution with parameter λ and its probability density 

function (PDF) is given by 
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And its cumulative density function (CDF) is 
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Cakmakyapan and Ozel (2016) have introduced a new class of distributions to generate new 

distribution based on Lindley generator (Lindley-G) having additional shape parameter θ. The CDF 

and PDF of Li-G are respectively, 

     ; , 1 ; 1 ln ; ;    0, 0
1

L GF x G x G x x
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where  
 ;

;
dG x

g x
dx


  ,    ; 1 ;G x G x    and  is the parameter space of baseline 

distribution. 

The main objective of this work is to develop a more flexible model by adding just one extra 

parameter to the inverse Weibull distribution to achieve a better fit to real data. We explore the 

properties of the LIW distribution and its applicability. The rest of the article is organized as follows. 

In Section 2, the proposed Lindley inverse Weibull (LIW) distribution is derived and we explore some 

mathematical and statistical properties of the LIW distribution such as a reliability function, hazard 

rate function, quantile function, and skewness and kurtosis. In Section3, we have presented some 

well-known estimation methods namely maximum likelihood estimation (MLE), least-square (LSE) 

and Cramer-Von-Mises (CVM) methods. Further we also construct the asymptotic confidence 

interval for MLEs. In section 4 the application of the proposed model is explored by taking a real data 

set used by earlier researchers. Concluding remarks are presented in Section 5. 

2. The Lindley inverse Weibull (LIW) distribution 

In the literature of probability models and applied statistics, the inverse Weibull distribution 

has established some attention. Keller et al. (1982) study the shapes of the density and failure rate 

functions for the basic inverse model The inverse Weibull distribution with parameters α (scale 

parameter) and β (shape parameter) with cumulative distribution function (CDF) and the probability 

density function (PDF) of a random variable X are respectively given by 

   ; , exp ;   0,  0,  0G x x x                              (2.1) 

and 

    ( 1) exp ;   0,  0,  0g x x x x                               (2.2) 

Using (2.1) and (2.2) in (1.3) and (1.4) we get the CDF and PDF of Lindley inverse Weibull (LIW) 

distribution as, 
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respectively. Where  = scale parameter,  and  are shape parameters of the LIW distribution. 
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The reliability function of LIW (α, β, θ) is 
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1.1 Hazard rate function 

The hazard rate function is 
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1.2 Quantile function 

The quantile function of  LIW (α, β, θ) can be expressed as, 
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1.3 Random Deviate Generation 

The random deviate can be generated from LIW (α, β, θ) by 
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Solving (2.8) for x we get the expression for the random deviate generation, where v has the U (0, 1) 

distribution. For model choice based on information criterion, the values of AIC, BIC, CAIC and HQIC 

can be used.  

1.4 Skewness and Kurtosis of LIW distribution 

In descriptive statistics, the measures of skewness and kurtosis play a significant role in data 

analysis. The coefficient of Bowley'sskewness measure based on quartiles is given by 
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and the coefficient of Moor’s kurtosis measures based on octiles Moors (1988) is given by 
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Plots of probability density function and hazard rate function of LIW(α, β, θ) with different values of 

parameters are shown in Figure 1. 
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Figure 1. Plots of PDF (left panel) and hazard function (right panel) for different values of α, β and θ. 

3. METHODS OF ESTIMATION 

The objective of estimation is to approximate the value of a model parameter based on 

sample information. The estimation theory deals with the basic problem of inferring some relevant 

features of a random experiment based on the observation of the experiment outcomes. There are 

so many methods for estimating unknown parameters of the model. We have considered four types 

of estimation methods such as the maximum likelihood (MLE), ordinary least squares (LSE), and the 

Cramer-von Mises (CVM) method. 

3.1. Maximum Likelihood Estimation (MLE) 

In this section, we have illustrated the maximum likelihood estimators (MLE's) of the LIW (α, 

β, θ) distribution. Let x ̠ = (x1,…..,xn) be the observed values of size ‘n’ from LIW(α, λ, θ), then the 

likelihood function for the parameter vector  , ,
T

     can be written as, 
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It is easy to deals with log-likelihood function as, 
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The elements of the score function    , ,Z Z Z Z    are obtained as 
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Equating ,   Z Z and Z   to zero and solving these non-linear equations simultaneously gives the 

MLE  ˆ ˆˆ ˆ , ,     of  , ,
T

    . These equations cannot be solved analytically and by using 

the computer software R, Mathematica, Matlab, or any other programs and Newton-Raphson’s 

iteration method, one can solve these equations.   

Let us denote the parameter vector by  , ,
T

    and the corresponding MLE of   as
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 I   is the Fisher’s information matrix given by, 
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 Further differentiating (3.2) we get, 
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The observed fisher information matrix  ˆO   as an estimate of the information matrix  I   given 

by 
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where H is the Hessian matrix. 

