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ABSTRACT 

In this paper,wecompute the invariantgeometry of the statistical manifoldof 

the normal distributions by using the divergence approach. In order to give 

the isometries, we investigate the component functions of a Killing vector eld 

for the Fisher information metric on the statistical manifold of Gaussian 

distributions of probabilities. They are harmonic conjugate and then, they are 

both harmonic functions. Finally, we describe the form of its Killing vector 

elds. 

Keywords and phrases:Statistical manifold, Fisher information metric,f -

divergence, conjugate connections. 

 

1  Introduction 

Information geometry is the study of intrinsic properties of manifolds of probability 

distributions, called statistical manifold, by way of di erential geometry. In an another words, it provides 

a geometric approach to families of statistical models. Explicitly, many important structures in 

information theory and statistic can be treated as struc- tures in di erential geometry by regarding a 

space of probabilties as a di erential man- ifold endowed with a Riemannian metric and a familly of a 

ne connections. The key geometric structures are the Fisher quadratic form, called Ficher information metric  
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and the Amari�Chentsov tensor. A statistical manifold is a generalization of a Rie-
mannian manifold with the Levi-Civita connection. On a statistical manifold, duality
of a�ne connections naturally arises [2]. A statistical manifold is simply a Riemannian
manifold (M, g) with one additional structure given by a torsion-free a�ne connection
5 and its dual connection 5∗, which is also assumed to be torsion-free. We say 5 and
5∗ are mutually dual whenever

dg(X, Y ) = g(5X, Y ) + g(X,5∗Y )

holds for all vector �elds X, Y on M . Thus the geometry of statistical manifold simply
reduces to usual Riemannian geometry when 5 coincides with 5∗.

In statistics, the notion of su�cient statistic expresses the criterion for passing
from one model to another without loss of information. This leads to the question how
the geometric structures behave under such su�cient statistics.

In the present paper, we show that when we de�ne the Kullback-Leibler divergence
on the statistical manifold we can also computing the geometry of it and show that the
metric, connections and curvature are invariant when we use the metric induced by the
Kullback-Leibler divergence instead of the usual metric. Secondly, we compute that
the Killing �elds on the statistical manifold of normal distributions of probabilities are
the in�nitesimal generators of isometries; that is, �ows generated by Killing �elds are
continuous isometries of the manifold. More simply, the �ow generates a symmetry, in
the sense that moving each point on an object the same distance in the direction of
the Killing vector �eld will not distort distances on the object.

2 Notation and problem setting

2.1 Statistical manifold

Let (X,B) be a measurable space, where X is a non-empty subset of R and B is the
σ-�eld of subsets of X. Consider a n-dimensional statistical manifold

M = {p(x; ξ) : ξ = [ξ1, ..., ξn] ∈ E ⊆ Rn},

with coordinates [ξ1, ..., ξn], de�ned on X. Then M is a subset of P (X), the set of all
probability measures on X given by

P (X) := {p : X → R : p(x) > 0 (x ∈ X);

∫
X

p(x)dx = 1}. (2.1)

In another words, M is parameterized by ξ and the set M = {p(x, ξ)} forms a mani-
fold with coordinate system ξ. Here, x may take discrete, continuous and vector values.

2

Vol.9.Issue.2.2021 (Apr-June)                                                           Bull.Math.&Stat.Res (ISSN:2348-0580)

Aboubacar Nibirantiza et al.,                                                                                                                             57



A.Nibirantiza and G.Nibaruta and D.Ndayirukiye and M.Karimumuryango

2.2 Divergence

Let us consider two points p(x, ξ) and Q(x, ξ′) in a manifold S, of which coordinates
are ξ and ξ′.

De�nition 2.1. A divergence D(ξ : ξ′) of two points P (x, ξ) and Q(x, ξ′) is a di�er-

entiable function of ξ and ξ′ which satis�es the following criteria:

1. D(ξ : ξ′) ≥ 0,

2. D(ξ : ξ′) = 0 if and only if ξ = ξ′,

3. When P and Q are su�ciently close, by denoting their coordinates by ξ and

ξ′ = ξ + dξ, the Taylor expansion of D is written as

D(ξ : ξ + dξ) =
1

2

∑
gij(ξ)dξidξj +O(|dξ|3) (2.2)

and matrix G = gij is positive-de�nite, depending on ξ .

