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ABSTRACT 

While studying the fluctuations in the population of some species, R. M. May 

and others in 1974 verified the features of the logistic family Fµ(x)  =

 µx(1 –  x), where µ is a parameter, and later, it was proved that the logistic 

mapping undergoes the period doubling phenomenon which is a route to 

chaos. It has already been proved that the one dimensional family of 

quadratic mapping fc(x) = x2– x + c, where c is a parameter, is also a 

chaotic mapping. In this paper, we have explored some more properties of 

the family of quadratic mappings fc(x) = x2– x + cin reference to 

Schwarzian derivative. 

Keywords: fixed points, periodic points, critical points, one parameter family 
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1.  Introduction 

The topic of dynamical systems and chaos have become the most attracting interdisciplinary 

subject of interest of the researchers all over the world although the subject began in the mid of the 

sixteenth century with the invention of differential equations by Newton. With the aid of differential 

equations, the two-body problem of finding the orbit of earth around the sun was solved, but solving 

the three-body problem is still a big challenge before the scientists. Many mathematicians like Henry 

Poincare, Van der Pol, Littlewood, Birkhoff, Lorenz, etc. made important contributions in the 

development of the theory of dynamical systems and chaos. Very strange and unpredictable patterns 
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were found in the one dimensional mappings representing population models of species and, since 

then, the chaotic behaviour is observed in almost all phenomenon occurring in the nature. 

2. A Review of Associated Terminology 

In this section, we will recall some concepts related to dynamical systems and chaos. First of 

all, we will take a look on some definitions of dynamical systems. Many mathematicians have defined 

dynamical systems considering different approaches which include geometrical and topological ideas. 

However, we will consider the definitions that are accepted by most of the mathematicians.  

2.1 Dynamical System [9] 

 A dynamical system on the nth dimensional Euclidean space ℝ𝑛 is a continuously 

differentiable function 𝜙: ℝ × ℝ𝑛 → ℝ𝑛, where 𝜙(𝑡, 𝑋) = 𝜙𝑡(𝑋) satisfies 

(i) 𝜙0: ℝ𝑛 → ℝ𝑛 is the identity map 𝜙0(𝑋0) = 𝑋0. 

(ii) the composition 𝜙𝑡 ∘ 𝜙𝑠 = 𝜙𝑡+𝑠 for all 𝑡, 𝑠 ∈ ℝ.    

The dynamical system is said to be discrete dynamical system if the time 𝑡 is measured 

discretely at equal intervals of time and, if the time is 𝑡 is continuous, the dynamical system is said to 

be continuous.    

2.2 Trajectory and Orbit[19] 

 Let 𝑓: ℝ → ℝ be a given dynamical system generated by the function 𝑓 and 𝑎 be an initial 

point. It is very important to study what happens to the sequence {𝑥𝑛} defined by 𝑥0 = 𝑎 and 𝑥𝑛 =

𝑓(𝑥𝑛−1), where 𝑛 = 1, 2, 3, …. The sequence {𝑓𝑛(𝑎)} of iterations of 𝑓 computed at 𝑎 is called the 

trajectory of 𝑎 and the set of its values is called as the orbit of 𝑎. 

2.3 Fixed Points, Periodic Points and their classification[1, 6, 8]  

 Let 𝑓: ℝ → ℝ be a given dynamical system. A real number  𝑎 ∈ ℝ  is said to be a fixed point 

of a function 𝑓 if 𝑓(𝑎) = 𝑎. It follows that if 𝑎 is a fixed point of 𝑓, then 𝑓𝑛(𝑎) = 𝑎 for all 𝑛 ∈ ℤ+. In 

this case, the orbit of 𝑎 is the constant sequence {𝑎, 𝑎, 𝑎, . . . }. If there exists an 𝑛 ∈ ℤ+ such that 

𝑓𝑛(𝑎) = 𝑎, then 𝑎 is called a periodic point of 𝑓 with period 𝑛. 

 Let 𝑎 be a fixed point of a dynamical system 𝑓: ℝ → ℝ.  

