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ABSTRACT 

Volcanoes possess enormous destructive power and volcanic eruptions 

constitute a major natural hazard with potential for great social costs for 

eruptions of considerable magnitude. Understanding the temporal 

behaviour of volcanic eruptions is thus key to hazard assessments and 

prevention of future loss of life and damage to property.  This paper aims to 

describe the temporal behaviour of volcanic eruptions in the East African Rift 

System in terms of a suitable Poisson model and consequently offer its 

predictive possibilities. The data used for the analysis was from the 

Smithsonian Institution’s Global Volcanism Program, which is freely 

available on line. Three Poisson models with correspondingly unique 

intensity functions were chosen for analysis: the homogeneous model, the 

log- linear non-homogeneous model and the Weibull non-homogeneous 

model. The theory underpinning Poisson processes is briefly presented, the 

method of maximum likelihood is used to estimate the parameters of each 

model and the Akaike Information Criterion used to select the optimal 

model. The log-linear non-homogeneous Poisson model is found to best fit 

the empirical data with 95% confidence and based on it forecasts are issued 

which show an increase in eruptive activity. 

Keywords: Homogeneous Poisson Process; Log-Linear Non-Homogeneous 

Poisson Process; Weibull Non-Homogeneous Poisson Process; Maximum 

Likelihood Estimation 
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1 Introduction 

East Africa sits astride an area of seismic and geological importance with a significant number 

of active and dormant volcanoes. Of the 148 volcanoes found in Africa, 120 are found in the East 

African Rift System. Ethiopia contains 59 volcanoes followed in second place by Kenya with 22 

volcanoes (Global distribution of volcanism: Regional and country profiles, 2015). Eruptions of 

considerable size are rare events yet the when they do occur they have the potential for devastating 

consequences. This was demonstrated in spectacular fashion in June 2011 when Nabro in Eritrea 

animated and erupted violently despite having had no historic eruptions and being thought to be 

extinct by the scientific community. The resulting ash cloud was dispersed northwesterly, disrupting 

air travel throughout the Horn of Africa and the Middle East. The eruption caused thousands to be 

evacuated and led to some fatalities (Global distribution of volcanism: Regional and country profiles, 

2015). A volcanic eruption in a more densely populated area would have wreaked more havoc. Yet 

this is not a unique situation. Indeed, most volcanoes pose the greatest hazard over considerably long 

time scales in the order of decades and centuries; at longer time scales they have the potential for 

global impact and catastrophe. Even volcanoes thought to be dormant or extinct can suddenly erupt 

with little warning (as was the case with Nabro). The problem, then, becomes building probabilistic 

forecasts that account for this long-scale uncertainty using potential eruption scenarios and relevant 

data. An important consideration is that the historical record is short, biased and incomplete. The 

instrumented record is even more problematic, being shorter and, for most volcanoes, spanning only 

the last few decades of uninterrupted surveillance — a infinitesimal fraction of their long lifetime. 

Many authors have contributed to the field of statistical volcanology with respect to modelling 

repose times. Poisson models seem to the most popular among many authors despite the merits of 

other models because of the ease of their use and their ability to capture effectively the count and 

temporal aspect of volcanic activity. Wickman (1966) in his pioneering works introduced the idea of 

simple Poissonian behaviour of volcanoes. The Poisson process was defined as a model for describing 

random temporal-spatial events. He noted that certain volcanoes showed eruptive rates that were 

independent of time and were thus memoryless: past events had no bearing on future events. Such 

volcanoes were described as Simple Poissonian Volcanoes. This lack of memory naturally implied the 

use of an exponential distribution to model inter-event times. The exponential distribution is 

completely defined by its single parameter λ, which represents the rate of occurrence, which is 

constant in the case of stationarity. Other studies that used the homogeneous Poisson process include 

those of Klein (1982), Mulargia et al (1985), De la Cruz-Reyna (1991) and Dzierma and Wehrmann 

