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ABSTRACT 

We have created a continuous three-parameter univariate distribution 

called Logistic Gompertz distribution. We have illustrated some 

mathematical and statistical properties of the distribution such as the 

probability density function, cumulative distribution function and 

reliability function, quantile function, skewness, and kurtosis measures. 

The parameters of the proposed distribution are estimated using three 

well-known methods namely maximum likelihood estimation (MLE), least-

square estimation (LSE), and Cramer-Von-Mises estimation (CVME) 

methods. The goodness of fit of the proposed distribution is also 

evaluated by comparing it with some other existing distributions using a 

real data set. 

Keywords: Logistic distribution, Gompertz distribution, Hazard function, 

LSE, CVME. 

 

1. INTRODUCTION 

The logistic distribution is a single variate continuous distribution and it has been used in 

many different areas such as logistic regression, logit models and neural networks. It has been also 

used in the physical sciences, life sciences, sports modeling, and recently in finance as well as 

insurance. The logistic distribution has thicker tails than a normal distribution so it is more flexible 

with the underlying data and provides better insight into the likelihood of extreme events. 

Let X be a non-negative random variable satisfies the logistic distribution with shape 

parameter   θ > 0, and its cumulative distribution function is given by 
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and its corresponding PDF is 
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Tahir et al. (2016) has defined a new generating family of continuous distributions generated 

from a logistic random variable called the logistic-X family. Its density function can be symmetrical, 

left-skewed, right-skewed and reversed-J shaped, and can have increasing, decreasing, bathtub and 

upside-down bathtub hazard rates shaped. Mandouh (2018) has introduced Logistic-modified 

Weibull distribution which is flexible for survival analysis as compared to modified Weibull 

distribution. Joshi & Kumar (2020) have introduced the Lindley exponential power distribution 

having a more flexible hazard rate function. Mansoor et al. (2019) have introduced a three-

parameter extension of the exponential distribution which contains as sub-models the exponential, 

logistic-exponential and Marshall-Olkin exponential distributions. The distribution is very flexible and 

its associated density function can be decreasing or unimodal. Chaudhary & Kumar (2020) have 

presented the half logistic exponential extension distribution using the parent distribution as 

exponential extension distribution. 

Lan and Leemis (2008) have presented an approach to defining the logistic compounded 

model and introduced the logistic–exponential survival distribution. This has several useful 

probabilistic properties for lifetime modeling. Unlike most distributions in the bathtub and upside-

down bathtub classes, the logistic–exponential distribution exhibit closed-form density, hazard, 

cumulative hazard, and survival functions. The survival function of the logistic–exponential 

distribution is 
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                                           (3) 

In this study, we have taken the Gompertz distribution as a parent distribution which is one of the 

classical probability distribution that represents survival function based on laws of mortality. This 

distribution performs a considerable role in modeling human mortality and analyzing actuarial 

tables. The Gompertz distribution was first introduced by (Gompertz, 1824). It has been used as a 

growth model and also used to fit the tumor growth. The Gompertz function reduced a significant 

collection of data in life tables into a single function. It is based on the assumption that the mortality 

rate decreases exponentially as a person ages. The resulting Gompertz function is for the number of 

individuals living at a given age as a function of age. Applications and an extensive survey of the 

Gompertz distribution can be found in (Ahuja & Nash, 1967). Cooray and Ananda (2010) have 

introduced the Gompertz-sinh family and it was used to analyze the survival data with highly 

negatively skewed distribution. El-Gohary et al. (2013) have presented a flexible called the 

generalized Gompertz distribution it has increasing or constant or decreasing or bathtub curve 

failure rate depending upon the shape parameter. Ieren et al. (2019) have introduced a three-

parameter power Gompertz distribution using a power transformation approach.  