The Newton-Raphson algorithm to maximize the likelihood produces the observed information 

matrix. Therefore, the variance-covariance matrix is given by, 
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Hence from the asymptotic normality of MLEs, approximate 100(1-α) % confidence intervals for α, β, 

and θ can be constructed as, 

/2
ˆ ˆvar( )Z   , /2

ˆ ˆvar( )Z  and /2
ˆ ˆvar( )Z  , where /2Z is the upper percentile of 

standard normal variate. 

3.2. Method of Least-Square Estimation (LSE) 

The ordinary least square estimators and weighted least square estimators are introduced by 

(Swain et al., 1988) to estimate the parameters of Beta distributions. The least-square estimators of 

the unknown parameters for α, β, and θ of LIW distribution can be obtained by minimizing  
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n
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                                                               (3.3.1) 

with respect to unknown parameters α, β, and θ. 

 

Let 
( )( )iF X denotes the CDF of the ordered random variables

     1 2 n
X  X  ..  X    , 

where 1 2 nX ,X ,  ..,X  is a random sample of size n from a CDF (2.3). Therefore, the least 

square estimators of α, β, and θ say ˆ ˆˆ,   and    respectively, can be obtained by minimizing 
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with respect to α, β, and θ. 
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To obtain the least square estimates of α, β, and θ, we have to solve the following two nonlinear 

equations simultaneously by equating to zero,  
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3.4. Method of Cramer-Von-Mises (CVM) 

We interested in Cramér-von-Mises type minimum distance estimators, (Macdonald 1971) 

because it provides empirical evidence that the bias of the estimator is smaller than the other 

minimum distance estimators. The CVM estimators of α, β, and θ are obtained by minimizing the 

function 
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To obtain the CVM estimators of α, β, and θ, we have to solve the following two nonlinear equations 

simultaneously by equating to zero,  
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where ( ) 1 ix

iV x e
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4. APPLICATION WITH REAL DATASET AND RESULT 

In this section, we illustrate the applicability of LIW distribution using a real dataset used by 

earlier researchers .we have taken 100 observations on waiting times (in minutes) before the 

customer received service in a bank (Ghitany et al. 2008). 

0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6, 4.0, 4.1, 4.2, 4.2, 4.3, 4.3, 4.4, 

4.4, 4.6, 4.7, 4.7, 4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3, 6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 

7.4, 7.6, 7.7, 8.0, 8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7, 10.9, 11.0, 11.0, 11.1, 

11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13.0, 13.1, 13.3, 13.6, 13.7, 13.9, 14.1, 15.4, 15.4, 17.3, 17.3, 

18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4, 21.9, 23.0, 27.0, 31.6, 33.1, 38.5 

The plots of profile log-likelihood function for the parameters α, β and θ have been displayed in 

Figure 2, and noticed that the ML estimates can be uniquely determined. 

 

Figure 2. Graph of Profile log-likelihood function for the parameters α, β and θ. 

The maximum likelihood estimates are calculated directly by using optim() function in  R 

software (R Core Team, 2020) and (Rizzo, 2008) by maximizing the likelihood function (3.1). We have 

obtained ̂ = 9.3340, ̂ = 0.3010, ̂ = 104.4248 and corresponding Log-Likelihood value is -

317.2356. In Table 1 we have demonstrated the MLE’s with their standard errors (SE) and 95% 

confidence interval for α, β, and  . 
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Table 1: MLE, SE and 95% confidence interval 

Parameter MLE SE 95% ACI 

alpha 9.3340 0.5078 (8.3387, 10.3293) 

beta 0.3010 0.0217 (0.2584, 0.3436) 

theta 104.4248     2.4923     (99.5398, 109.3098) 

 

In Table 2 we have displayed the estimated value of the parameters of Lindley inverse Weibull 

distribution using MLE, LSE and CVE method and their corresponding negative log-likelihood, AIC, 

BIC and AICC criterion.  

Table 2: Estimated parameters, log-likelihood, AIC, BIC, AICC and HQIC 

Method of 

Estimation   

̂  ̂  ̂  -LL AIC BIC AICC HQIC 

MLE 9.3340 0.3010 104.4248 317.2356 640.4711 648.2866 640.716 643.6342 

LSE 8.9289 0.3291 63.4914 317.499 640.9981 648.8136 641.243 644.1611 

CVE 9.0867 0.3262 70.4662 317.4243 640.8486 648.6642 641.0935 644.0117 

 

Table 3: The KS, AD and CVM statistics with p-value 

Method of 

Estimation 
KS(p-value) AD(p-value) CVM(p-value) 

MLE 0.0382(0.9986) 0.0189(0.9980) 0.0189(0.9980) 

LSE 0.0363(0.9994) 0.0177(0.9987) 0.0177(0.9987) 

CVE 0.0345(0.9998) 0.0171(0.9990) 0.0171(0.9990) 

 

Figure 3. The Histogram and the density function of fitted distributions of estimation methods MLE, 
LSE and CVM. 