(2010). Reyment (1969) is unique in that he proposed a log-linear intensity function to model non-

stationary eruptive series. Other studies came to the conclusion that non-homogeneous models were 

more appropriate in describing anomalous eruptive behaviour. These include the studies by Salvi et al 

(2006) and Smethurst et al (2009). Authors like  Ho (1991), Bebbington and Lai (1996a, 1996b), Watts 

et al (2007) and Dzierma and Wehrmann (2010) considered Weibull Poisson models in their statistical 

analyses. This paper builds on all these efforts, providing an African perspective, of which the authors 

found no modelling enterprise. Three specific models used were selected for analysis based on their 

prevalent use and parsimony: the homogeneous model based on the need to incorporate a stationary 

model that could capture any underlying constant trend in the data especially in light of the potential 

that the data considered was incomplete and the log-linear and Weibull non-homogeneous models 

based on the the assumption the data set was complete and inherently non-stationary coupled with 

the need to capture any trend observed in the data. The Weibull model is particularly useful in 
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determining if volcanic eruptions can be termed Poissonian in behaviour because it incorporates a 

parameter that indicates waxing and waning of activity. 

2 Data 

The sampling frame for the sample used for the paper is a global database of documented 

eruptions known to have occurred over the last 12,500 years compiled by the Smithsonian Institution’s 

Global Volcanism Program (http://www.ieor.columbia.edu/). This catalogue contains all documented 

geological and historical-observation eruptions known to have occurred and consists of a set of just 

under 10,000 eruptions from approximately 10,500 B.C.E. till present day. This paper limits itself in 

scope to eruptions from 1 January 1919 to 1 January 2019, encompassing 13 volcanoes that have 

erupted in this period out of a total of the 120 volcanoes found in the East African Rift (see Appendix). 

The volcanoes are spread out across eight countries located in the East African Rift System: Ethiopia, 

Eritrea, Djibouti, Kenya, Uganda, Tanzania, Rwanda, and the Democratic Republic of Congo. The 

database contains a variety of information related to eruptions; however, the variable of interest was 

date of onset1, which was either given in exact or approximated form. The completeness of the data 

is beyond the scope of this paper but it is assumed that for purposes of analysis a fairly accurate 

snapshot is proffered. 

3 Methodology 

3.1 Homogeneous Poisson Process 

A simple Poisson process is a mathematical model that describes a temporal-spatial series of 

events that occur randomly and independent of each other. The broad characteristics of a 

homogeneous Poisson process are: events occur singly with probability of near zero that two events 

occurring simultaneously; the rate of occurrence of events is constant; the probability of future events 

is independent of the past; and lack of time trend, i.e., stationarity. One useful characteristic to 

investigate is the distribution of inter-event times, which for a homogeneous Poisson process have an 

exponential distribution which is completely defined by a single parameter commonly denoted by , 

which represents the rate of occurrence of events or arrivals (Cox & Lewis, 1966). 

Definition 1. A collection of random variables  {𝑁(𝑡): 𝑡 ∈  [0; ∞)} indexed by time 𝑡 is called a 

continuous- time stochastic process. Further, such a stochastic process is a (homogeneous) Poisson 

process if: 

(a) starting from 𝑁 (0)  =  0 the process 𝑁 (t) takes non-negative integers 0,1,2. . .. for all 𝑡 ≥  0; 

(b) the increment 𝑁 (𝑡 +  𝑠)  −  𝑁 (𝑡) is surely non-negative for any 𝑠 > 0; 

(c) the increments 𝑁 (𝑡1), 𝑁 (𝑡2)  −  𝑁 (𝑡1)𝑁 (𝑡𝑛)  −  𝑁 (𝑡𝑛−1) are independent for any 

0 < 𝑡1  < 𝑡2 … … … … … … … … … … 𝑡𝑛−1  < 𝑡𝑛 ; 

(d) the increment 𝑁 (𝑡 +  𝑠)𝑁 (𝑡) has a distribution which is dependent on the values 𝑠 > 0 but 

independent of 𝑡 > 0; and 

(e) the increment 𝑁 (𝑡 +  𝑠)  −  𝑁 (𝑡) has a Poisson distribution with mean 𝜆𝑡, i.e., for any 𝑠, 𝑡 ≥

 0. 

