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p——— ABSTRACT

3 Mixed distributions have proved to be very important in modeling data
whose distributions are heterogeneous. However determining their
moments can be cumbersome due to the fact that their constituent
distributions are different. This challenge can be addressed using the
recursive relations which can be constructed through integration by parts
technique. These recursive equations are useful in insurance industry where
they are applied in calculation of total aggregated claims.

Keywords: Mixtures; integrations by parts; recursive relations; moments

1.0 INTRODUCTION

The process of obtaining probability distribution functions of binomial mixtures can be
cumbersome given that the mixture is a combination of binomial and beta distributions which are
discrete and continuous respectively. However their moments can be obtained using their recursive
relations. A recursive relation is a mathematical equation which is based on a sequence such that the
terms of the sequences generated depend on the immediately previous term. The recursive relations
have been discussed in the literature by various researchers. Katz(1965) derived a recursive equation
of the form

fx+1) a+bx

= h =0,1.2,..
0 172 wherex = 0,1,2,

Which could be used to generate numerous probability distributions such as Poisson
distribution, negative binomial distribution, binomial distribution etc. Panjer (1981) later obtained a
recursive relation of the form
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f(x) = (a+32) f(x — 1)

which he applied to obtain Poisson distribution, binomial distribution, negative distribution and
geometric distribution using probability generating function techniques. Jewel and Sundt (1981) used
Panjers recursive model of

xf(x) = (ax + b)f(x — 1)

to obtain Poisson distribution, geometric distribution using iterative technique. Several other
researchers such as Hesselagers(1984), Wang(1984) etc followed the same pattern of deriving
recursive models and used them to obtain many distributions and mixed distributions. However there
were no beta-binomial distribution mixture obtained. This paper aims to formulate beta-binomial
mixture in expectation form, express beta-binomial mixture in recursive form, use the recursive
relations constructed to obtain their moments which include mean and variance using integration by
parts technique.

2.0 METHOD
2.1 Classical Beta-Binomial distribution
The classical beta-binomial distribution is defined as

_ pa—l(l_p)b—l
gP) =55, — 0<p<1l ab>0 [1]
Classical binomial distribution is given as

m(p) = () p*A-p"* x=012,.. 2]

Beta-binomial distribution is constructed as

1 _ a-1(q_ b-1
00 = [;() p*(—p)"* B dp 3]

_ (;1) B(al,b) fol(g) px+a—1(1 _ p)n—x+b—1dp

Let Iy = _f(X)(E;()a,b) — fol px+a—1(1 _ p)n—x+b—1dp

Let u=(1-p)" > du= —-1(n—x+b-1)(1—p)"**P2dp

x+a

X+a—1 _b
! x+a

dv=rp

x+a

1 X+a
=2 A=t 4 P - xtb - 1)(1 - p) T 2dp

xX+a 0 x

n—-x+b-1)B(ab) (1 pXt3(1—p)n—x+b-2
_ ¢ )B(ab) [rE (1-p) dp
X+a 0 B(a,b)
__ n—x+b-1
- X+a Ix+1

_ (n—x+b-1)f(x+1) B(a,b)
) O
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fx)(-x)!x! _ (n—x+b-1)(n—x-1)!(x+1)!
n! - (x+a)

f(x + 1)

=[(nh—-x)E+a)lfx) =[E+1Dnh-x+b—-1D]f(x+ 1)
[(x+a)(n—x)fx) =[(n+b)x+1)— (x+ 1)?]f(x+ 1)

Summing the equation [4] over n we get

n-1

nZ[(n Fb)(x+1) = (x+ DAf(x+ 1) = Z [na + (n — a)x — x2]£(x)

x=0
x=0

(4]

n n n—1 n-1 n-1
(n+b) XZO(X + Df(x+1) — XZ(:)(X + 1% (x+1) = naxz:0 f(x) + (n —a) XZ:Oxf(x) — XZO x2f(x)

But
n n
fo(x) - Z(x D+ 1) = M,
x=0 xX=0
n n
szf(x) - Z(x F1)2fx+1) = M,
X=0 X=0
Therefore
(n+b)M; —M, =na+ (n—a)M; — M,
[(n+Db)—(n—a)]M; =na
(b+a)M; =na
na
My = a+b
Thus
na
EX) = ppn

To obtain the second moment we multiply equation [4] by (x + 1) and sum the result over n.

