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ABSTRACT 

Many mechanical systems appear to be very simple and deterministic, but within 

certain ranges of parameters, systems can exhibit extremely complicated and 

unpredictable behavior. In this paper, we have considered a simple pendulum 

subject to damped and sinusoidal driven force as a mechanical system and 

discussed its oscillations under certain ranges of parameters. We have analyzed 

the nature of fixed and periodic points, and by means of period doubling 

phenomenon, we have proved that the oscillations become chaotic as the 

parameters are varied.  

Keywords: Chaos, dynamical system, nonautonomous system, stability, critical 

points, almost linearity, period doubling.  
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1. Introduction 

Most of the phenomenon taking place in nature is observed to be nonlinear, extremely 

complex and depending upon so many parameters which are difficult to control. The mathematical 

modelling of such phenomenon has been a tough challenge before scientists all over the world. In 

this regard, the theory of difference equations and differential equations are extremely useful. 

Getting exact solution of such nonlinear equations is quite a big challenge, and most of the times, we 

use approximations to the solutions using numerical techniques. However, very small errors in the 

initial conditions can lead to false or very strange conclusions, which are termed as 'Butterfly Effect'. 

The kind of strange property of nonlinear systems [4] is also termed as chaos[1, 5]. In the coming 

sections we will consider a damped driven pendulum as a mechanical system and study its 

oscillations for different values of the damping and driving forces. 
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2. Damped driven Pendulum as a Dynamical System  

As an example of a dynamical system[3], we consider a simple pendulum of mass 𝑚 and 

length 𝐿. With a small initial force, suppose that the pendulum is swinging back and forth under the 

action of three forces viz. its weight 𝑚𝑔 acting in the downward direction, a damping force and a 

periodic force. A force of damping can be acted upon the pendulum by immersing it in a medium like 

air or oil or any other fluid. Let 𝜃(𝑡) denote the angle made by the pendulum with the normal at 

time 𝑡. Let 𝐷 denote the damping parameter. Then the damping force acting upon the pendulum, 

which opposes the motion of the pendulum, is𝐷𝐿2 𝑑𝜃

𝑑𝑡
. The third force acting on the pendulum is the 

periodic driven force𝐴𝐷 sin𝜔𝐷 𝑡, where 𝐴𝐷 is the amplitude and 𝜔𝐷 is the angular frequency of the 

periodic driven force. Then the differential equation of motion of the pendulum, using Newton’s 

laws of motion, is given by  

                                     𝑚𝐿2 𝑑2𝜃

𝑑𝑡2 + 𝐷𝐿2 𝑑𝜃

𝑑𝑡
+ 𝑚𝑔𝐿 sin 𝜃 = 𝐿𝐴𝐷 sin𝜔𝐷 𝑡                                    (1) 

The equation (1) is nonlinear because of the termsin 𝜃. This term has the speciality that it makes the 

system periodic but at the same time, unpredictable for certain ranges of parameters. This property 

is referred to as chaos. In order to have a proper analysis of the pendulum system, we reduce the 

number of parameters by choosing 𝜔𝐷
−1 as the unit of time. Also, using the notations𝜔2 =

𝑔

𝐿
,𝑑 =

𝐷

𝑚
, 𝑎 =

𝐴𝐷

𝑚𝐿
, equation (1) can be written as 

   
𝑑2𝜃

𝑑𝑡2 + 𝑑
𝑑𝜃

𝑑𝑡
+ 𝜔2 sin 𝜃 = 𝑎 sin 𝑡                                          (2) 

As suggested by John R. Taylor[7], in search of chaos, we will choose 𝜔 =
3

2
 and 𝑑 =

3

4
 and let 𝑎 vary. 

We will prove that the pendulum system undergoes the period doubling[8] phenomenon which is 

one of the main characteristics of chaotic systems. Kulkarni P. R. and Borkar V. C.[9] have proved 

that varying the amplitude of the driven periodic force 𝑃(𝑡) = 𝐴𝐷 cos 𝜔𝐷 𝑡, the oscillations of a 

damped driven pendulum is chaotic. 