                                                           
1 The onset dates for the 69 events considered were transformed into a series of inter-event times and 
cumulative event times for purposes of modelling 
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Pr(𝑁(𝑡 + 𝑠) − 𝑁(𝑠) = 𝑛) =
(𝜆𝑡)𝑛 exp(−𝜆𝑡)

𝑛!
                                                           (1) 

The definition given by Ross (2010) lays the foundation for looking at the Poisson process as an 

inte- grated collection of three random variables: a counting process, a sequence of arrival or onset 

times and a sequence of inter-arrival or inter-event times. 

A stochastic process satisfying (𝑎) and (𝑏) is called a counting process in which 𝑁(𝑡) represents 

the total number of ’events’ (from here onwards ’events’ will refer to volcanic eruptions). Properties 

(c) and (d) are respectively called the independent and stationary increments. 

Events counted by a Poisson process {𝑁 (𝑡), 𝑡 ≥  0} are called Poisson events. Now, let Tn 

denote the time when the n-th Poisson event occurs. 𝑇𝑛 is called the arrival, event , onset or 

occurrence time (in this case the onset of an eruption) and we can then define the inter − arrival , inter 

− event or (in a volcanological context) repose times Wn as 

Wn = Tn − Tn−1;  n = 1, 2, .......                                                          (2) 

where T0 = 0 by convention and for convenience. 

3.2 Non-Homogeneous Poisson Process 

The restrictions in the properties of the homogeneous Poisson process make it inadequate for 

many other real world systems and natural phenomena which are prone to wild unpredictability but 

nonetheless possess Poisson-like characteristics with parameters dependent on time. Such systems 

can be described by non-homogeneous (or non-stationary) Poisson processes. While Poisson models 

have been found to be adequate in certain volcanic systems, universal application for all volcanic 

systems is found to be untenable as certain data sets show considerable deviation. The introduction 

of the non-homogeneous Poisson process as a generalization of the homogeneous Poisson model 

allows for some of this randomness to be captured. A non-homogeneous Poison process satisfies the 

same assumptions as a homogeneous Poisson process but with 𝜆 dependent on time, i.e., 𝜆(𝑡). 

Utilizing a non-homogeneous time-dependent Poisson process in the context of volcanic activity 

implies that a number of underlying processes conflate together and the balance of these processes 

is a function of time (Sanchez, 2014). For a NHPP the time-dependent intensity function 𝜆(𝑡) takes 

different forms. 

Definition 2. The counting process {𝑁 (𝑡 ), 𝑡 ≥  0 } is said to be a NHPP with intensity function 

𝜆(𝑡), 𝑡 ≥  0 if it satisfies the following conditions: 

(a) 𝑁 (0)  =  0 almost certainly; 

(b) 𝑁 (𝑡) has independent increments; 

(c)  𝑃𝑟(𝑁 (𝑡 +  ℎ)  −  𝑁 (𝑡)  =  0)  =  1 −  𝜆(𝑡)ℎ +  𝑜(ℎ); 

(d)  𝑃𝑟(𝑁 (𝑡 +  ℎ)  −  𝑁 (𝑡)  =  1)  =  𝜆(𝑡)ℎ +  𝑜(ℎ); 

(e)  𝑃𝑟(𝑁 (𝑡 +  ℎ)  −  𝑁 (𝑡)  ≥  2))  =  𝑜(ℎ). 

This definition from Ross (2010) introduces another way of defining a Poisson process. Parts 

(c) and (d) of the definition may look awkward at first sight but are, in fact, insightful and intuitive. 