Z(X + 1) [(x + a)(n — 9)]F(x) = Z(x F D[+ b)(x+1) — (x+ D2]f(x + 1)
x=0 x=0
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(n + b)Z(x+ 12 f(x + 1) — Z(x +1)% x4+ 1)
x=0 x=0

=na XZ:O(x + Df(x) + (n —a) XZOX(X + Df(x) — XZOXZ(X + 1Df(x)

(n+b)M, —M; =naM; +na+ (n—a)M, + (n—a)M; — M3 — M,
[(m+Db)+1—(n—a)]M; =[na+n—a]M; +na

na+n-—ajr na
2=[a+b+1“a+b

_ mna(ma+n+b)
Mz_(a+b)(a+b+1)

]+na

To get the variance we have

Var(X) = M, — (M1)2

_ na(na+n+b) na 2
“(a+b)a+b+1) (a+b)

Therefore

nab(n +a+b)

Var(X) = (@a+b)2@@+b+1)

2.2 Special cases of beta-binomial mixture

2.2.1 Uniform Binomial distribution

Uniform distribution also called rectangular distribution (Johnson, Katz and Kemp (1992) pg 272-274)
Is a special case of beta distribution obtained when the parametersa =b =1

Thus

0<p<l1

(1
g(p) = {0 otherwise

The Uniform-Binomial distribution is

f(x) = fol(g) p*(1 — p)"*g(p)dp where g(p) is the Uniform distribution.

Therefore
fG) = [, (%) p*(1 = p)"*dp [5]
let
f 1
k= % = j p*(1—p)"*dp
() %o

Using integration by parts
letu=(1-p)"% du= —1(n—x)(1—p)**1dp

and
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x+1

p
x+1

dv=p* v=

x+1 |1
p

= 1— n-x_-_
( P) x+1

1 px+1 o
] e
1
f((r)l()) — n_Xpr+1(1 _p)n—x—ldp

x+1
0

~n —XI
- X+—1 x+1
Therefore
f(x) _ Bf(xl-ll-l)

+1 (x+1)
n—x nlnh—-x—1D!'x+1)!
x+1 x!n! (n —x)!

[x+ D —x]f(x) = [(n —x)(x+ D]f(x+ 1)
[n+nx —x—x%]f(x) = [(n+ 1 —x— D(x+ D]f(x+ 1)

N+ —-Dx—x?)fx)=[(n+D+1)— (x+1?]f(x+1) [6]

f(x) =

f(x + 1)

The first moment is obtained by summing the equation [6] over n. Thus

n n

Z[(n F D&+ D = (x+ Df(x+ 1) = Z[n + (0 — Dx — x2]f(x)

x=0 x=0

(n+1) Z(x O+ 1) — Z(X +12f(x+ 1) =n+@n—1) Z xf(x) — Z X2f(x)
X=0 X=0 X=0 X=0

(n+1)M1_M2=n+(n_1)M1_M2
m+1-n+1)M; =n

M _n
172

n

E[X] =—
[X] 5

To determine the second moment we multiply equation [6] by (x + 1) and sum the result over n.

n n

Z[(n +DE+1) -+ 1D+ DIx+1) = Z[n + (n — Dx — x?](x + Df(x)

Xx=0 X=0

(n+1) Z(X +1)2f(x+ 1) — Z(x +1)3(x+ 1)
x=0 x=0

— nXZO(x + D) + (n—1) XZO(X + 1)) — XZOXZ(X + 1))

(n+1)M2_M3=an+n+(n_1)M2+(n_1)M1_M3_M2
{m+1)+1-n+1M, =(n+n—1)M; +n
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n
3M, =(2n—1)§+n

n
Mz =2 (2n+1)

Var(X) = M, — M?
n n?
=2 2n+1) - 7
n
=1 (n+2)
2.2.2 Power function-Binomial Distribution.

Power function is a special case of beta distribution when the parameter b = 1.

Thus we obtain

__ Pa1(a)!
g(p) - (3—1)!
_ (apat 0<P<1 a>0
8(p) = { 0 otherwise

The mixed distribution becomes

1

f(x) = f (Z) PX(1 — P)"*aPa-1dp

0

fx) = (})a fol pxta-1l(1 — p)h~Xdp

Letu= (1-P)"* du = —(n—x)(1 — P)n—x"1

dv = pxta-1 V= pre
X+ a
|X — (1 _ P)n—x xagl n-— Xflpx+a (1 _ P)nx—ldp
xt+al, x+al,
n—x
= mlx+1

fx) n—xfx+1)

(Ma x+a(J)a
n—xnl(n—x—1!(x+1)a
x+a xInl(n—x)!a

[(x+a)(n—x)]fx) =[(n—x)x+ D]f(x+ 1)
[na+x(n—a) —x?)fx) = [(n+ D+ 1) — x+ 1D?)f(x+ 1)

To get the first moment we have

f(x) = fx+1)

Andrea Otwande

[7]

(8]



Vol.9.Issue.1.2021 (Jan-Mar) Bull.Math.&Stat.Res (ISSN:2348-0580)

n n

Z[(n +1DE+1) - x+1D?f(x+1) = Z[na + (n — a)x — x?]f(x)

x=0 x=0

(n+1) Z(x + Df(x+1) — Z(x + 1)%f(x+ 1) =na+ (n—a) Z xf(x) — Z x2f(x)
xX=0 x=0 x=0 x=0