3. Nature of Oscillations with Varying Periodic Force 

In this section we will study the oscillations of the pendulum under the action of periodic force for 

different values of 𝑎. First suppose that 𝑎 = 0. Then in this case,  the pendulum system has the 

differential equation   

           
𝑑2𝜃

𝑑𝑡2 + 𝑑
𝑑𝜃

𝑑𝑡
+ 𝜔2 sin 𝜃 = 0                                                                (3)  

Taking  

 

𝜃 = 𝑥1 and  
𝑑𝜃

𝑑𝑡
= 𝑥1′ = 𝑥2,

𝑑2𝜃

𝑑𝑡2 = 𝑥2′, 

equation (3) can be written as a system of differential equations[10] 

                                  𝑥1′ = 𝑥2,                                                                      (4) 

    𝑥2′ = −
3

4
𝑥2 −

9

4
sin 𝑥1                                                        (5) 

 

The pendulum system is not linear, but it is almost linear [6] at the origin. The auxiliary system[12] is 

𝑥1′ = 𝑥2,                                                                        (6) 

                                                   𝑥2′ = −
3

4
𝑥2 −

9

4
𝑥1                                                        (7) 
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and the associated matrix is  𝐴 = [
0 1

−2.25 −0.75
]. 

The eigenvalues of the matrix 𝐴 are 𝜆1 =  −0.3750 +  1.4524𝑖 and 𝜆2 = −0.3750 −  1.4524𝑖. 

Since the real part of the eigenvalues is −0.375 which is negative, it follows that the critical point 

𝑂 = (0, 0) is asymptotically stable and all the solutions tend to 𝑂 = (0, 0) for the auxiliary 

pendulum system given by equations (6)-(7). Hence 𝑂 = (0, 0) is an asymptotically stable critical 

point for the pendulum system given by equations (4)-(5).  

As the system undergoes harmonic oscillations, the solutions for 𝜃 can be obtained by means of 

numerical methods. The graphs of some of the solutions obtained by using MATLAB for some of the 

initial conditions are as shown in the Figure 1 and Figure 2. 

 
Figure 1: Trajectories in the absence of driven force 

 
Figure 2: Some trajectories 

The phase plain portrait is as shown in the Figure 3. It can be observed that the solution spirals in 

towards origin. 
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Figure 3: Phase Plain Portraits in the absence of driven force 

It can be verified that there are other critical points of the system (6)-(7) which are given by 𝑋𝑛 =

[
𝑛𝜋
0

], where 𝑛 is an integer. In the next theorem, we will prove that the pendulum system (6)-(7) is 

almost linear at 𝑋𝑛 = [
𝑛𝜋
0

] for each integer 𝑛.  

We will prove that the pendulum system 

                                                                     𝑥1′ = 𝑥2,                                                        

                                               𝑥2′ = −
3

4
𝑥2 −

9

4
sin 𝑥1   

is almost linear at 𝑋𝑛 = [
𝑛𝜋
0

] for each integer 𝑛. 

Changing the variables defined by 𝑥1 = 𝑛𝜋 + 𝜇 and 𝑥2 = 𝜈, the system 𝑥1′ = 𝑥2,  

𝑥2′ = −
3

4
𝑥2 −

9

4
sin 𝑥1  takes the form 𝜇′ = 𝜈 and 𝜈′ = −

9

4
sin(𝑛𝜋 + 𝜇) −

3

4
𝜈. Of these equations, 

the first equation is linear and the second can be expressed as 

𝜈′ = −
9

4
sin 𝜇 −

3

4
𝜈 if 𝑛 is even, and 𝜈′ =

9

4
sin 𝜇 −

3

4
𝜈 if 𝑛 is odd. 

In case 𝑛 is even, the equation 𝜈′ = −
9

4
sin 𝜇 −

3

4
𝜈 is same as the equation (7), which we have 

shown that it is almost linear at the origin. By a similar argument, it can be easily verified that if 𝑛 is 

odd, the equation 𝜈′ =
9

4
sin 𝜇 −

3

4
𝜈 is almost linear.  