They state that having two or more events in a small time interval is extremely unlikely while the 

probability of a single event is approximately proportional to the length of that small interval. The 
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notation 𝑜(ℎ) refers to some function g for which 𝑙𝑖𝑚h→0
𝑔(ℎ)

ℎ
=  0. The intensity function 𝜆(𝑡 ) is a 

function of time and is often called the instantaneous arrival rate. 

The distribution of the number of events in an interval is as follows: 

𝑃𝑟(𝑁 (𝑡 +  𝑠) −  𝑁 (𝑡) = 𝑛) =
[Λ (𝑡+𝑠)− Λ(𝑡)]𝑛𝑒−[Λ (𝑡+𝑠)− Λ(𝑡)]

𝑛!
                                          (3) 

This logically follows from the HPP since both processes have independent increments. This 

means that that the distribution of 𝑁 (𝑡 +  𝑠)  −  𝑁 (𝑡 ) is, in fact, Poisson with parameter 𝛬(𝑡 +

 𝑠)  −  𝛬(𝑡). 

The relationship between the average number of events which occur in the interval (0,t ] and 

the intensity function can be expressed as 

𝑚(𝑡) = 𝐸[𝑁] = ∫ 𝜆(𝑢)
𝑡

0
𝑑𝑢 = Λ(t) − Λ(0)                                         (4) 

This expectation function m(t) completely defines the NHPP and is a monotonic non-decreasing 

right- continuous function such that 

0 ≤  ∫ 𝜆(𝑢)
𝑡

0

𝑑𝑢 <  ∞  

for all bounded subsets ℝ of the state space S of the process. 

This concept can be extended to the number of events between times 𝑡 and 𝑡 +  𝑠 to yield 

𝐸[𝑁 (𝑡 +  𝑠)  −  𝑁 (𝑡)]  = ∫ 𝜆(𝑢)
𝑡+𝑠

0
𝑑𝑢 =  𝛬(𝑡 +  𝑠)  −  𝛬(𝑡)                               (5) 

The above results were adopted from 𝐶¸ inlar (2013). 

For a NHPP {𝑁 (𝑡 ), 𝑡 ≥  0 } with intensity function 𝜆(𝑡), the integrated function between two 

successive event times (which is, in fact, the mean function) 𝑇n and 𝑇𝑛+1 follows an exponential 

distribution with unit mean, i.e., 

𝑚(𝑇n, 𝑇𝑛+1 ) = ∫ 𝜆(𝑡)𝑑𝑡
𝑇n+1 

𝑇n

                                               (6) 

In addition, as a result of the independent increments property in non-overlapping intervals, 

𝑚(𝑇0, 𝑇1 ), 𝑚(𝑇1, 𝑇2 )........................𝑚(𝑇𝑛−1  , 𝑇n ) are iid exponential random variables (Smethurst, 

2009). This serves as a useful link between the HPP and NHPP, which can be exploited, for example, if 

NHPP event times are to be converted to HPP event times. 

The final set of results are adopted from Cox & Lewis (1966). 

For a 𝑁𝐻𝑃𝑃 {𝑁 (𝑡 ), 𝑡 ≥  0 } with mean function m(t) with an intensity function λ(t) which is 

absolutely continuous, the arrival times t1 , t2 ...............tn for n observed events in the interval (0,T ] 

are distributed as order statistics from a sample with probability density function 

𝑓 (𝑡) =
𝜆(𝑡)

𝛬(𝑇 )− 𝛬(0)
                                                                          (7) 

We use the equality 𝑊𝑛 > 𝑡 ⇔   𝑁 (𝑡 ) < 𝑛 and observe that 𝑃𝑟 (𝑇 > 𝑡 )  =  𝑃𝑟 (𝑁 (𝑡 +

 𝑠)   𝑁 (𝑡 )  =  0 ), i.e., time of the next arrival from start of observation is greater than t only if there 

is no event in the interval (𝑡, 𝑡 +  𝑠]. Using Eq. 3 it can be seen that for any 𝑡 , 𝑠 ≥  0 

