
1 

Vol.8.Issue.4.2020 (Oct-Dec) 

©KY PUBLICATIONS  

 

  

  

 

    

 

 

 

LINDLEY INVERSE EXPONENTIAL DISTRIBUTION WITH PROPERTIES AND APPLICATIONS  
 

ARUN KUMAR CHAUDHARY1, VIJAY KUMAR2 

1
 Nepal Commerce Campus, Tribhuwan University, Nepal  

2Department of Mathematics and Statistics, DDU Gorakhpur University, Gorakhpur, India 
1akchaudhary1@yahoo.com; 2vijay.mathstat@ddugu.ac.in 

 DOI: 10.33329/bomsr.8.4.1 
 

ABSTRACT 

In this study, a two-parameter Lindley inverse exponential distribution is 

presented. Some mathematical and statistical properties of the 

distribution namely the shapes of the probability density, cumulative 

density and hazard rate functions, survival function, hazard function, 

quantile function, the skewness, and kurtosis measures are derived and 

established. To estimate the model parameters, we have employed three 

well-known estimation methods namely maximum likelihood estimation 

(MLE), least-square estimation (LSE), and Cramer-Von-Mises (CVM) 

methods.  A real data set is considered to explore the applicability and 

suitability of the proposed distribution. Also, AIC, BIC, AICC and HQIC are 

calculated to assess the validity of the Lindley inverse exponential model.  

Keywords: Cramer-Von-Mises, Generalized Exponential (GE) distribution, 
Inverse exponential distribution, Least-square estimation, Lindley 
distribution 

 

1. Introduction 

 Researchers in the last few years has developed various extensions and modified form of the 

Lindley distribution which was developed by (Lindley, 1958) in the context of Bayesian statistics, as a 

counterexample to fiducial statistics. A detailed study on the Lindley distribution was done by 

(Ghitany et al., 2008), Mazucheli & Achcar (2011) have been used the Lindley distribution to 

competing risks lifetime data. 

 Let R denote a random variable that follows Lindley distribution with parameter μ and its 

probability density function (PDF) is given by 
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And its cumulative density function (CDF) is 
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1 ;  0, 0
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Some of the modifications in the literature of Lindley distribution are given by (Ghitany et al., 

2008a) showed that the Lindley distribution is fairly similar to the exponential distribution. Gupta 

and Singh (2013) investigated the estimation of the parameters using hybrid censored data. The 

estimation of the model parameters for censored samples by (Krishna and Kumar, 2011). 

 Towards the modified theoretical distribution, Ghitany et al. (2011) introduced weighted 

Lindley distribution having two parameters and has shown that it is appropriate in modeling survival 

data for a mortality study. Nadarajah et al. (2011) have introduced generalized Lindley, extended 

Lindley by (Bakouch et al., 2012), Ashour & Eltehiwy (2015) for exponentiated power Lindley, Bhati 

et al. (2015) Lindley–Exponential distribution. Ieren et al. (2018) have introduced modeling lifetime 

data with Weibull-Lindley distribution. Ibrahim et al. (2019) has introduced a new extension of 

Lindley distribution.  

 Also, we have found some continuous-discrete mixed approaches, the discrete Poisson-

Lindley have introduced by (Sankaran, 1970). Zamani and Ismail (2010) introduced negative binomial 

Lindley distribution. A new weighted Lindley distribution is introduced by (Asgharzadeh et al., 2016).  

A new class of distributions to generate new distribution based on Lindley distribution having 

additional shape parameter θ has introduced by (Cakmakyapan and Ozel, 2016). The CDF of Lindley 

generator can be expressed as,  

      ; , 1 ; 1 ln ; ;  0, 0
1

L GF y G y G y y
 

    




 
         

 (1.3)

       

and         
2

1

; , ; ; 1 ln ; ;  0, 0
1

L Gf y g y G y G y y


     





      
   

 (1.4) 

where  
 ;

;
dG y

g y
dy


  ,    ; 1 ;G y G y    

The primary purpose of this paper is to achieve a more flexible distribution by adding just one 

extra parameter to the inverse exponential distribution using (1.3) and (1.4) to achieve a better fit to 

real data. We investigate the properties of the L-IE distribution and elucidate its applicability. The 

contents of the proposed study are organized as follows. The new Lindley inverse exponential 

distribution is introduced and various distributional properties are discussed in Section 2. To 

estimate the model parameters, we have employed four well-known estimation methods namely 

maximum likelihood estimation (MLE), least-square estimation (LSE), and Cramer-Von-Mises (CVM) 

methods in Section 3. In Section 4 a real data set has been analyzed to explore the applications and 

suitability of the proposed distribution. In this section, we present the ML estimators of the 

parameters and approximate confidence intervals also for the above-mentioned method of 
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estimation, AIC, BIC, AICC and HQIC are calculated to assess the validity of the L-IE model. Lastly, 

Section 5 ends up with some general concluding remarks. 

