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1. Introduction

Let X and Y be a normed spaces on the same field I; and f: X — Y be a mapping. We use the
notation ||. || for the norms on both X and Y: In this paper, we investigate some functional equation
when X is a additive semigroup and Y is a non-Archimedean Banach space or when X is a is a
additive group and Y is a non-Archimedean Banach space. In fact, when X is a is a additive
semigroup and Y is a non-Archimedean Banach space. we solve and prove the Hyers-Ulam stability

of following Cauchy type additive functional equation

ot + T ) = 2 f () + 2k f () (1.1)

and
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when X is a additive group and Y is a non-Archimedean Banach space we solve and prove the Hyers-

Ulam stability of following quadratic type functional equation
1 1 X
f (B ier + By x) + f (R s — D) = 23K, F (2) + 238, F () (12)

Note: k be a fixed integer with k > 2:

The study of the functional equation stability originated from a question of S.M. Ulam [34],
concerning the stability of group homomorphisms. Let (G,* ); be a group and let (G',0,d) be a
metric group with metric d (.,.). Geven € > 0, does there exista § > 0 such thatif f: G - G’
satisfies.

d(f(x*y), f(x)o f(y) <6

forallx; y € G then thereisa homomorphismh: G » G' with

d(f(x), h(x)) < €

for all xe G? ?, if the answer, is affirmative, we would say that equation of homomophism
h(x *y) = h(y), 0, h(y) is stable. The concept of stability for a functional equation arises when we
replace functional equation by an inequality which acts as a perturbation of the equation. Thus the
stability question of functional equations is that how do the solutions of the inequality di_er from
those of the given function equation? Hyers[18] gave a first affirmative answes the question of Ulam
as follows:

Let E; be a normed space, E; a Banach space and suppose that the mapping f : E; = E, satisfies
inequality,
IfCx+y)—fl)—fMII < €

forallx; y € E; where € > 0is a constant. Then the limit T(x) = log, . 27" f(2™x) exists for
eachy € EjandT is the unique additive mapping,

If () =TIl < €,Vx€ Eq

Also if for each x the functional t - f(xt)from R to E,is continuous on R: If f continuous at a
single point of E; ; then T is continuous everywhere in [E;

Next Th. M. Rassias [29] provided a generalization of Hyers' Theorem as a special case. Suppose E
and E’ is normed space with E' a complete normed space, f : E — [E’ is a mapping such that for
each fixed x € E the mappingt — f (xt)is continuous on R.

Assume that there existe > Oandp € [0; 1] such that,

If(x+y) = fF) = fFWI < € IxlIP +IyllP), Vi y€ E

Then ther exists a unique linear L: E —» E’ satisfies

If GO = Lol < 1_—;_1, lx|Px € E

The case of the existence of a unique additive mapping had been obtained by Aoki [1], as it is
recently noticed by Lech Maligranda. However, Aoki [1] had claimed the existence of a unique linear
mapping, that is not true because he did not allow the mapping f to satisfy some continuity
assumption. Th. M. Rassis[29], who independently introduced the unbouned di
erence was the first to prove that there exists a unique linear mapping T satisfying
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If ) = T@)Il < 5 IxlIPx € B

In 1990, Th. M. Rassias [31] during the 27™ International Symposium on Functional Equation asked
the question whether such a theorem can also be proved for p > 1: In 1991, Z. Gajda [15] following
the same approach as in Th. M. Rassias [31], gave an affirmative solution to this question forp > 1:
It was proved by Gajda [15], as well as by Th. M. Rassias and P. Semrl [32] that one can not prove a
Th. M. Rassias type therem when p = 1:1In 1994, P. Gavruta [17] provided a further generalization
of Th. M. Rassias theorem in which he replaced the bouned e(||x||? + ||x||”) by a general control
function Y(x,y) for the existence of a unique linear mapping. In [12], Czerwik proved the
generalizaed Hyers-Ulam stability of the quadratic functional equation. Borelli and Forti [10]
generalizaed stability the result as follows [19]:

Let G be an Abelian group, and X a Banach space. Assume that a mapping f : G = X satisfies the
functional inequality

IfCc+y)+fx—y)—2(x) =2fNII < ¢ (x,¥),Yxy€E G

and ¢: G X G - [0, o] is function such that

Yx,y) = Z @ (2'x,2'y) <o
i=0

Vyy€ G.Then there exists a unique quadratic mapping Q: G —» X with th eproperties