𝑃𝑟(𝑁(𝑡 +  𝑠)  −  𝑁(𝑡)  =  0)  =  𝑒−[𝛬(𝑡+𝑠)−𝛬(𝑡)]                                   (8) 
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and the cdf of arrival time becomes 

𝐹𝑇 (𝑡)  =  1 − 𝑒−[𝛬(𝑡+𝑠)−𝛬(𝑡)]                                     (9) 

To obtain the density function of conditional arrival time we get the derivative of the cdf wrt to s.   
𝑑

𝑑𝑠
 𝐹𝑇 (𝑡)  =  𝜆(𝑡 +  𝑠)𝑒−[𝛬(𝑡+𝑠)−𝛬(𝑡)]                                             (10) 

For n observed events in the interval (0,T ] at times t1 , t2 ...............tn the joint density becomes 

𝜆(𝑡1)𝑒−[𝛬(𝑡1 )−𝛬(𝑡0 )]𝜆(𝑡2)𝑒−[𝛬(𝑡2 )−𝛬(𝑡1 )] … … … … . 𝜆(𝑡𝑛)𝑒−[𝛬(𝑡𝑛)−𝛬(𝑡𝑛−1 )]𝑒−[𝛬(𝑇 )−𝛬(𝑡𝑛)] 

=  𝑒−[𝛬(𝑇 )−𝛬(0)] ∏ 𝜆(𝑡𝑖)

𝑛

𝑖=1

 

= 𝑒− ∫ 𝜆(𝑢)𝑑𝑢
𝑇

0 ∏ 𝜆(𝑡𝑖)𝑛
𝑖=1                                                                       (11) 

where the term 𝑒−[Λ(T )−Λ(tn)] denotes the probability that no event occurs in the interval (tn , T ]. 

Eq. 11 can also be expressed as 

 [𝛬(𝑇 ) −  𝛬(0)]𝑛𝑒−[𝛬(𝑇 )−𝛬(0)] ∏
𝜆(𝑡𝑖)

[𝛬(𝑇 ) −  𝛬(0)]𝑛

𝑛

𝑖=1

                           (12) 

if we consider unordered event times. 

This, then, yields the conditional density function of Ti as shown below. 

𝑓𝑇 (𝑡𝑖⃓𝑁(𝑡) = 𝑛) =
𝜆(𝑡)

𝛬(𝑇 )− 𝛬(0)
; 𝑖 = 1, 2 … … . , 𝑛                                            (13) 

3.3 Parameter Estimation 

Parameters of each model were obtained using MLE. MLE involves optimizing the likelihood 

function with the goal of estimating parameters which make it more probable to observe the given 

data. The advantage of MLE it takes into account the real distribution of the data and is robust in case 

of deviation from normality, a key assumption of OLS estimation (Myung, 2003). 

Let us consider a random sample from an unknown population. MLE attempts to make 

inference about the population that generated that sample.  Assume we  have  a set of iid random 

variables   (t1, t2..............tn), each indexed by a unique parameter vector 𝜃 =   {θ1, θ2.............θk }  whose 

values can lie anywhere in the parameter space Θ. To obtain the ML estimates of θ we need to get the 

likelihood function, which is the joint distribution of the observed sample. 

ℒ (𝜃 ; 𝑡) = ∏ 𝑓𝑖(𝑡𝑖;𝑁
𝑖=1 𝜃)                                                                           (14)  

 The goal of MLE is to find the specific values that maximize the likelihood function over the parameter 

space, i.e, 

 𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥ℒ (𝜃 ; 𝑡)

𝜃𝜖Θ                  
                                                                               (15) 

This maximum point is called the maximum likelihood estimate. 