Now let us analyse the nature of the critical point 𝑋𝑛 = [
𝑛𝜋
0

] for each integer 𝑛. Whenever 𝑛 

is an even integer, the pendulum system (4)-(5) is asymptotically stable. In this case, if  𝑥1(0) = 𝑛𝜋 

and 𝑥2(0) = 0, the bob of the pendulum is at rest pointed in the downward direction and the 

pendulum is in the vertical position. 

The behaviour of the pendulum system is a little bit different when 𝑛 is odd. considering 𝑛 =

1, and as shown in the theorem 1, the auxiliary system of the system (4)-(5) is given by 

                                                                          𝜇′ = 𝜈                                                                              (8) 

                                                                          𝜈′ =
9

4
𝜇 −

3

4
𝜈.                                                                   (9) 
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The associated matrix 𝐵 = [
0 1

2.25 −0.75
] has eigenvalues 1.1712and −1.9212. Since the 

eigenvalues are real, distinct and have opposite signs, it follows that origin is an unstable critical 

point of the system (8)-(9), and hence the critical point 𝑋1 = [
𝜋
0

] is an unstable critical point of the 

system (8)-(9). It is clear that when 𝑥1 = 𝜃 = 𝜋, the pendulum is standing upright with bob above 

the anchor in a vertical line, which is an unstable position. The same argument applies for all odd 

integer values of 𝑛. 

Now suppose that 𝑎 = 0.4. Then in this case,  the pendulum system has the differential 

equation   

                                                                          
𝑑2𝜃

𝑑𝑡2 + 𝑑
𝑑𝜃

𝑑𝑡
+ 𝜔2 sin 𝜃 = 0.3 sin 𝑡                                   

Taking  

𝜃 = 𝑥1 and  
𝑑𝜃

𝑑𝑡
= 𝑥1′ = 𝑥2,

𝑑2𝜃

𝑑𝑡2 = 𝑥2′, 

equation (2) can be written as a system of differential equations 

                                                                     𝑥1′ = 𝑥2,                                                            

                                              𝑥2
′ = −

3

4
𝑥2 −

9

4
sin 𝑥1 + 0.3 sin (𝑡)                   

Solving these equations numerically with the initial conditions 𝜃 = 𝑥1 = 1.6 and  
𝑑𝜃

𝑑𝑡
= 𝑥1

′ = 𝑥2 = 0 

for the time limit 𝑡 = 0 to 𝑡 = 100, a solution curve is as shown by the Figure 4.   

 
Figure 4: A trajectory for 𝑎 = 0.4 

It can be observed that after initial transient, the solution is harmonic with the period of oscillations 

6.33 which is approximately equal to the period 2𝜋 of the driving force. An another way of observing 

the period of the solutions is by means of the phase space portrait in which 𝜃 = 𝑥1 is plotted against 
𝑑𝜃

𝑑𝑡
= 𝑥1

′ = 𝑥2. Figure 5 shows the phase plane portrait[11] obtained by MATLAB. 
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Figure 5: Phase Portrait for 𝑎 = 0.4 

After transient decay, there is a closed orbit with period 1 which is shown by means of the darkest 

lines. A much more clear insight on the phase plane portrait generated by mathematical software 

shown by the Figure 6, where a closed orbit is observed.    

 
 

Figure 6: Another Phase Portrait for 𝑎 = 0.4 

As the phase portrait is a three dimensional figure, it becomes difficult to visulaize and understand 

completely when it is a little overcrouded. In such cases, Poincare sections[13] are generally used. In 

a Poincare section we plot 𝜃(𝑡) against 
𝑑𝜃

𝑑𝑡
 whenever 𝑡 is an integer multiple of 2𝜋.The Poincare 

section for 𝑎 = 0.4 is as shown in the Figure 7.   
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Figure 7: Poincare section for 𝑎 = 0.4 

From Figure 7, we can observe that there is a single dot which confirms the existence of a closed 

periodic orbit with period one. 

We will keep varying the values of the parameter 𝑎 in search of the chaos. For 𝑎 = 2.4, 

solutions are observed to be periodic with period equal to 2.2𝜋, which is two times the period 2𝜋 of 

the driven force  Hence a period doubling of the cycles is noted. A solution curve in this case is as 

shown by the Figure 8, obtained by MATLAB. As it is a little difficult to observe the period doubling in 

this figure, we have taken a zoom in picture of this figure as shown by Figure 9.     