If(x) + QI < P(x,x) Vi y€ G

Here, we cannot fail to notice that S-M. Jung [19] dealt with stability problem for the quadratic
function equation of pexider type

filx +y) + fL(x —y) = f3(0) — fu(y)
In addition, the conditional stability of quadratic equation and stability of the quadratic mappings in
Banach modules were stdied by M. S. Mosilehian [22] and C. Park [27]. next In 2007 Mohammad Sal
Moslehian, Themistocles M. Rassias [21] proved the generalized Hyers-Ulam stability of Cauchy
additive functional equation and quadratic func- tional equation. Recently, in [3-6, 21] the authors
studied the Hyers-Ulam stability for the following functional equations

fx+y)=fx)+f) 1.3

and
fx+y)+fx—y)=2f(x)+2f() 1.4

Next
FEF+2) =1 () +r@ 15

and
FEF+a)+ 1 (F-2) =2 () + @ 16

in non-Archimedean spaces. So that we solve and proved the Hyers-Ulam type stability for functional
equation (1.1) and (1.2) ie the functional equations with 2k-variables. Under suitable assumptions
on spaces X and Y, we will prove that the mappings satisfying the functional equations (1.1) or (1.2).
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Thus, the results in this paper are generalization of those in [3-6, 21] for functional equations with
2k-variables.

The paper is organized as follows:

In section preliminaries we remind some basic notations in [3-6, 11, 20] such as Non Archimedean
field, Non-Archimedean normed space and Non-Archimedean Banach space.

Section 3 we prove the generalized Hyers-Ulam stability of the Cauchy type additive functional
equation (1.1) when G is an additive semigroup and X Non-Archimedean Banach space.

Section 4 we prove the generalized Hyers-Ulam stability of the quadratic type functional equation
(1.2) when G is an additive group and X Non-Archimedean Banach space.

2. Preliminaries

2.1. Non-Archimedean normed and Banach spaces. In this subscetion we recall some basic
notations [11, 20] such as Non-Archimedean fields, Non-Archimedean normed spaces and Non-
Archimedean normed spaces.

A valuation is a function | . | from a field K into k [0; 1) such that 0 is the unique element having the
0 valuation,

[r|=0 or=20
|rs| = |r| |s| V;,s € K
And the triangle inequality holds, ie.,
[r+s|<|r|+ |s|V,,s € K

A field K is called a valued filed if K carries a valuation. The usual absolute values of R are examples
of valuation. Let us consider a valuation which satisfies a stronger condition than the triangle
inaquality. If the tri triangle inequality is replaced by

|r + s| < max{|r|,|s|}V,,s € K

then the function is | .| called a norm-Archimedean valuational, and filed. Clearly | 1| = |-1| =
land |n| <1V, € N. A trivial expamle of a non- Archimedean valuation is the function talking
everything except for 0 into 1 and |0] = O this paper, we assume that the base field is a non-
Archimedean filed, hence call it simply a filed.

Definition 2.1 Let be a vector space over a filed K with a non-archimedean | .|. A function ||.||: X —
[0, ) is said a non-archimedean norm if it satisifies the following conditions

(D) |llx|]l = 0if and only if x = 0;
@) lIr,xll = |l lixlI(r € K,x € X);
() llx + yll < max{ [|Ix]l, llyll}x,y € X hold.
Then (X, ||. || called a norm archimedean norm space .Due to the facti that
[, + x|l < max{||xj+1 + x]-||:m <j<n—-1}(mn>m)
Definition 2.2. Let {x,,}, be a sequence in a norm -Archimedean normed space X.

(1) A sequence {x, }5=1in a non -Archimedean space is a Cauchy sequence if the {x,+1 — Xn}n=1
converges to zero

(2) The sequence {x,}n=; is said to be convergent if, for any € > 0, there are a positive
integer Nand x € X such that
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l|x, + x|]| < e.VYn =N,

for all n,m = N. Then the point x € X is called the limit of sequence x,, which is denoted by
“mn%ooXn =X.

(3) If every sequence Cauchy in X convergent, then the norm -Archimedean normed space X is
called a norm -Archimedean Bnanch space.

2.2. Solutions of the inequalities. The functional equation

fa+ty=f) +fO)

is called the Cauchuy equation. In particular, every solution of the Cauchuy equation is said to be an
additive mapping.

The functional equation
fG+y+fEx—-y=2f(x) +2f¥)

is called the quadratic equation. In particular, every solution of the quadratic equation is said to be a
quadratic mapping.

MAIN RESULTS
3. STABILITY of THE CAUCHY TYPE ADDITIVE FUNCTIONAL EQUATION
In this section, assume that X is an additive semigroup and Y is a complete non- Archimedean space.