To illustrate the goodness of fit of the Lindley inverse Weibull distribution, we have taken some well 

known distribution for comparison purpose which are listed blew, 
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I. Power Lindley distribution: 

The probability density function of power Lindley distribution (Ghitany et al., 2013) with parameters 

αand β is 

 
2

1( ) 1 ; 0, 0, 0.
1

x
PLf x x x e x

  
 


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

 

II. Weibull distribution: 

The probability density function of Weibull (W) distribution is 

 
1

( / ) ;  0, 0x

W

x
f x e x








 



 
   
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III. Flexible Weibull Extension (FWE) distribution: 

The density of Flexible Weibull (FW) distribution (Bebbington, 2007) with parameters αand βis 

2
( ) exp exp exp ; 0, 0, 0.FWf x x x x

x xx

  
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      
            

      
 

IV. The inverse Weibull (IW) distribution 

The probability density function (PDF) of a random variable X of IW (Keller et al., 1982)is given by 

    ( 1) exp ;   0,  0,  0g x x x x            

To assess the goodness of fit of a given distribution we generally use the PDF and CDF plot. To 

get the additional information we have to plot Q-Q and P-P plots. In particular, the Q-Q plot may 

provide information about the lack-of-fit at the tails of the distribution, whereas the P-P plot 

emphasizes the lack-of-fit. From Figure 4 it is proven that the LIW model fits the data very well. 

 

Figure 4. The P-P plot (left panel) and Q-Q plot (right panel) of LIW distribution 

For the assessment of potentiality of the proposed model we have calculated the Akaike 

information criterion (AIC), Bayesian information criterion (BIC), Corrected Akaike information 

criterion (CAIC) and Hannan-Quinn information criterion (HQIC) which are presented in Table 4.  
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Table 4: Log-likelihood (LL), AIC, BIC, CAIC and HQIC 

Model -LL AIC BIC CAIC HQIC 

LIW 317.2356 640.4711 648.2866 640.7160 643.6342 

Power Lindley 318.3186 640.6372 645.8475 640.7609 642.7459 

Weibull 318.7307 641.4614 646.6717 641.5851 643.5701 

Flexible Weibull 321.2682 646.5363 651.7467 646.6600 648.6450 

Inverse Weibull 334.3810 672.7620 677.9723 672.8857 674.8707 

 

The Histogram and the density function of fitted distributions and Empirical distribution function 

with estimated distribution function of LIW and some selected distributions are presented in Figure 

5. 

 

 

Figure 5. The Histogram and the density function of fitted distributions (left panel) and Empirical 

distribution function with estimated distribution function (right panel). 

 

To compare the goodness-of-fit of the LIW distribution with other competing distributions we 

have presented the value of Kolmogorov-Simnorov (KS), the Anderson-Darling (AD) and the Cramer-

Von Mises (CVM) statistics in Table 5. It is observed that the LIW distribution has the minimum value 

of the test statistic and higher p-value thus we conclude that the LIW distribution gets quite better 

fit and more consistent and reliable results from others taken for comparison. 
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Table 5: The goodness-of-fit statistics and their corresponding p-value 

Model KS(p-value) AD(p-value) CVM(p-value) 

LIW  0.0382(0.9986)  0.0189(0.9980)  0.1527(0.9984) 

Power Lindley 0.0520(0.9498) 0.0458(0.9025) 0.3028(0.9359)  

Weibull 0.0578(0.8920) 0.0611(0.8084) 0.4058(0.8426)  

Flexible Weibull 0.0849(0.4717) 0.1116(0.5316) 0.7710(0.5021)   

Inverse Weibull 0.1167(0.1313) 0.4272(0.0611) 2.8925(0.0311) 

 

5. CONCLUSION 

 In this study, we have studied the three-parameter Lindley inverse Weibull(LIW) distribution. 

For our study, we provided the PDF, the CDF, and the shapes of the hazard function. The shape of 

the PDF of the LIW model is unimodal and positively skewed, while the hazard function of the LIW 

model is increasing. The P-P and Q-Q plots showed that the purposed distribution is quite better for 

fitting the real dataset. Finally, using a real data set we have explored some well-known estimation 

methods namely maximum likelihood estimation (MLE), least-square (LSE), and Cramer-Von-Mises 

(CVM) methods. Further we also construct the asymptotic confidence interval for MLEs. We 

conclude that MLE is the best estimation method as compared to the LSE and CVM methods. The 

application illustrate that the proposed model provides consistently better fit then other underling 

models. We expect that this model will contribute in the field of survival analysis. 
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