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ABSTRACT 

The process of summing powers of natural numbers has been carried out for 

many centuries by several eminent mathematicians. There are plenty of 

possible ways to sum powers of natural numbers. The most famous and well 

known Pascal’s triangle contain exciting mathematical properties within it. 

In this paper, I use the entries of Pascal’s triangle through square matrices 

and prove three theorems to determine the sum of powers of natural 

numbers. This concept will create a new dimension to the existing grand 

available literature regarding summing powers of natural numbers.  

Keywords: Sum of powers of natural numbers, Hockey Stick Identity, Pascal 

Matrices, Power Matrices, Invertible Matrices.  

 

1. Introduction  

Ever since the Ancient mathematicians provided ways of summing natural numbers and sum 

of squares of natural numbers, several other mathematicians like Faulhaber, Euler, Bernoulli made 

great strides in determining wonderful ways of summing mth powers of first n natural numbers. In 

this paper, I just try to add one more feather to it by first proving a well known theorem and using it 

to determine sum of powers of first n natural numbers.  

2. Definitions  

2.1 The sum of mth powers of first n natural numbers is denoted by the expression  

1 2 (2.1)m m mn   
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2.2 Using the binomial coefficients of the form 
n

r

 
 
 

where 0 r n  , we construct a triangular array 

of numbers for each value of n = 0, 1, 2, 3, 4, . . .  

Such a triangle is called Pascal’s triangle named after French mathematician Blaise Pascal. 

Though Pascal’s triangle did not originate from Pascal himself, it was he who provided the significant 

mathematical aspects of the numbers involved in the triangle and applied them to probability. Hence, 

the triangle was named in his honor. See Figure 1 for Pascal’s Triangle.  

 

Figure 1: The first eight rows of Pascal’s Triangle written in Right Triangle form 

In Figure 1, we notice that the entries above the leading 1’s are all zero because 0
n

r

 
 

 
 if r>n. The 

Pascal’s triangle in Figure 1, posses so many mathematical properties, that a whole book can be 

written to brief them. In this paper, I will accomplish the task using the Pascal’s triangle displayed in 

Figure 1. We now establish an interesting theorem called as “Hockey Stick Identity”.  

3. Theorem 1 

If 0 r n  then 

1

1

n

k r

k n

r r

   
   

   
  (3.1)  

Proof: To prove this we note that 
1

1

r r

r r

   
   

   
 and shall make use of Pascal Identity 

1

1

n n n

r r r

     
      

     
 repeatedly.  
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1 2 1

1 1 2 1

1

2 2 1

1

3 1

1

n

k r

k r r r n n

r r r r r r

r r r n n

r r r r r

r r n n

r r r r

r n

r r



             
                  

           

            
                

         

         
             

       

   
      

  



n

r

  
  
  

                        

 

                                     

1 1

1 1

1

1

n n n n n

r r r r r

n

r

          
             

          

 
  

      

 

This proves (3.1) and completes the proof.  

4. Pascal Matrices  

4.1 Definition 

Let 
nP  be a n n square matrix whose ( , )i j th entry is the binomial coefficient 

i

j

 
 
 

where 

1 ,i j n  . We call 
nP  as the Pascal matrix of order n.  

For example, 
5

1 0 0 0 0

2 1 0 0 0

3 3 1 0 0

4 6 4 1 0

5 10 10 5 1

P

 
 
 
 
 
 
 
 

  (4.1) 

We notice from the matrix 
5P in (4.1), that we do not consider the binomial coefficients for n 

= 0. Hence the matrix in (4.1) contain elements of Pascal’s triangle in Figure 1 from n = 1 to 5 without 

the first column comprising of 1’s. Moreover, the entries above the main diagonal are all zero making 

it a lower triangular matrix. But we need to know if 
5P is invertible? If so, what would be its inverse? 

The following theorem answers this question in general.  

4.2 Theorem 2 

The Pascal matrix 
nP  is invertible. In fact, the ( , )i j th entry of 1

nP  is ( 1)i j
i

j

  
  

 
    (4.2)  

Proof: Since 
nP  is a n n lower triangular matrix whose diagonal entries are all 1, it follows that 

1nP  for all n. Hence 
nP  is non-singular and so the Pascal matrix 

nP  is invertible for each n.  To prove 
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the remaining part, let us assume that  ,n i jQ q where , ( 1) ,1 ,i j

i j

i
q i j n

j

  
    

 
. We see that 

nQ is inverse of 
nP if and only if 

n n n n nPQ Q P I   (4.3), where 
nI is a unit matrix of order n. Now if 

we multiply the ( , )i k th  entry of 
nP  with the ( , )k j th entry of 

nQ  then we get the following 

expression 

1

( 1)
n

k j

k

i k

k j





   
   