This entails the selection of parameter values that make the observed data most probable. It 

is customary and convenient to deal with the log-likelihood, the natural logarithm of the likelihood 

function. 
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ℓ(𝜃 ; 𝑡)   =  ℒ (𝜃 ; 𝑡)                                                               (16) 

 If ℓ(𝜃 ; 𝑡) is a differentiable function then the maxima are the solutions to the likelihood equations 

ob- tained by getting the derivative with respect to θ and setting the results to zero, i.e., 

𝜕ℓ

𝜕𝜃1
= 0,

𝜕ℓ

𝜕𝜃2
= 0 … … … … … … … … .

𝜕ℓ

𝜕𝜃𝑘
= 0                                   (17) 

 The joint distribution of arrival times conditional on number of arrivals was derived (see Eq. 11) and 

was found to be as follows: 

𝑓𝑇 (𝑡𝑖⃓𝑁(𝑡) = 𝑛) = 𝑒− ∫ 𝜆(𝑢)𝑑𝑢
𝑇

0 ∏ 𝜆(𝑡𝑖)𝑛
𝑖=1                                        (18) 

For HPP with intensity function 𝜆(𝑡)  =  𝜆 the ML estimator becomes 

𝜆 ̂ =
𝑛

𝑇
                                                                 (19) 

For a log-linear NHPP with intensity function 𝜆(𝑡)  =  𝑒𝛾0 +𝛾1𝑡 the ML estimators become 

𝛾0 = ln (
𝑛�̂�1

𝑒�̂�1𝑇−1
) ; ∑ 𝑡𝑖 +

𝑛

�̂�1

𝑛
𝑖=1 =

𝑛𝑇𝑒�̂�1𝑇

𝑒�̂�1𝑇−1
                                                      (20) 

which have no closed-form solution. 

For a Weibull NHPP with intensity function 𝜆(𝑡)  =  𝛽/𝜂 )( 𝑡/𝜂 )𝛽−1 the ML estimators become 

�̂� =
𝑇

∑ ln(
𝑇

𝑡1
)𝑛

𝑖=1

; �̂� = 𝑇/𝑛1/�̂�                                                                     (21) 

3.4 Akaike Information Criterion 

The AIC is an estimator of resampling prediction error and therefore a measure of the relative 

quality of a statistical model for a given set of data. A statistical models can never perfectly represent 

the process that generated a sample; inevitably some information gets lost in the process. AIC 

estimates the relative amount of information lost by a given model and gives a score expressing this 

loss: the less information a model loses, the better the quality of that model. In determining the 

amount of information lost AIC performs a balancing act between model fit (as determined by 

maximized likelihood) and parsimony (as determined by k, the dimension of the parameter vector), 

penalizing both overfitting and underfitting. If a number of models are considered, then, in the most 

simplistic sense, the model with the lowest score is the one selected (Aho et al, 2014). 

Let us a consider a model with 𝑘 parameters and let 𝐿 be the value of the maximized likelihood of the 

model. The AIC score of the model is given below. 

𝐴𝐼𝐶 =  −2𝑙𝑛𝐿(𝜃) +  2𝑘                                                           (22) 

 3.5 Goodness of Fit 

The Kolmogorov-Smirnov test (K-S test) is a formal statistical test used to augment the 

customary plots used to check goodness of fit. The K-S test is a non-parametric and agnostic test used 

to detect differences between distributions. It examines a single maximum difference between 

distributions.  If  a statistical difference exits, the test does not provide insight into the cause of the 

difference nor does it indicate the nature of the common distribution if there is no statistical difference 

between the two distributions. The differences could be as a result of difference in: location; variation; 

skewness; kurtosis; and modality, or presence of outliers, among other things (Daniel, 1990). 
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4 Results 

The first task was to produce a plot to have a sense of how the eruptions were arranged in 

time. While more mathematically rigorous methods exist for delineating eruptive regimes (for 

example Mulargia et al (1987)), a visual representation can also reveal much about the the nature of 

eruptive activity. 