Theorem 3.1. Let L : X?¥ — [0, o) be a functional such that

L(Zk)nxl,(Zk))nxz ........ (zk)ank)

lim,,_,q L (3.2)
For allxy, x5, ... ... X, € X and let each x € X then limit
. J J j
¢(x) _ limn—mo max{ L:(2k) x,(2k)) x........ (2k) x)} 0 <j<n (3.2)

[2k|J

Exists, suppose that f: X — Y be a mapping satisfying

1 i
”f( ?=1xi + Ezi'c=1xk+i) - Z{'(=1f (x) — le§=1f (xl;:) ” < L(xq, Xg e e Xar)  (3.3)
then let there exists an additive mapping T : X — Y such that

1 @) = TEI < 55 ¢ (3.4)

for all x € X. Moreover, if

L:(2k) x,(2k)) x.......2K) x)
12K}/ '

lim,, _, o lim,_, o, max{ p<j<n+p}=0 (3.5

then T is the unique additive mapping satisfying (3.4)
Proof.Puttingxi = xandxi+1 = kxforalli = 1; 2;:::; kin (3.3), we get
| f(2kx) — 2kf ()| < L(x, %, .....x) (3.6)

)n—l

for all x € X. Replacing x by (2k x in (3.6), we obtain

| feER)™ ™ f((Zk)"‘lx)” < LR % 2", ... (2K x) (3.7)
(2K)" 1oLt | |2k|™ '
. F(2K)"X), .
It following from (3.1) and (3.7) that the sequence {W} is Cauchy sequence.
Since Y is complete, we conlude that {%} is convergent. Set
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f(Qk)"x)

T(x) = lim;_e i)™

Using induction one can show that

‘ f(2k)™x

(Zk)"
foralln € Nandall x € X. By taking n to approach infinity in (3.8), and using (3.2),

—f(x)

_ 1 L((2K)Px, (2k)Px, ..... (2k)Px)
< lelmax{ i

;0Sp<n} (3.8)

one obtains (3.4 ). Replacing x; and xj,; by (2k)"x; and 2k)™ x4, respectively, in (3.3)

k k k
1 1 1
o ;(Zk) xi+E;(2k) X —W;f (@)

1 i ((2k>nxk+i> _ L@, 2Ry . (200" x2)

- n - n
@ & k |2K]

Taking the limit as n = oo and using (3.1) we get

k k

k k
f ij-l'%z:xkﬂ' :Zf (x,-)—Zf (%) (3.9)
- ' =1 =1

j=1 i=1
forall x1,x2, ... ... X, € X To prove the uniqueness property of T,let P : X

— Y be another function satisfying (3.4).Then

I T(x) = PO = limp, e |2k | T((2K)™x) — P((2K)"2) |
< limyp 0| 2k ™" max{]| T((2K)"x) — f(CK)™ O, | f((2Kk)"x) = P((2K)" )1}

L: (Zk)jx, (2k)) x ... .....(Zk)jx) ]
12K P=

< ﬁ lim,p_)oolimn_)OO max{

<n+p}=0

forallx € X.ThereforeT = P, and the proof is complete.
Corollary 3.2. Let : [0, ) — [0, ©) be mapping satisfying

B(2k]) < B(2kDB)(t = 0) and B(|2k|) < |2k|
Let § > 0,X be anormed spaceand f : X — Y fulfill the inequality

k k

k k k
Ity e | =D =7 () | <o { e +3 Dbl | 3:20)
i=1 i=1 k=1 i=1

i=1

forall x1, Xz ,......x2« € X. Then exists a additive mapping T : X = Y such that
2

I f() =TIl < 2K

5B (llxID

forallx € X

Proof. Defining L: x%¥ — [0, o) by

k k
1
LG g0 = 80) Blll +2 > Bl
i=1 i=1
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then we have

L((2K)™xq,(2K) "X ... (2) "X 2k)

. . B(2k|)
lim, o 2R < limy 00 (

|2k|

2
) L(xq, X, e\ Xok) (3.11)

L:(2k) x,(2k) x.......(2k) x)

¢ (x) = lim,_,,, max{ 2l ;0<j<n}=L(xx,..x) (3.12)
L: (2k) x, 2K)) x ... ..... (2k)/
limy, o limy, o, max{ ( )%, ( ))x. ( )x);p5j<n+p:0
|2k |/
. ((Zk)"x1, (Zk)"x3 o ... (2k) " X21)
= lim,_,q 2K]" =0

Applying Theorem (3.1) we conclude the required result.
4. Stability of the quadratic type functional equation

In this section, assume that G is an additive group and X is a complete non-Archimedean space.