Using the same approach used by (Lan & Leemis, 2008) we have introduced the new 

distribution called Logistic Gompertz (LGZ) distribution. The main aim of this study is to introduce a 

more flexible distribution by inserting just one extra parameter to the Gompertz distribution to 
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attain a better fit for the lifetime data sets. We have discussed some distributional properties and its 

applicability. The different sections of the proposed study are arranged as follows. In Section 2 we 

present the Logistic Gompertz (LGZ) distribution and its various mathematical and statistical 

properties. We have made use of three well-known estimation methods to estimate the model 

parameters namely the maximum likelihood estimation (MLE), least-square estimation (LSE) and 

Cramer-Von-Mises estimation (CVME) methods. For the maximum likelihood (ML) estimate, we have 

constructed the asymptotic confidence intervals using the observed information matrix are 

presented in Section 3. In Section 4, a real data set has been analyzed to explore the applications 

and capability of the proposed distribution. In this section, we present the estimated value of the 

parameters and log-likelihood, AIC, BIC and AICC criterion for ML, LSE, and CVME also the goodness 

of fit of the proposed distribution is also evaluated by fitting it in comparison with some other 

existing distributions using a real data set. Finally, in Section 5 we present some concluding remarks. 

2. THE LOGISTIC GOMPERTZ (LGZ) DISTRIBUTION 

The Gompertz distribution was first introduced by (Gompertz, 1824). Let X be a random 

variable follows the Gompertz distribution with parameters β and λ if its cumulative distribution 

function can be written as, 
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and its corresponding probability density function can be expressed as, 

   ( ) exp 1 exp ; 0, >0, 0g x x x x


    


 
     

 
  (5) 

Using the same approach used by (Lan & Leemis, 2008) we have defined the new distribution called 

logistic Gompertz distribution. In this study, we have taken the Gompertz distribution as a baseline 

distribution.  

 Let X be a non-negative random variable with positive shape parameters α and β and a positive 

scale parameter λ then CDF of logistic Gompertz distribution can be defined as 
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The PDF of logistic Gompertz distribution is 
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This CDF function is similar to the log-logistic CDF function with the second term of the denominator 

being changed in its base to Gompertz function, and hence we named it logistic Gompertz 

distribution. 
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Reliability function  

The reliability function of LGZ distribution is 

 ( ) 1 ( )R x F x   
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Hazard function  

The failure rate function of LGZ distribution can be defined as, 

( )
( )

( )

f x
h x

R x


   

 

1

exp 1 exp 1 1

;   ( , , ) 0,  0

1 exp 1 1

x x x

x

e e e

x

e



  





 


 
  







    
      

    
  

    
      

    

 (9) 

In Fig 1, we have displayed the plots of the PDF and hazard rate function of LGZ distribution for 

different values of α, and λ. 

 

Figure 1. Plots of PDF (left panel) and hazard function (right panel) for different values of α, and λ. 

Quantile function 

The Quantile function of Logistic Gompertz distribution can be expressed as 
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Skewness and Kurtosis: 

The measures of Skewness based on quantiles is Bowley’s coefficient of skewness and it can be 

expressed as 
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The coefficient of kurtosis based on octiles which was defined by (Moors, 1988) is 
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3. METHODS OF ESTIMATION 

In this section, the parameters of the proposed distribution are estimated by applying some well-

known estimation methods which are as follows 

3.1 Maximum Likelihood Estimates 

For the estimation of the parameter, the maximum likelihood method is the most commonly used 

method (Casella & Berger, 1990). Let, 1 2, ,..., nx x x  is a random sample from  , ,LGZ     and the 

likelihood function,  , ,L     is given by, 
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Now log-likelihood density is 
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Differentiating (13) with respect to α, β and λ we get, 
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Equating the above three non-linear equations to zero and solving simultaneously for α, β and λ, we 

get the maximum likelihood estimate ˆ ˆˆ ,    and    of the parameters α, β and λ. By using computer 

software like R, Matlab, Mathematica etc for maximization of (13) we can obtain the estimated value 

of α, β and λ. For the confidence interval estimation of α, β and λ and testing of the hypothesis, we 

have to calculate the observed information matrix. The observed information matrix for α, β and λ 

can be obtained as, 
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Let ( , , )    denote the parameter space and the corresponding MLE  of ˆ ˆˆ ˆ( , , )    as, then 
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where  C   is the Fisher’s information matrix. Using the Newton-