2. The Lindley Inverse exponential (L-IE) distribution: 

Using (1.3) and (1.4) we are introducing a new distribution where the baseline distribution is 

the inverse exponential distribution. The Inverse Exponential (IE) distribution has been introduced by 

(Keller & Kamath, 1982) and it has been studied and discussed as a lifetime model. If a random 

variable  Y IE   then the variable 
1

U
Y

  will have an inverse exponential distribution and its 

CDF and PDF can be written as, 

  / ;   0, 0yH y e y                                                           (2.1) 

and   /

2
;   0, 0yh y e y

y


                                                     (2.2) 

Utilizing (2.1) and (2.2) in (1.3) and (1.4) we get the CDF and PDF of Lindley inverse exponential 

distribution as follows 

   / /1 (1 ) 1 ln(1 ) ;   0, 0, 0
1

x xF x e e x  
 


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                     (2.3) 

and    
2

/ / 1 /

2
(1 ) 1 ln(1 ) ;   0, 0, 0

1

x x xf x e e e x
x

    
 



    
       

 
              (2.4) 

where λ and θ are scale and shape parameters of the L-IE distribution. 

Reliability function  

The reliability function of Lindley inverse exponential (L-IE) distribution is 

 ( ) 1 ( )R x F x   

/ /(1 ) 1 ln(1 ) ; 0, 0, 0
1

x xe e x  
 


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                                                  (2.5) 

Hazard function  

The failure rate function of L-IE distribution can be defined as, 
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x e e e
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 

 
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     (2.6) 

In Figure 1, we have displayed the plots of the PDF and hazard rate function of L-IE distribution for 

different values of λ and θ. 
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Figure 1. Plots of PDF (left panel) and hazard function (right panel) for different values of λ and θ. 

Quantile function: 

The quantile function of L-IE distribution can be given by 

 / /1 (1 ) 1 ln(1 ) 0 ; 0< 1
1

x xp e e p  



   
        

  
 (2.7) 

Skewness and Kurtosis: 

The Skewness and Kurtosis based on quantile function are, 

Bowley’s coefficient of skewness is 

 

 
     

   

3 / 4 1/ 4 2 2 / 4
,

3 / 4 1/ 4
Sk

Q Q Q

Q Q

 
 


 and  (2.8) 

Coefficient of kurtosis based on octiles given by (Moors, 1988) is 

 
       

   

7 / 8 5 / 8 3 / 8 1/ 8

3 / 4 1/ 4
Ku
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M
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  



                                               (2.9) 

3. Methods of estimation 

In this segment, we have presented some well-known estimation methods for estimating 

parameters of the proposed model, which are as follows 

3.1. Maximum Likelihood Estimates 

For the estimation of the parameter, the maximum likelihood method is the most commonly used 

method (Casella & Berger, 1990). Let, 1 2, ,...... nx x x  be a random sample from  ,L IE    and the 

likelihood function,  ,L    is given by, 

    1 2 1 2

1

; , ...... , ,...... / ( / )
n

n n i

i

L x x x f x x x f x  


   
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Now log-likelihood density is 

  / /

1 1 1 1

2 ln ln(1 ) ln 2 ln ( 1) ln(1 ) ln 1 ln(1 )i i

n n n n
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i

i i i ii

l n n n x e e
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   
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Differentiating (3.1) with respect to λ and θ we get, 

 
 

/ /

/ / /
1 1 1

1
( 1)
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n
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e 

  
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
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                    (3.1.3) 

Equating (3.1.2) and (3.1.3) to zero and solving simultaneously for λ and θ, we get the maximum 

likelihood estimate ˆ ˆ  and  of the parameters λ and θ. By using computer software like R, Matlab, 

etc for maximization of (3.1.1) we can obtain the estimated value of λ and θ. For the interval 

estimation of λ and θ and testing of the hypothesis, we have to calculate the observed information 

matrix. The observed information matrix for λ and θ can be obtained as, 

11 12

21 22

A A
A

A A

 
  
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Let ( , )    denote the parameter space and the corresponding MLE of  ˆ ˆˆ ( , )   as, then 

    
1

2
ˆ 0,N A  

  
  

where  A   denotes the Fisher’s information matrix. The Newton-

Raphson algorithm is used in order to maximize the likelihood and create the observed information 

matrix and hence the variance-covariance matrix is obtained as, 

  
1

ˆ ˆ ˆvar( ) cov( , )

ˆ ˆ ˆcov( , ) var( )
A

  


  

  
       

 

                                                        (3.1.4) 
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Therefore, approximate 100(1-α) % confidence intervals for λ and θ can be constructed using the 

asymptotic normality of MLEs as, 

 /2
ˆ ˆvar( )z   and  /2

ˆ ˆvar( )z                                           (3.1.5) 

where /2z denotes the upper percentile of standard normal variate. 