 

Figure 8: A solution curve for 𝑎 = 2.4 
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Figure 9: A zoom in on the solution curve for 𝑎 = 2.4 

Figure 10 is the phase portrait where periodic cycle of period two is observed. The same is viewed 

clearly in the Figure 11, where we can see a closed loop. In this case the trajectories can be seen to 

cross each other. 

 
Figure 10: A phase portrait with darkest lines for 𝑎 = 2.4 

 

 
 

Figure 11: A phase portrait showing two closed loops for 𝑎 = 2.4 
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Figure 12: Poincare section showing two dots 

 

Figure 12 is the Poincare section, where it can be observed that there are two points. With each 

period doubling, the number of points in the Poincare section is seen to be doubled. As we continue 

changing the value of the parameter 𝑎, it is observed that for 𝑎 = 3.3, there is period four harmonic 

solution i.e. the solutions are periodic with period equal to four times the period of the driven force. 

In this way there is again a period doubling. As the trajectories become more and more messy with 

increasing cycles, we have obtained just the Poincare section in this case as shown in the Figure 13. 

We can observe four points which indicate the existence of a closed loop with period four. 

 
Figure 13: Poincare section for 𝑎 = 3.3 

 

3. CONCLISION 

A lot of phenomenons which initially appear to be deterministic and regular transfer later in to 

a very strange one. It becomes very important to understand the exact state in which a system falls 

in to chaotic regime. However, this is a very difficult task. We can study some clues that point 

towards the transition from order to chaos. Of many indications, period doubling is one of the 
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processes that point towards a chaotic system. We have observed the period doubling phenomenon 

for the values of the parameter 𝑎 = 0.4, 2.4, 3.3 where there were periodic solutions of period 1, 2 

and 4 respectively. It is very difficult to find the exact values of the parameter for which this period 

doubling process continues. We can just predict about the values of the parameter for which this 

period doubling process happens. Bifurcation diagrams are generally used to observe the points 

where there is bifurcations i. e. a doubling of the period of the periodic points. The bifurcation 

diagram for the pendulum system is as shown in Figure 14. 

 

Figure 14: Bifurcation diagram 

In a bifurcation diagram, there are regions where there are periodic points of other periods also. 

Such regions are called as windows. Such kind of window can be observed between the approximate 

parameter range 2.6 < 𝛾 < 2.8. As we zoom on the bifurcation diagram, a similar structure i. e. a 

fractal [2] structure is obtained. 

 An indication of transition from predictability to chaos is intermittency, which consists of 

periodic or predictable motion where there is no period doubling but some sort of noise or intervals 

with irregular behaviour. As we go on increasing the values of the parameter, the irregularity in the 

periodic solutions is observed more frequently and lasting for a comparatively longer period. For the 

parameter value 𝑎 = 2.7, the order in the motion of the pendulum is lost and the pendulum system 

becomes chaotic. A trajectory of the system is as shown in the Figure 15, where periodic behaviour is 

seen to be lost.  

 

Figure 15: A solution curve for 𝑎 = 2.7 
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Poincare section of the phase space for 𝑎 = 2.7 is as shown in the Figure 16. The Poincare section is 

a strange attractor, which is a set of points which is an infinite set of points in the phase space. This 

set can be reproduced, has a complex and many layered structure. It is not just a set of points on a 

line, but it has fractal dimension which repeats itself as we keep zooming on its structure. 

 

Figure 16: Poincare section for 𝑎 = 2.7 

We have observed that the pendulum system is deterministic in the absence of the external driven 

periodic force, but as we apply the driven force and keep changing the driven parameter value, a 

strange scenario comes in to focus. We conclude that however carefully we take into consideration 

the parameters involved in a nonlinear system, there will always be a kind of uncertainty and 

unpredictability in the system as we keep changing the parameter values. This uncertainty is because 

of the sensitive dependence on the initial conditions.      
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