Raphson algorithm to maximize the likelihood creates the observed information matrix and hence 

the variance-covariance matrix is obtained as, 
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Hence from the asymptotic normality of MLEs, approximate 100(1-α) % confidence intervals for α, β 

and λ can be constructed as, 
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3.2. Method of Least-Square Estimation (LSE) 

The ordinary least square estimators and weighted least square estimators are proposed by Swain et 

al. (1988) to estimate the parameters of Beta distributions. Here we have applied the same course of 

action for the LGZ distribution. The least-square estimators of the unknown parameters α, β and λ of 

LG distribution can be obtained by minimizing  
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with respect to unknown parameters α, β and λ. 
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Consider ( )iF X denotes the distribution function of the ordered random variables
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with respect to α, β and λ. 

Differentiating (16) with respect to α, β and λ we get, 

      

  

1

2
1

( ) 1 ln ( ) 1
2 1 1 ( ) 1

1 1 ( ) 1

n
i i

i

i
i

U x U xW i
U x

n U x











   
          

  

  
 

  

1
1

2 2
1

( ) 1 ( ){( 1) 1}
2 1 1 ( ) 1

1 1 ( ) 1

ixn
i i i

i

i
i

U x U x x eW i
U x

n U x

 






 






    
          

  

    

  

1
1

2
1

( ) 1 ( ){ 1}
2 1 1 ( ) 1

1 1 ( ) 1

ixn
i i

i

i
i

U x U x eW i
U x

n U x

 






 






   
          

  

Where  ( ) exp 1ix

iU x e




 
  

 

 

Similarly, the weighted least square estimators can be obtained by minimizing 
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with respect to α, β and λ. The weights wi are 
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Hence, the weighted least square estimators of α, β and λ respectively can be obtained by 

minimizing, 
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  (17) 

with respect to α, β and λ. 

3.3. Method of Cramer-Von-Mises estimation (CVME) 

The CVME estimators of α, β and λ are obtained by minimizing the function 
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Differentiating (18) with respect to α, β and λ we get, 
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Solving = 0, = 0  0
B B W

and
  

  


  
simultaneously we will get the CVM estimators. 

4. ILLUSTRATION WITH A REAL DATASET 

In this section, we illustrate the applicability of the LGZ model using a real dataset used by 

former researchers. We have taken 100 observations on breaking the stress of carbon fibers (in Gba) 

used by (Nichols & Padgett, 2006). 

3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 

3.15, 4.90, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 

3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 

0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00, 1.22, 1.12, 1.71, 2.17, 1.17, 

5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 

1.57, 1.08, 2.03, 1.61, 2.12, 1.89, 2.88, 2.82, 2.05, 3.65 

The MLEs are calculated directly by using the optim() function in R software (R Core Team, 2020) and 

(Ming, 2019) by maximizing the likelihood function (13). We have obtained ̂ = 2.0938, ̂ = 0.3039 

and ̂  = 0.1776 and the corresponding Log-Likelihood value is -141.2612. In Table 1 we have 

demonstrated the MLE’s with their standard errors (SE) and 95% confidence interval for α, β and λ.  

Table 1: MLEs, SE and 95% confidence interval of parameters 

Parameter MLE SE 95% ACI 

alpha 2.0938 0.4141 (1.2821, 2.9054) 

beta 0.3039 0.1530 (0.0041, 0.6037) 

lambda 0.1776 0.04371 (0.0920, 0.2633) 

 

We have displayed the graph of the profile log-likelihood function of α, β and λ in Figure 2 and 

observed that the MLEs are unique. 
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Figure 2. Graph of profile log-likelihood function of α, β and λ. 