3.2. Method of Least-Square Estimation (LSE) 

Swain et al. (1988) proposed the ordinary least square estimators and weighted least square 

estimators to estimate the parameters of Beta distributions. Here we have applied the same 

technique for the L-IE distribution. The least-square estimators of the unknown parameters λ and θ 

of L-IE distribution can be attained by minimizing  

 
2

1

; , ( )
1

n

k

k

k
A X G X

n
 



 
   
      (3.2.1) 

with respect to unknown parameters λ and θ. 

Consider ( )kG X denotes the distribution function of the ordered random variables

     1 2 n
X  X  ..  X    , where 1 2 nX ,X ,  ..,X  represents a random sample of size n 

from a distribution function G(.). The least-square estimators of λ and θ say ˆ ˆ  and   respectively, 

can be obtained by minimizing 

 
2
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1 1
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n
x x

k

k
A X e e

n

  
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 


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    
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with respect to λ and θ. 

Differentiating (3.2.2) with respect to λ and θ we get, 
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/

( ) 1 kx

kC x e
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The weighted least square estimators can be attained by minimizing 
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Hence, the weighted least square estimators of λ and θ respectively can be obtained by minimizing, 

 

 
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 
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/ /

1

1 2
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        (3.2.3) 

with respect to λ and θ. 

3.3. Method of Cramer-Von-Mises (CVM) 

The CVM estimators of λ and θ are obtained by minimizing the function 
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1 2 1
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Differentiating (3.3.1) with respect to λ and θ we get, 
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
 

Solving = 0  0
M M

and
 

 


 
simultaneously we get the CVM estimators. 

4. Application with a real dataset 

The data given below are obtained from an accelerated life test comprising of 59 conductors, 

(Nelson & Doganaksoy, 1995). The failures can befall in microcircuits due to the movement of atoms 

in the conductors in the circuit; this is connoted to as electro-migration. The failure times are in 

hours and with no censored observations.  

6.545, 9.289, 7.543, 6.956, 6.492, 5.459, 8.120, 4.706, 8.687, 2.997, 8.591, 6.129, 11.038, 5.381, 

6.958, 4.288, 6.522, 4.137, 7.459, 7.495, 6.573, 6.538, 5.589, 6.087, 5.807, 6.725, 8.532, 9.663, 

6.369, 7.024, 8.336, 9.218, 7.945, 6.869, 6.352, 4.700, 6.948, 9.254, 5.009, 7.489, 7.398, 6.033, 

10.092, 7.496, 4.531, 7.974, 8.799, 7.683, 7.224, 7.365, 6.923, 5.640, 5.434, 7.937, 6.515, 6.476, 

6.071, 10.491, 5.923. 

The contour plot and fitted CDF with empirical distribution function (EDF) are presented in 

Figure 2, Kumar & Ligges (2011). 
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Figure 2. Contour plot (left panel) and the fitted CDF with empirical distribution function (right 

panel). 

The MLEs are calculated directly by using optim() function (Ming, 2019) in R software (R Core 

Team, 2020) and (Rizzo, 2008) by maximizing the likelihood function (3.1.1). We have obtained ̂ = 

33.8992 and ̂ = 96.0743 and the corresponding Log-Likelihood value is -111.6267. In Table 1 we 

have demonstrated the MLE’s with their standard errors (SE) and 95% confidence interval for λ and 

θ. 

Table 1: MLEs, SE and 95% confidence interval 

Parameter MLE SE 95% ACI 

lambda 33.8992 0.9991 (31.9410, 35.8574) 

theta 96.0743      2.9763    (90.2406, 101.908) 

We have displayed the graph of the profile log-likelihood function of λ and θ in Figure 3 and 

observed that the MLEs are unique. 

 

Figure 3. Graph of profile log-likelihood function of λ and θ. 
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In Table 2 we have displayed the estimated value of the parameters of Lindley inverse exponential 

distribution using MLE, LSE and CVE method and their corresponding negative log-likelihood, AIC, 

BIC AICC and HQIC information criterion.  

Table 2: Estimated parameters, negative log-likelihood, AIC, BIC, AICC and HQIC 

Method of 

Estimation 
̂  ̂  -LL AIC BIC AICC HQIC  

MLE 33.8992 96.0743 -111.6267 227.2534 231.4085 227.4603 228.8754  

LSE 35.1689 113.5768 -111.6908 227.3816 231.5367 227.5885 229.0036  

CVE 36.1518 130.7198 -111.8489 227.6978 231.8529 227.9047 229.3198  

 

Figure 4. The Histogram and the density function of fitted distributions of estimation methods MLE, 

LSE and CVM. 