(1) We say that 𝑎 is an attracting fixed point or a sink of 𝑓 if there is some neighbourhood of 𝑎 such 

that all points in this neighbourhood are attracted towards 𝑎. In other words, 𝑎 is a sink if there 

exists an epsilon neighbourhood 𝑁ϵ(𝑎 ) = {𝑥 ∈ 𝑆: |𝑥 − 𝑎 | < ϵ} such that lim
n→∞

𝑓n (𝑥) = 𝑎  for all 

x ∈ 𝑁ϵ(𝑎 ).  

(2) We say that 𝑎 is a repelling fixed point or a source of 𝑓 if there is some neighbourhood 𝑁ϵ(𝑎 ) of 

𝑎 such that each 𝑥 in  𝑁ϵ(𝑎 ) except for 𝑎 maps outside of 𝑁ϵ(𝑎 ). In other words, 𝑎 is a source if 

there exists an epsilon neighbourhood such that |𝑓𝑛(𝑥) − 𝑎 | > ϵ for infinitely many values of 

positive integers 𝑛. 

Let 𝑎 be a periodic point of period 𝑛 of a function 𝑓. Then 𝑎 is said to be an attracting periodic point 

or a repelling periodic point according as it is an attracting or a repelling fixed point of the 𝑛th  iterate  

𝑓𝑛. 
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2.4 Hyperbolic Periodic Points[7, 17] 

 A periodic point 𝑎 of a mapping 𝑓 with prime period 𝑛 is said to be hyperbolic if |(𝑓𝑛 )′ (𝑎) |  ≠

 1, otherwise 𝑎 is said to be a neutral periodic point. 

For example, consider 𝑓(𝑥) = 𝑥2 − 𝑥. This mapping has 𝑥 =  2 as a hyperbolic fixed point whereas 

𝑥 =  0 is a non-hyperbolic fixed point.  

2.5 Some Results 

Now we recall some results that can be used to decide the nature of fixed and periodic points. 

2.6 Theorem [5, 18] 

Let 𝑓: ℝ → ℝ be a differentiable function, where 𝑓′ be continuous and 𝑎 be a hyperbolic fixed 

point of 𝑓.  

1. If |𝑓′(𝑎)| < 1, then 𝑎 is an attracting fixed point of 𝑓. 

2. If |𝑓′(𝑎)| > 1, then 𝑎 is an repelling fixed point of 𝑓. 

2.7 Theorem [5, 18] 

Let 𝑓: ℝ → ℝ be a differentiable function, where 𝑓′ be continuous and 𝑎 be a periodic point 

of 𝑓 with period 𝑛. Then the periodic orbit of  𝑎 is attracting or repelling according as |(𝑓𝑛)′(𝑎)| <  1 

or |(𝑓𝑛)′(𝑎)| >  1. 

The theorems 1 and 2 do not provide any information in order to study the behavior of a non-

hyperbolic periodic point. In such a situation, the higher ordered derivatives of the function at the 

periodic point can be effectively used. Suppose 𝑝 is an attracting periodic point for which the rate of 

convergence of an orbit of a seed near 𝑝 is much slower than normally observed. In this case, we say 

that the point 𝑝 is a weakly attracting periodic point. Similarly, if 𝑝 is repelling with orbits of the seeds 

near 𝑝 going away from 𝑝 much slowly, then we say that 𝑝 is weakly repelling. The following theorem 

gives a criterion for the study of the non-hyperbolic fixed points. 

2.8 Theorem [5, 18] 

 Let 𝑝 be a neutral fixed point of a function 𝑓.  

(i) If 𝑓′′(𝑝) > 0, then 𝑝 is weakly attracting from the left and weakly repelling from the right. 

(ii) If 𝑓′′(𝑝) < 0, then 𝑝 is weakly repelling from the left and weakly attracting from the right. 

 Let 𝑝 be a neutral fixed point of f with If 𝑓′′(𝑝) = 0. 

(iii) If  𝑓′′′(𝑝) > 0 then 𝑝 is weakly repelling. 

(iv) If 𝑓′′′(𝑝) < 0, then 𝑝 is weakly attracting.   

 If this theorem again fails to give any information, then it can be extended to higher order 

derivatives. Moreover, with slight changes, the theorem can be applied for periodic points also. 