In Figure 3 we have presented the P-P plot (empirical distribution function against theoretical 

distribution function) and Q-Q plot (empirical quantile against theoretical quantile). 

  

Figure 3. The P-P plot (left panel) and Q-Q plot (right panel) of LG distribution 

By using MLE, LSE and CVME methods we estimate the parameter of L-R distribution. For the 

goodness of fit purpose we use negative log-likelihood (-LL), Akaike information criterion (AIC), 

Bayesian information criterion (BIC), Corrected Akaike Information Criterion (AICC) and Hannan-

Quinn information criterion (HQIC) statistic to select the best model among selected models. The 

expressions to calculate AIC, BIC, AICC and HQIC are listed below: 

a) ˆ2 ( ) 2AIC l k     

b)  ˆ2 ( ) logBIC l k n    

c)  2 1

1

k k
AICC AIC

n k


 

 
  

d)  ˆ2 ( ) 2 log logHQIC l k n     
  

where k is the number of parameters and n is the size of the sample in the model under 

consideration. Further, to evaluate the fits of the LG distribution with some selected distributions we 

have taken the Kolmogorov-Simnorov (KS), the Anderson-Darling (W) and the Cramer-Von Mises (A2) 

statistic. These statistics are widely used to compare non-nested models and to illustrate how closely 

a specific CDF fits the empirical distribution of a given data set.  These statistics are calculated as 

 
1

1
max ,i i

i n

i i
KS d d

n n 

 
   

 
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Where  i i  ;d CDF x  the xi’s being the ordered observations. 

In Table 2 we have displayed the estimated value of the parameters of Logistic Gompertz 

distribution using MLE, LSE and CVME method and their corresponding negative log-likelihood, AIC, 

BIC, AICC and HQIC information criteria.  

Table 2: Estimated parameters, log-likelihood, AIC, BIC, AICC and HQIC 

Method of 

Estimation 
̂  ̂  ̂  -LL AIC BIC AICC HQIC  

MLE 2.0938 0.3039 0.1776 141.2612 288.5225 296.3380 288.7725 291.6855  

LSE 1.3120 0.7533 0.0844 146.5249 299.0498 306.8653 299.2998 302.2129  

CVME 1.3156 0.7675 0.0822 147.0686 300.1372 307.9527 300.3872 303.3003  

 

  

Figure 4. The Histogram and the density function of fitted distributions (left panel) and Q-Q plot of 

estimation methods MLE, LSE and CVME. 

Table 3: The KS, AD and CVM statistic with p-value 

Method of 

Estimation 
KS(p-value) AD(p-value) CVM(p-value) 

MLE 0.0630(0.8220) 0.0648(0.7848) 0.3828(0.8653) 

LSE 0.0473(0.9786) 0.0445(0.9097) 0.7451(0.5217) 

CVME 0.0493(0.9685) 0.0439(0.9132) 0.7857(0.4911) 
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To illustrate the goodness of fit of the Lindley inverse exponential distribution, we have taken some 

well-known distribution for comparison purpose which are listed blew, 

4.1. Generalized Exponential Extension (GEE) distribution: 

The probability density function of GEE introduced by (Lemonte, 2013) having an upside-down 

bathtub-shaped hazard function distribution with parameters ,  and  is 

      

  

1

1

1 1 1

1 1 1 0

GEEf x; , , x exp x

exp x ; x .

 




     







   

    
  

 

4.2. Logistic-Exponential (LE) distribution 

The density of logistic-exponential (LE) distribution given by (Lan & Leemis, 2008) with shape 

parameter α and scale parameter λ is 
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1
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1
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1 1
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e e
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e
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 
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 

 

4.3. Generalized Exponential (GE) distribution 

The probability density function of generalized exponential distribution (Gupta & Kundu, 1999) 

     
1

1 ; 0 0x x
GEf x; , e e , , x


      


     . 