   
 . Since 0

k

j

 
 

 
for j k  we have  

1

( 1) ( 1)
n n

k j k j

k k j

i k i k

k j k j

 

 

      
        

      
    (4.4) 

If j i  then the right hand side of (4.4) becomes 0. Thus, we should have i k j  . In this case, we 

get 
i k i i j

k j j k j

     
     

     
. Thus (4.4) becomes 

0

( 1) ( 1) ( 1) ( 1)

( 1) (4.5)

n n n n
k j k j k j k j

k j k j k j k j

i j
r

r

i k i i j i i j i i j

k j j k j j k j j k j

i i j

j r

   

   





               
                   

               

   
    
   

   



Now we notice that if i j  then the Right Hand Side of (4.5) becomes  
0 0

1 1
0

i

i

   
      

   
 (4.6) 

Also by binomial expansion 
0

( )
n

n r n r

r

n
a b a b

r





 
   

 
  for n> 0 if we consider 1, 1a b   then we 

get 
0

( 1) ( 1 1) 0
n

r n

r

n

r

 
     

 
 . Thus taking i j m  and noting that if i j then 0m i j   , 

for i j equation (4.5) becomes  

0 0

( 1) ( 1) ( 1) 0 (4.7)
i jn m

k j r r

k j r r

i k i i j i m

k j j r j r




  

          
               

          
    

Hence from (4.6) we see that the leading diagonal entries of the product matrix 
n nP Q  are 1 and from 

(4.7) we see that the non-diagonal entries of 
n nP Q are 0. Hence 

n n nPQ I . By the same reasoning we 

can show that 
n n nQ P I . Therefore, 1

n nQ P   and this completes the proof.  

4.3 Illustration 

Using the idea of theorem 2 we established, it will be fairly straightforward for us to determine 

the inverse of the Pascal matrix 
nP  for any given natural number n. In particular from (4.2) we know 

that the ( , )i j th entry of 1

nP  is ( 1)i j
i

j

  
  

   
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Making use of this vital information, let us determine the inverse of the Pascal matrix of order 5 i.e. 

5P  provided in (4.1).  

In fact, we get 1

5

1 0 0 0 0

2 1 0 0 0

3 3 1 0 0 (4.8)

4 6 4 1 0

5 10 10 5 1

P 

 
 
 
  
 
  
     

5. Power Matrices 

5.1 Let 
nS  be a n n square matrix whose ( , )i j th entry is ji where 1 ,i j n  . We call 

nS to be a 

Power matrix of order n, since its entries are perfect powers.  

Example of 
5S is shown in (5.1).  

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

5

1 2 3 4 5

1 2 3 4 5

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3 (5.1)

4 4 4 4 4

5 5 5 5 5

S

 
 
 
 


 
 
 
 
 

 

We now use the Pascal and Power matrices to determine the sum of powers of first n natural numbers.  

5.2 Theorem 3 

Let n, m and r be positive integers. Then the sum of mth power of first n natural numbers is given by 

,

1

1
1 2 3 (5.2)

1

m
m m m m

r m

r

n
n a

r

 
        

 
 where 

,r ma  is the ( , )r m th entry of 
1

n nP S
 

Proof: Let us assume that ,n m r . Let 
,( )n i jA a be the matrix whose ( , )r m th entry is 

,r ma in (5.2). 

Now we observe the fact that for any two positive integers k and m, mk can be written as linear 

combination of the binomial coefficients 
k

r

 
 
 

.  

For example, 2 32 , 6 6
1 2 1 2 3

k k k k k
k k

         
             
         

. In this viewpoint, and considering 
,r ma  

as coefficients as defined in (5.2), we have ,

1

(5.3)
m

m

r m

r

k
k a

r

 
  

 
 .  

Now, the ( , )k m th entry of 
n nP A will be ,

1

m

r m

r

k
a

r

 
 
 

  which from (5.3) is mk .  
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Thus, the ( , )k m th entry of 
n nP A is mk which by definition of the power matrix is ( , )k m th 

entry of 
nS . From this, we see that (5.4)n n nP A S . Since from theorem 2, we know that 

nP  is 

invertible, from (5.4) we get 1 (5.5)n n nA P S . Thus, the coefficients 
,r ma is the ( , )r m th entry of 

1

n nP S
.  