2.9 Basin of Attraction[15, 16] 

 Let 𝑎 be a fixed point of a function 𝑓. When all the iterates near the point 𝑎 of the function 𝑓 

converge to the point 𝑎, we say that the point 𝑎 is an attracting fixed point. The collection of all such 

points around 𝑎 is called as the basin of attraction of 𝑎. It follows that the basin of attraction is an 

open set. Formally, we define the basin of attraction of an attracting fixed point as follows. 
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 Let 𝑎 be an attracting fixed point of a function 𝑓.The basin of attraction of 𝑎 is the set  

𝐵𝑎 = {𝑥: 𝑓𝑛(𝑥) → 𝑎 as 𝑛 → ∞}. 

The basin of attraction of an attracting periodic orbit is the set of all points which approach the given 

attracting periodic orbit. 

For example, consider the function 𝑓 defined by 𝑓(𝑥) =  𝑥2. The point 0 is a fixed point of 𝑓. It can be 

observed that lim
𝑛→∞

𝑓𝑛(𝑥) = 0 for |𝑥| < 1. On the other hand, for |𝑥| > 1, |𝑓𝑛(𝑥)| ≥ 1. Hence the 

basin of attraction 𝐵0 of the fixed point 𝑥 = 0 is the open interval (−1, 1).  

3  Bifurcation Diagram and Schwarzian Derivative[10, 11] 

 A one parametric family of mappings is said to have bifurcations at a point of the number and 

the nature of the periodic or the fixed points changes at that point as the parameter value passes 

through that point. The point where the bifurcation occurs is called as the bifurcation point. The 

occurrence of bifurcation points in a one parameter family of mappings is an indication of change in 

the dynamical properties of the mapping. A bifurcation diagram is an important tool for the study of 

the parameterized families as the number of iterates becomes very high. In order to plot a bifurcation 

diagram, we consider  the values of the parameter µ along the horizontal axis and the higher iterates 

of the variable x along the vertical axis. Thus we plot the set of all points of the form (𝜇, 𝑓𝜇
𝑛(𝑥)), where 

𝑛 is generally greater than 200. 

3.1 The Schwarzian Derivative 

An important result regarding the maximum number of attracting cycles was proved by the 

American mathematician David Singer in 1978.. Before stating this result, we will take a review of 

the associated concepts. 

3.2 Definition: Let 𝑓 be function defined on an interval 𝐼 whose third derivative 𝑓′′′ is continuous on 

𝐼. Then the Schwarzian derivative of 𝑓 at a point 𝑥, denoted (𝑆𝑓)(𝑥), is defined by (𝑆𝑓)(𝑥) =
𝑓′′′(𝑥)

𝑓′(𝑥)
−

3

2
[

𝑓′′(𝑥)

𝑓′(𝑥)
]2. 

3.3 Theorem: (Singer's Theorem) Let 𝑓 be a function defined on a closed interval 𝐼 such that 𝑓(𝐼) ⊆

𝐼. Suppose that the Schwarzian derivative of 𝑓 is negative over 𝐼 and 𝑓 has 𝑛 critical points. Then the 

function  𝑓 has at most 𝑛 + 2 attracting cycles. 

4  Dynamical Properties of the Quadratic Family fc (x) = x2 – x + c 

The study of the dynamical properties of the quadratic family of mapping  𝑓𝑐(𝑥) = 𝑥2– 𝑥 + 𝑐, 

where 𝑐 is a parameter taking real values, has been done by Kulkarni P. R. and  Borkar V. C.[12] by 

varying the parameter values. In the referred paper, the authors have obtained the number of the 

fixed and periodic points of the family 𝑓𝑐(𝑥) = 𝑥2– 𝑥 + 𝑐 and studied in detail the nature of these 

fixed and periodic points. We will add some points in the properties of this mapping. 

Using the concept of topological conjugacy, Kulkarni P. R. and Borkar V. C.[14] have proved 

that the family of mappings is chaotic. 

Also, the existence of the period three cycle[15] guarantees the chaotic behavior of the family 

of mappings. The chaos in the behavior of a one parameter family of mappings can be noted by 

observing the bifurcation diagram only however, it becomes very difficult to find out at what value of 

the parameter, the periodic orbit of a particular period comes in to picture of the bifurcation diagram. 
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We have obtained the value of c for which the family of mappings 𝑓𝑐(𝑥) = 𝑥2– 𝑥 + 𝑐 has a period-3 

orbit and thus proved that it is chaotic.  