4.4. Exponential Power (EP) Distribution 

The probability density function Exponential power (EP) distribution (Smith & Bain, 1975) is 

    1( ) exp 1 ; ( , ) 0, 0
x x

EPf x x e e x
 

       
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 

. 

where α and λ are the shape and scale parameters, respectively. 

4.5. Gompertz distribution (GZ) 

The probability density function of Gompertz distribution (Murthy et al., 2003) with 

parameters α and θ is 

   1 0 0x x
GZf x e exp e ;x , , . 

  


 
        

 
 

For the judgment of the potentiality of the proposed model, we have presented the value of the 

Akaike information criterion (AIC), Bayesian information criterion (BIC), Corrected Akaike 

information criterion (AICC) and Hannan-Quinn information criterion (HQIC) which are presented in 

Table 4.  
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Table 4: Log-likelihood (LL), AIC, BIC, AICC and HQIC 

Model -LL AIC BIC AICC HQIC 

LGZ 141.2612 288.5225 296.3380 288.7725 291.6855 

GEE 141.3708 288.7416 296.5571 288.9916 291.9047 

LE 143.2473 290.4946 295.7049 290.6183 292.6033 

EP 145.9589 295.9179 301.1282 296.0391 298.0266 

GE 146.1823 296.3646 301.5749 296.4883 298.4733 

GZ 149.1250 302.2500 307.4604 302.3737 304.3588 

 

The Histogram and the density function of fitted distributions and Empirical distribution function 

with the estimated distribution function of LGZ and some selected distributions are presented in 

Figure 5. 

 

Figure 5. The Histogram and the density function of fitted distributions (left panel) and Empirical 

distribution function with estimated distribution function (right panel). 

To compare the goodness-of-fit of the LGZ distribution with other competing distributions we have 

presented the value of Kolmogorov-Simnorov (KS), the Anderson-Darling (AD) and the Cramer-Von 

Mises (CVM) statistics in Table 5. It is observed that the LGZ distribution has the minimum value of 

the test statistic and higher p-value thus we conclude that the LGZ distribution gets quite better fit 

and more consistent and reliable results from others taken for comparison. 

Table 5. The goodness-of-fit statistics and their corresponding p-value 

Model KS(p-value) AD(p-value) CVM(p-value) 

LGZ 0.0630(0.8220) 0.0648(0.7848) 0.3828(0.8653) 

GEE 0.0654(0.7862) 0.0723(0.7385) 0.4202(0.8281) 

LE 0.0838(0.4836) 0.1225(0.4860) 0.7042(0.5549) 

EP 0.0993(0.2771) 0.1861(0.2963) 1.3081(0.2297) 
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GE 0.1078(0.1959) 0.2293(0.2174) 1.2250(0.2581) 

GZ 0.0962(0.3129) 0.2280(0.2193) 1.7537(0.1261) 

5. CONCLUSIONS 

In this study, we have introduced a three-parameter univariate continuous distribution 

named Logistic Gompertz distribution. Some distributional properties of the proposed distribution 

are presented such as the shapes of the probability density, cumulative density and hazard rate 

functions, survival function, quantile function, skewness, and kurtosis measures are derived and 

established and found that the proposed model is flexible and inverted bathtub shaped hazard 

function. The model parameters are estimated by using three well-known estimation methods 

namely maximum likelihood estimation (MLE), least-square estimation (LSE), and Cramer-Von-Mises 

estimation (CVME) methods and we concluded that the MLEs are quite better than LSE, and CVM. A 

real data set is considered to explore the applicability and suitability of the proposed distribution 

and found that the proposed model is quite better than other lifetime model taken into 

consideration. We hope this model may be an alternative in the field of survival analysis, probability 

theory and applied statistics.  
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