 

Figure 1: Step Plot of Cumulative Number of Eruptions against Time 

The data shows two noticeable regimes: a regime featuring a number of long reposes and another 

(starting from around 1980) dominated by shorter reposes. The slight curvature was an indication that 

the eruption rate was non-constant. To check if this was the case the intensity was plotted as a 

function of time using a non-parametric method with points smoothed out using a Gaussian kernel 

function. 

 

Figure 2: Line plot of Empirical Intensity 

4.1 Model Fitting 

MLE was used to obtain parameter estimates for the three models (R codes used in fitting the 

data adopted from Gelissen (2016a)). The results are shown in the table below. 

 

 

 



Vol.9.Issue.2.2021 (Apr-June) Bull .Math.&Stat.Res ( ISSN:2348 -0580)  

 

JAMES KINYANJUI & Dr. GEORGE MUHUA  
25 

Table 1: Results of Model Fitting 

  Parameter Estimates ℓ AIC 

HPP �̂� = 0.69 -94.6034 191.2068 

Log-Linear NHPP 𝛾0 = -0.911036781 -91.8111 187.6222 

 
 
 

Weibull NHPP 

𝛾1 = 0.009976769   

 

𝛽 ̂ = 1.167440 

�̂� = 2.660038 -93.8176 191.6352 

Based on the AIC the best model is the log-linear NHPP. The fitted models and empirical data were 

plotted on the same axes to see if the choice of the log-linear NHPP was justified. 

 

Figure 3: Plot of Cumulative Number of Eruptions Against Observed and Fitted Event Times 

The plot shows that the log-linear NHPP was the best model of the three considered: it gave the 

best fit to the data. 

4.2 Goodness of Fit 

The log-linear intensity function was used to simulate a set of NHPP event times (R code used 

in the simulation adopted from Gelissen (2016b)). The eruption data was compared with the simulated 

data to check how well the model performed. This was done visually and through the K-S test. 

The plot showed a fairly good fit. The K-S test was performed to confirm the visual conclusion. 

The null hypothesis was that the two event times were similar in distribution. The K-S test statistic was 

d = 0.0875 compared against a critical value of d = 0.236 (p value = 0.9315). The null hypothesis was 

therefore not rejected and the conclusion drawn was that the two event times have similar 

distributions at 5% level of significance. 
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Figure 4: Plot of Cumulative Number of Eruptions against Observed and Simulated Event Times 

4.3 Forecasting 

The log-linear model was then used to forecast the cumulative number of eruptions in the next 

hundred years, together with confidence intervals for the estimates. The plot shown below illustrates 

this. 

 

Figure 5: Plot of Cumulative Number of Eruptions Against Times 

We might want, for example, to predict the number of eruptions between January 2019 and December 

2043, i.e., E[N (125) - N (100)]. The model predicts that there will be about 31 (whole-number ap- 

proximate of 30.96372) eruptions. This result was obtained by using Eq. 5. The confidence interval of 

this estimate is (18.49463, 51.83949). The standard errors were calculated by R using the delta method 

formula, i.e., 
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𝑉 𝑎𝑟 [Λ̂ (𝑡)] = (
𝜕Λ̂ (𝑡)

𝜕𝜃
⃓𝜃=�̂�)

2

𝑉 𝑎𝑟 [λ̂ (𝑡)] 

𝑉 𝑎𝑟 [Λ̂ (𝑡)] is, in fact, the inverse of the 𝐻𝑒𝑠𝑠𝑖𝑎𝑛 (a matrix of second-order partial derivatives 

of the log-likelihood) and the square root of the diagonal gives the standard errors of the parameter 

estimates. By the partitioning of a Poisson process a forecast on the number of eruptions of a 

particular volcano and of a particular VEI2  can be issued.  The number of observed eruptions for 

Nyamuragira, for example, are 33 and so the model predicts it will have approximately 15 eruptions 

[(33/69)*31] from January 2019 to December 2043. The number of eruptions of VEI≥3 is 5 and so the 

model predicts approximately 6 eruptions [(13/69)*31] in the next 25 years. 