4.1 Theorem: Every function in the quadratic family of mappings 𝒇𝒄(𝒙) = 𝒙𝟐– 𝒙 + 𝒄 has at most one 

attracting cycle. 

Proof: For 𝑐 > 1, the line 𝑦 = 𝑥 does not intersect the curve 𝑓𝑐(𝑥) = 𝑥2– 𝑥 + 𝑐, hence the fixed point 

for 𝑓𝑐 do not exist and all the orbits have a tendency to move towards infinity. For 𝑐 = 1, solving for 

𝑥, the equation 𝑓(𝑥) = 𝑥, we get just one fixed point at 𝑥 = 1. As 𝑓𝑐′(1) = 1, the point 𝑥 = 1 happens 

to be a neutral fixed point and in this case, the theorem 3 can be applied. Here 𝑓𝑐
′′(1) > 0 implies 

that 𝑥 = 1 is weakly attracting from the left and weakly repelling from the right.  

For the initial value 𝑥0 = −0.1, the values of the iterations 𝑓𝑐
𝑛(𝑥) = 𝑥𝑛 of the function 𝑓𝑐(𝑥) are as 

follows. Note that  𝑥7 = 1.2576049060E + 000 means  𝑥7 = 1.2576049060 × 10+000. 

𝑥0  =  −0.1           𝑥7  =  1.2576049060E + 000           𝑥8  =  1.3239651936E + 000  

𝑥9  =  1.4289186403E + 000   𝑥10 = 1.6128898403E + 000      𝑥11 = 1.9885237966E + 000 

𝑥12 = 2.9657030932E + 000   𝑥13 = 6.8296917437E + 000      𝑥14 = 4.0814997570E + 001   

𝑥15 = 1.6260490291E + 003   𝑥16 = 2.6424103960E + 006      𝑥17 = 6.9823300584E + 012   

𝑥18 = 4.8752933044E + 025   𝑥19 = 2.3768484804E + 051      𝑥20 = 5.6494086988E + 102   

𝑥21 = 3.1915818646E + 205   𝑥22 = Infinity                                    𝑥23 = Infinity   

Here we observe that the iteration values diverge to infinity. 

For the initial value 𝑥0  =  −0.09, the values of the iterations are as follows. 

𝑥0  =  −0.09            𝑥7  =  1.2047230009E + 000          𝑥8  = 1.2466345080E + 000 

𝑥9  =  1.3074630886E + 000   𝑥10 = 1.4019966394E + 000      𝑥11 = 1.5635979376E + 000 

𝑥12 = 1.8812405728E + 000   𝑥13 = 2.6578255198E + 000      𝑥14 = 5.4062109741E + 000 

𝑥15 = 2.4820906122E + 001   𝑥16 = 5.9225647461E + 002      𝑥17 = 3.5017647524E + 005 

𝑥18 = 1.2262321364E + 011   𝑥19 = 1.5036452522E + 022      𝑥20 = 2.2609490445E + 044 

𝑥21 = 5.1118905820E + 088   𝑥22 = 2.6131425322E + 177      𝑥23 = Infinity   

In this case also, the iteration values diverge to infinity. 

For the initial value 𝑥0 = 0.001, the values of the iterations are as follows. 

𝑥0  =  0.001           𝑥7  =  1.0010070422E + 000            𝑥8  = 1.0010080564E + 000 

𝑥9  =  1.0010090725E + 000   𝑥10 = 1.0010100908E + 000      𝑥11 = 1.0010111111E + 000 

𝑥12 = 1.0010121334E + 000   𝑥13 = 1.0010131578E + 000      𝑥14 = 1.0010141843E + 000 

𝑥15 = 1.0010152129E + 000   𝑥16 = 1.0010162435E + 000      𝑥17 = 1.0010172763E + 000 

𝑥18 = 1.0010183111E + 000   𝑥19 = 1.0010193481E + 000      𝑥20 = 1.0010203872E + 000 

𝑥21 = 1.0010214283E + 000   𝑥22 = 1.0010224717E + 000      𝑥23 = 1.0010235171E + 000   

𝑥24 = 1.0010245647E + 000   𝑥25 = 1.0010256144E + 000      𝑥26 = 1.0010266663E + 000 

𝑥27 = 1.0010277204E + 000   𝑥28 = 1.0010287766E + 000      𝑥29 = 1.0010298350E + 000   
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𝑥30 = 1.0010308955E + 000   

Continuing in this way, we observe that the iterations converge to the fixed point 1. 