Table 3: The KS, AD and CVM statistics with p-value 

Method of 

Estimation 
KS(p-value) AD(p-value) CVM(p-value) 

MLE 0.0627(0.9630) 0.0331(0.9662) 0.2056(0.9888) 

LSE 0.0555(0.9888) 0.0279(0.9833) 0.2014(0.9901) 

CVE 0.0515(0.9954) 0.0267(0.9863) 0.2278(0.9808) 

 

To illustrate the goodness of fit of the Lindley inverse exponential distribution, we have taken some 

well known distribution for comparison purpose which are listed blew, 
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I. Weighted Lindley distribution (W-Lindley): 

II. The weighted Lindley distribution has presented by (Ghitany et al., 2011) whose PDF is 

 
 

1
1( ) 1 ; 0, 0, 0.

( )

tf t t t e t


 
 

  


     

 
 

III. Chen distribution: 

Chen (2000) has introduced Chain distribution having probability density function (PDF) as  

   1 1 0 0x xf x; , x e exp e ; ( , ) , x
         

     
  

. 

IV. Weibull distribution: 

The probability density function of Weibull (W) distribution is 

 
1

( / ) ;  0, 0x

W

x
f x e x








 



 
   

   

V. Generalized Exponential (GE) distribution: 

The probability density function of generalized exponential distribution (Gupta & Kundu, 1999) is. 

     
1

1 ; 0 0x x
GEf x; , e e , , x


      


    

 

 

Figure 4. The P-P plot (left panel) and Q-Q plot (right panel) of L-IE distribution 

For the judgment of potentiality of the proposed model we have presented the value of  Akaike 

information criterion (AIC), Bayesian information criterion (BIC), Corrected Akaike information 

criterion (CAIC) and Hannan-Quinn information criterion (HQIC) which are presented in Table 4.  
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Table 4: Negative Log-likelihood (LL), AIC, BIC, CAIC and HQIC 

Model -LL AIC BIC CAIC HQIC 

LIE 111.6267 227.2534 231.4085 227.4603 228.8754 

WL 111.8202 227.6403 231.7954 227.8546 229.2623 

Weibull 112.4973 228.9946 233.1496 229.2088 230.6165 

GE 114.9473 233.8946 238.0497 234.1089 235.5166 

Chen 116.3874 236.7748 240.9299 236.9891 238.3968 

 

The Histogram and the density function of fitted distributions and Empirical distribution function 

with estimated distribution function of L-IE and some selected distributions are presented in Figure 

5. 

 

Figure 5. The Histogram and the density function of fitted distributions (left panel) and Empirical 

distribution function with estimated distribution function (right panel). 

To compare the goodness-of-fit of the L-IE distribution with other competing distributions, we 

have presented the value of Kolmogorov-Simnorov (KS), the Anderson-Darling (AD) and the Cramer-

Von Mises (CVM) statistics in Table 5. It is observed that the L-IE distribution has the minimum value 

of the test statistic and higher p-value thus we conclude that the L-IE distribution gets quite better fit 

and more consistent and reliable results from others taken for comparison. 

Table 5: The goodness-of-fit statistics and their corresponding p-value 

Model KS(p-value) AD(p-value) CVM(p-value) 

LIE  0.0627(0.9630)  0.0331(0.9662)  0.2056(0.9888)  

WL  0.0708(0.9085)  0.0390(0.9398)  0.2352(0.9776)  

Weibull 0.0956(0.6194) 0.0840(0.6707) 0.4773(0.7693)  

GE 0.1042(0.5103) 0.1173(0.5079) 0.7368(0.5282)  

Chen  0.1238(0.3006)  0.1913(0.2855)  1.1741(0.2774) 
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5. Conclusions 

In this work, a two-parameter Lindley inverse exponential (L-IE) distribution is introduced. 

Some mathematical and statistical properties of the L-IE distribution are presented such as the 

shapes of the probability density, cumulative density and hazard rate functions, survival function, 

hazard function quantile function, the skewness, and kurtosis measures are derived and established 

and found that the proposed model is flexible and inverted bathtub shaped hazard function. To 

estimate the model parameters, we have employed four well-known estimation methods namely 

maximum likelihood estimation (MLE), least-square estimation (LSE), and Cramer-Von-Mises (CVM) 

methods and we concluded that the MLEs are quite better than LSE, and CVM. A real data set is 

considered to explore the applicability and suitability of the proposed distribution and found that 

the proposed model is quite better than other lifetime model taken into consideration.  
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