Probabilities can also be computed for a particular number of eruptions over an interval  of 

choice.  For instance, the probability of two or more eruptions from January 2019 to December 2021, 

i.e.,  𝑃𝑟(𝑁 (103) − 𝑁 (100)  ≥   2)   ≈   0.8439.  This result was calculated using Eqs.  5 and 3.  The 

plot below illustrates predictions for three different cumulative eruptions. 

 

Figure 6: Plot of Predicted Probabilities for a 25-Year Period for One or More, Two or More and 

Three or More Eruptions 

5         Conclusion 

This paper sought to find a Poisson model most appropriate in describing a curtate catalogue of 

erup- tions. Of the three models considered a NHPP with a log-linear intensity function was found to 

best explain the data. The most parsimonious models are usually preferred and in this case the most 

parsimonious model considered was the single-parameter HPP. However, it was not justified with 

respect to the model results. In fact, a cursory examination of the cumulative reposes showed the 

data was likely non-stationary, making the HPP the least obvious candidate for selection as a model. 

While the quality of the eruption data was not called into question because it was beyond the scope 

                                                           
2 The Volcanic Explosivity Index is a relative measure of the explosiveness of volcanic eruptions developed by 
Newhall and Self in 1982. The volume of products, eruption cloud height, and qualitative observations (using 
terms ranging from 'gentle' to 'mega-colossal') are used to determine the explosivity value. The scale is open-
ended with the largest volcanic eruptions in history given magnitude 8. A value of 0 is given for non-explosive 
eruptions, defined as less than 10,000 cubic metres of tephra ejected and 8 representing a mega-colossal 
explosive eruption that can eject a trillion cubic metres of tephra and have a cloud column height of over 20 km. 
The scale is logarithmic (similar to the Richter scale used in the study of earthquakes), with each interval on the 
scale representing a tenfold increase in observed ejecta, with the exception of between VEI-0, VEI-1 and VEI-2. 
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of the paper, the issue of incomplete eruption records, which usually favour rejection of stationary 

models (Dzierma and Wehrmann (2010), for example, discuss the issue of volcanic data and 

stationarity), is a long-standing concern in statistical volcanology. Indeed, the data considered showed 

a number of long reposes in the early record. The Weibull model performed the poorest. Of note, 

however, is the fact that the shape parameter β = 1.167440. Ho (1991), for example, identified the 

shape parameter of his Weibull process model as the indicator of waxing or waning of eruptive activity. 

Because β>1, it can be concluded  that there was increase in volcanic eruptions with time. This 

coincides with the increasing trend that the log-linear model predicts. The forecasting possibilities of 

the log-linear model were demonstrated with the model predicting of an increase in eruptive activity 

with time though the monotonic-increasing nature of the model (in general contravention of the real-

life observable behaviour of volcanoes) means that only short-term forecasting of, say, one or two 

decades, will give plausible results. 

Acknowledgements: Special thanks to Leonard Salasya for checking my output and Dr James Tuju for 

proofreading. 
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Appendix: List of Volcanoes 

Name Location Number of 
Eruptions∗ 

Date of Last 
Eruption∗ 

Alu-Dalafilla Ethiopia 1 03-11-2008 
Ardoukoba Djibouti 1 07-11-1978 
The Barrier Kenya 1 31-12-1921 
Dabbahu Ethiopia 1 26-09-2005 

Dallol Ethiopia 2 04-01-2011 
Erta Ale Ethiopia 3 02-07-1967 

Ol Doinyo Lengai Tanzania 15 09-04-2017 
Manda Hararo Ethiopia 2 28-06-2009 
Manda-Inakir Djibouti/Ethiopia 1 31-12-1928 

Nabro Eritrea 1 13-06-2011 
Nyamuragira DRC 33 18-04-2018 
Nyiragongo DRC 7 17-05-2002 

Visoke DRC/Rwanda 1 01-08-1957 

*for time period considered 
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