The tendency of the orbits in the above cases can be observed by means of the orbit diagram[4] as 

shown in Figure 1.  

 

Figure 1: The orbit diagram 

In this case also, the iteration values diverge to infinity. 

It can be verified that the basin of attraction in this case is the open interval (0, 1) as can be 

observed form the above numerical data and the orbit diagram. 

For the case 0 < c < 1 , there are two  fixed points 1 + √1 − 𝑐 and  1 − √1 − 𝑐 . Using theorems 

1 and 2, it can be verified that 1 + √1 − 𝑐  is a repelling fixed point and  1 − √1 − 𝑐  is an attracting 

fixed point. When c falls down through 0, we get two fixed points and an attracting periodic 2-cycle 

for the range −
1

2
< 𝑐 < 0. As c assumes a value less that –1/2, there are two fixed points, there is 

period 2-cycle, which loses its stability and an attracting period 4-cycle appears. In this manner, we 

come across a period doubling bifurcation.  

When c assumes again smaller values, the period 4-cycle loses its stability and a periodic 8-

cycle is born; again for smaller values of the parameter 𝑐, this periodic 8-cycle becomes unstable and 

an attracting period 16-cycle comes into picture and so on. Thus a period doubling is observed, which 

is an indication of the chaotic nature of the family of mappings. 

For the family 𝑓𝑐(𝑥) = 𝑥2– 𝑥 + 𝑐 , all the interesting dynamics occur in the interval – 2 ≤  𝑐 ≤

 1. Hence to obtain the bifurcation diagram for this family, we divide the parameter range [–2, 2] into 

a number of specified subdivisions and for each parameter value in this subdivision, the orbits are 

computed and plotted using the  initial condition 𝑥0 = 0 as shown in the Figure 2. 
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Figure 2: Bifurcation diagram 

One can observe the repeated period doublings in this diagram. The first period doubling is 

observed at 𝑐 = 0 and then as 𝑐 decreases through 0, we come across successive period doubling 

bifurcations which proved that the mapping  is chaotic.   

Now we will obtain the number of attracting cycles for the family of mappings 𝑓𝑐(𝑥) =

𝑥2– 𝑥 + 𝑐. If we observe carefully the zoom-in picture of the bifurcation diagram as shown in Figure 

3, we notice six horizontal curves that dominate the window. These six curves can represent six 

attracting fixed points, three attracting 2-cycles, two attracting 3-cycles, or an attracting 6-cycle. 

 

Figure 3: Zoom-in of the bifurcation diagram 

Using Singer's theorem, now we will complete the proof of the theorem. The Schwarzian derivative of 

the family 𝑓𝑐(𝑥) = 𝑥2– 𝑥 + 𝑐 is given by  

(𝑆𝑓𝑐)(𝑥) =
𝑓𝑐

′′′(𝑥)

𝑓𝑐
′(𝑥)

−
3

2
[
𝑓𝑐

′′(𝑥)

𝑓𝑐
′(𝑥)

]

2

 

                 =  
0

2𝑥 − 1
−

3

2
[

2

2𝑥 − 1
]

2

< 0 

 Assume that −1.25 < 𝑐 < 1. Since 𝑓𝑐(𝑥) = 𝑥2– 𝑥 + 𝑐 has a unique critical point at 𝑥 =
1

2
. Hence by 

Singer's theorem, there can be at most three attracting cycles, each of which is associated with the 
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intervals of the form (0, 𝐴), (𝐴, 𝐵) and (𝐵, 1), where 0 < 𝐴 < 𝐵 < 1. Since 𝑥 =  1 is weakly 

attracting from the left and weakly repelling from the right, neither of the open intervals 0, 𝐴) and 

(𝐵, 1) appears as a basin of attraction for the cycles of 𝑓𝑐. This proves that 𝑓𝑐 has at most one 

attracting cycle. This completes the proof of the theorem. 

5. CONCLISION: 

By proving that every function in the quadratic family of mappings 𝑓𝑐(𝑥)  =  𝑥2–  𝑥 +  𝑐 has at 

most one attracting cycle, we have proved that the six horizontal curves in the window in Figure 3 

represent an attracting 6-cycle. 
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