Theorem 4.1. Let L : G — [0, o) be a functional such that

L:(2K)"x1,(2K) x5 ... (2Kk)"x21)

lim,,_, o Ve (4.1)
For allxy, x5, ... ... X, € G and let each x € G then limit
B () = limyeo max{L’(z")j"'(z’Tizl’j. """" @O § < < (4.2)
Exists, suppose that f: G — Y be a mapping satisfying f(0) = 0 and
1 (Bl + 25K ) + £ (32K s — Ty ) = 23K fe) — 230, £ B2 || <

8 (ZEyy lxill +3 T,y Ieadll) (43)
then there exists a quadratic mapping T : G = X such that
1@ = TEONl < o Gy (lxl)? (4.4)
forallx € G, moreover, if

L:(2k) x,2K)) x.......(2k) x)
|4k]) ’

limy, _, o lim,_, o, max{ p<j<n+p}=0 (4.5)

then T is the unique quadratic mapping satisfying (4.4)
Proof. Puttingx; = xandx,q; = kxforalli= 1,2,.......,k in (4.3), we get
| f(2kx) — 4kf (Ol < L(x, x,,x) (4.6)
forall x € G.Replacing x by (2k)""1x in (4.6), we obtain

L((2K)" 1x,(2k)" 1x,....(2K) " 1 x)

fR™x  f(2K)" 'x)
| (4k)n CIOLEE | I [4k|™ (47)
. fRR)™), .
It following from (4.1) and (4.7) that the sequence {W} is Cauchy sequence.
Since X is complete, we conlude that {%} is convergent. Set
. f((2k)"x)
T(x) = lim;,_e W
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Using induction one can show that
fQk)"x 1 L((2k)Px, (2k)Px, ..... 2k)Px)
‘ —f(x) ;0<p

(4k)" - |4k| |4k|P -

foralln € Nandall x € G. By taking n to approach infinity in (4.8), and using (4.2)

one obtains (4.4 ). Replacing x; and x,; by (2k)"x; and (2k)™x; 41, respectively, in (4.3)
k

k k
1 1
£l 2.0 xi+E;<2k) e —W;f (@)

< n} (4.8)

(4k)™
1 zk: (k)™ x4 < L((2k)"xy, Rk)"xy ... ... (2k)™x51)
(4k)" ! k - |4k|"
k=1
Taking the limit as n — oo and using (4.1) we get
k

k k k k k
1 1 1 xk+]
FlQpmeent Qg 47\ g s = 2w | =20 () 2 2 x (49)
j=1 i=1 i=1 i=1 i=1 i=1

forall x1,x2, ... .. Xy, € G. To prove the uniqueness property of T,let P : G
— Y be another function satisfying (4.4).Then

| T(x) = PO = limp,_,eo [4k| || T((2K)™x) — P((2K)"2) |

“"max{|| T((2Zk)"x) = f(2K)™OIl, |l f((ZKk)"x) = P(2k)" )|}

< lim,,_, o |4k|

_ _ L: (2k)/x, k) x ... ..... (2k) x)
< @ llmp_,oollmn_,oo max 4k ;P <
<n+p}=0

forallx € G.ThereforeT = P, and the proofis complete.

Corollary 4.2.Let y: [0,0) — [0, ) be mapping satisfying
y(2k]) < y(12kDy(©)(t = 0) and y(|12k]) < |2k|

Let § > 0, G be a normed space and be an even mapping satisfying f : G — Y fulfill f(0)=0 and the

(o E) s £2) £ ()

; i
i P N (
:;l"(z-‘l' -7—;:}“:'1'";)
i (4.10}

|T;

1=1
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1 k k 1 k k k k
Xke+j
szk+1+le +f szk+j R —ZZf(xi)—ZZf(T])
i= i=1 i=1 i=1 i=1 =1
k 1 k
<8 D lball+3 Dyl (4.10)
i=1 i=1
forall x1, X2,......x2« € G. Then exists aquadratic mapping T : G = Y such that
-T <—35§ 2
[HOEMGIEY 4k| y (=)

forallxe G

Proof. Defining L: G%* — [0, ) by

k k
1
LGe1, X eeer ) = Q) ¥l +7 D ¥l
i=1 i=1

then we have

. L((2K)"x1,(2K) x5 ...... 2Kk)" . 2k[)) %"
lim,,_, 0 (@) |1sz (2k)" %) o lim,,_, o (ﬁ|(|2k||)) L(x1, X5, vy Xok) (4.11)
. j j j
¢(x) = lim,_,,, max{ L:(2k) x'(zﬁi)k; """" (2k) x); 0<j<n}=L(xx,..x) (4.12)
L: (2k) x, (2K)) x ... k) x)
limy, o limy, o - <j<n+
imy,_,,lim,,_,,, max 4k ;p<j<n+p}
n n n
—lim, ., ((2k) xl.(zkl)Mzclzn. ..... @) _ (4.13)

Applying Theorem (3.1) we conclude the required result.
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