(n+1)M; —M; =na+ (n—a)M; — M,

(n+1—n+aM; =na

M. — na
17 a+1
Therefore
na
EX) = el

The second moment is obtained by multiplying equation [8] by (x + 1) and sum over n.

n n

Z[(n +DE+1) -+ DA+ Dx+1) = Z[na + (n—a)x — x?](x + D(x)

x=0 x=0

(n + 1)Z(x )2 x4+ 1) — Z(x +1)3f(x + 1)
x=0 x=0

— na XZO(X + DI + (n— a) XZOX(X + 1) — XZOXZ (x + D)

(n+1)M2—M3 =naM1+na+(n—a)[M1+M2]—[M3—M2]
(n+ 1M, — M3 =naM; +na+ (n—a)M; + (n—a)M, — M3 — M,
[hn+1—-n+a+1]M, =(na+n—a)M; +na
na
a+1

_mna(na+n+1)
27 2+a)@+1)

(24+a)M, =(na+n—a) + na

na(na+n+1) na 2
2+a)@+1) _(a+1)

_ (@a+1(n*a® +an® + na) — (na)?>(2 +a)
- (2 +a)(a+ 1)2

Var(X) =

na(n+a+1)
2+a)a+1)?

Var(X) =

2.2.3. Arc-sine-Binomial distribution
Given a beta distribution whose probability density function is given as

_pra-pr 0<P<1 b >0

Leta=b=l
2
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Substituting in the above function we have

1 1
P2(1—P)2

gp) =—7r—

B(33)

1
T 0<P<1 4ab>0
g(p) ={n/P(1 -P)
0 otherwise
Lyp(l
Since B(%, %) = % =1 whichis
an Arc-sine distributionwith 0 <P <1 ab>0

The Arc-sine —Binomial distribution is

f(x) = (2)% fo "pr(1 - Py xp3(1 — P)2dp

f(x) = (2)% fo i - P)"*Ldp

(10]
To get the recursive form, let

fG)m b1 el
=l = [ pxE(1 - P) xHdp,
=" fo (1 - P)"*3dp

letu=(1-P)"%,  du=-1(n—x-3)(1-P)":

1 PX+%
dv = P*7z, V=
X+ -
1
X+f 1/fn—x— 5 3
=1 -P)"*z2 + f — |P*2(1 —P)"*z2dp
X+ = 0 X+ =
0 2
n—x-—-
= <t 1 |l x+1

1
feom (D= X—2\f(x+ Dmn

T

-0 (n=x=3) @ -x—DIX+1D)!
T (e Gt D
[(n—x) (x+%)] f(x) = [(n —x—%) (x + 1)] f(x + 1)

B+ (n —%)x _ XZ] f(x) = [(n +%) x+1) — (X + 1)2] f(x + 1) [11]

The first moment of Arc-sine-Binomial distribution is obtained when we sum the equation [11] over
n.
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S+ Docr - cer o]t = 3 o (=200

x=0 x=0
(n + %) XZlo(x + Df(x+1) — XZHO(X +1)?%f(x+1) = ; + (n — %)inoxf(x) — X:Oxzf(x)
My~ M, =24 (n—2)M, - M,
2 2
ortoneu 2
=2
E(X) ==

The second moment becomes

xZno[(n+%)(x+1)—(x+1)2](x+1)f(x+1)=zn:[g+<n_%)x_xz G+ DIG)

x=0
(n + )Z(x +1)2E(x+ 1) — Z(x +F1)3(x +1) =

22xf(x)+ Zf(x)+<n——>z 2f(x)+( —%)fo(x) Z x3f(x) — Z x2f(x)

X_

1 1 1
(n43)M2 = (n=3) Mo+ My =430, + (0= 5]y

( 1 1 l)M _n (n 2n 1>M
H+E—n+z+ 2—E+ §+7—§ 1

M _n(3n+1)
274\ 2

Therefore
v (X)_n<3n+1) n?
A =2\ 4
= Z(n+1)

3.0 CONCLUSION

Application of Beta-binomial mixed distribution in modelling statistical data whose distribution
cannot be fitted to Binomial distribution alone is a milestone in statistical modelling. Equally important
is the method that can be used to determine moments of the mixed distribution so constructed. Using
integration by parts technique to derive recursive relations seem to be more motivating and straight
forward to apply as demonstrated in this paper. It is also important to note that recursive relations
are widely applied in insurance industry to determine total aggregate claims. Thus the focus on
techniques of the construction of recursive equations and their properties is an achievement in making
Beta-binomial mixed distribution more applicable.
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