Now in (5.3), if we sum for each value of k from 1 to n, and using (3.1), we obtain  

, , , ,

1 1 1 1 1 1 1

1

1

n n m m n m n m
m

r m r m r m r m

k k r r k r k r r

k k k n
k a a a a

r r r r       

       
          

       
         

Therefore, ,

1

1
1 2 3

1

m
m m m m

r m

r

n
n a

r

 
        

 
  where the coefficients 

,r ma is the ( , )r m th 

entry of 
1

n nP S
.  

This proves (5.2) and completes the proof.  

5.3 Determining sum of powers of natural numbers  

In this section, using the identity established in (5.2), we can determine the sum of first, 

second, third, fourth and fifth powers of natural numbers all at once.  

For this, from (5.5), first we need to compute 
1

5 5 5A P S . Using (4.8) and (5.1), we get  

1 2 3 4 5

1 2 3 4 5

1 1 2 3 4 5

5 5 5

1 2 3 4 5

1 2 3 4 5

1 1 1 1 11 0 0 0 0 1 1 1 1 1

2 2 2 2 22 1 0 0 0 0 2 6 14 30

3 3 1 0 0 3 3 3 3 3 0 0 6 36 150 (5.6)

4 6 4 1 0 0 0 0 24 2404 4 4 4 4

5 10 10 5 1 0 0 0 0 1205 5 5 5 5

A P S

    
    

     
        
    
     
           

 

We can derive the sum of first five powers of natural numbers by selecting respective column entries 

of 
5A  obtained in (5.6).  

From (5.2), with m = 1, we get  

1,1

1 1 1 ( 1)
1 2 3 1 (5.7)

2 2 2 2

n n n n n
n a

        
               

     
 

where
1,1a = 1 is the entry in the first column of 

5A in (5.6) 

Similarly, from (5.2), with m = 2, and from second column of 
5A we get  

2
2 2 2 2

,2

1

1 1 1 ( 1)(2 1)
1 2 3 1 2 (5.8)

1 2 3 6
r

r

n n n n n n
n a

r

         
                

     
  

For m = 3, using the third column of 
5A we get 
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23
3 3 3 3

,3

1

1 1 1 1 ( 1)
1 2 3 1 6 6 (5.9)

1 2 3 4 2
r

r

n n n n n n
n a

r

            
                               

  

For m = 4, using the fourth column of 
5A we get 

4
4 4 4 4

,4

1

2

1 1 1 1 1
1 2 3 1 14 36 24

1 2 3 4 5

( 1)(2 1)(3 3 1)
(5.10)

30

r

r

n n n n n
n a

r

n n n n n



             
                       

         

   



 

For m = 5, using the fifth column of 
5A we get 

5
5 5 5 5

,5

1

2 2 2

1 1 1 1
1 2 3 1 30 150

1 2 3 4

1 1 ( 1) (2 2 1)
240 120 (5.11)

5 6 12

r

r

n n n n
n a

r

n n n n n n



          
                   

       

       
       
   


 

Equations (5.7) to (5.11) provide the sum of first five powers of natural numbers.  

6. Conclusion  

Though there are several possible ways to sum the powers of natural numbers, this paper 

introduce a new formula for doing so through (5.2) of theorem 3. This task is accomplished by using 

the Pascal’s matrix and Power matrix respectively. Suitable illustrations are provided wherever 

necessary for better understanding of the concepts involved in this paper.  

We notice that the entries of 1

5P  are obtained from 
5P  just by sprinkling some minus signs according 

to the positions of the entries. In particular if the sum of the indices of row and column add up to odd 

number, then we get the negative entry whereas, if the sum of indices is even, then we get the same 

entry as it is. This property is applicable for computing 1

nP  from given 
nP  almost effortlessly.  

Similarly in section 5.3, upon computing 1

5 5 5A P S we have not only determined the sum of fifth 

powers of natural numbers, but the matrix 
5A enabled us to compute the sum of first, second, third 

and fourth powers of first n natural numbers simultaneously through its columns respectively, which 

is an added advantage for us. Thus by determining 1

k k kA P S and using its first k columns, we can 

determine sum of first, second, third, and so on up to kth powers of first n natural numbers 

simultaneously. This is the main advantage behind the formula derived in (5.2) of theorem 3. In fact, 

in (5.2), we can also show that 
, ! ( , )r ma r S m r  where ( , )S m r are Stirling’s numbers of second kind. 

Surprisingly enough, 
, ! ( , )r ma r S m r  is the number of onto functions (surjectives) from a set with 

m elements to a set with r elements. These kind of inter-relationships between completely different 

concepts is one of the key aspects of mathematical research. This paper has thus produced a new way 

of arriving results for well known and age old problem.   
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