We can also denote the divergence by D(p : q) instead of D(ξ : ξ′).

A divergence represents a degree of separation of two points P (x, ξ) and Q(x, ξ′),
but it or its square root is not a distance. It does not necessarily satisfy the symmetry
condition,so that in general D(ξ : ξ′) 6= D(ξ′ : ξ). We may call D(ξ : ξ′) divergence
from P (x, ξ) to Q(x, ξ′). Moreover, the triangular inequality does not hold. It has
the dimension of the square of distance, as is suggested by (2.2). It is possible to
symmetrize a divergence by

DS(ξ : ξ′) =
1

2
(D(ξ : ξ′) +D(ξ′ : ξ)).

However, the asymmetry of divergence plays an important role in information
geometry. When P (x, ξ) and Q(x, ξ′) are su�ciently close, we de�ne the square of an
in�nitesimal distance ds between them by using (2.2) as

ds2 = 2D[ξ : ξ + dξ] = gijdξidξj. (2.3)

A manifoldM is said to be Riemannian when a positive-de�nite matrix G(ξ) is de�ned
on M and the square of the local distance between two nearby points ξ and ξ + dξ is
given by (2.3). A divergence D provides M with a Riemannian structure.

3
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2.3 Information monotonicity

We consider that the divergence D(ξ : ξ′) between P (x, ξ) and Q(x, ξ′) changes to
D(ξ : ξ′) between P (y, ξ) and Q(y, ξ′). Since the divergence D(ξ : ξ′) represents the
dissimilarity of two distributions P (x, ξ) and Q(x, ξ′), it is postulated that it decreases
in general by this mapping,

D(ξ : ξ′) ≤ D(ξ : ξ′). (2.4)

The relation ((2.4)) is called information monotonicity.
Obviously, when the function k is one-to-one, that is invertible, there is no loss

of information and the equality is required to hold in (2.4). However, there is a case
when information is not lost even when k is not invertible. This is the case when x

includes a redundant part, the distribution of which does not depend on ξ. We may
abandon this part without losing information concerning ξ. The remaining part retains
full information.

De�nition 2.2. A function

s = k(x) (2.5)

is called a su�cient statistic when the probability density function P (x, ξ) is decomposed
as

P (x, ξ) = P (s, ξ)r(x). (2.6)

This implies that the probability P (x, ξ) is written as a function of s, except for
a multiplicative term r(x) which does not depend on ξ. The equality is required to
hold in (2.4) when and only when y is a su�cient statistic. We give now the invariance
criterion. As formulated by Amari and Nagaoka (2000), we have de�ntion.

De�nition 2.3. A geometrical structure of M is invariant when it satis�es the mono-

tonicity (2.4), where the equality holds if and only if y = k(x) is a su�cient statistic.

2.4 Invariance of the geometric structures

In this section we consider the invariance properties of the geometric structures under
suitable transformations of the variables in a statistical manifold. Here we can consider
two kinds of invariance of the geometric structures; covariance under re-parametrization
of the parameter of the manifold and the invariance under the transformations of the
random variable.

2.4.1 Covariance under re-parametrization

Let [θi] and [ηj] be two coordinate systems on the statistical model S, which are related
by an invertible transformation η = η(θ). Let us denote ∂i = ∂

∂θi
and ∂j = ∂

∂ηj
. Let the
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coordinate expressions of the metric g be given by gij =< ∂i, ∂j > and g̃ij =< ∂i, ∂j >.
Since ∂i =

∑
m

∂θm

∂ηi

∂
∂ηi

and ∂j =
∑

n
∂θn

∂ηj

∂
∂ηj

, then the computation of the metric g̃ij
induced by the re-parametrization implies the covariance formula.

Proposition 2.4. The Fisher information metric g is covariant under re-parametrization

and it is given by

g̃ij =
∑
m

∑
n

∂θm

∂ηi

∂θn

∂ηj
gmn.

.

Proof. The components of the Fisher information metric with respect to the coordinate
system [θi] are given by

gij =< ∂i, ∂j >= E[∂il(x, θ)∂jl(x, θ] =

∫
∂il(x, θ)∂jl(x, θ)p(x, θ)dx

Let p̄(x, η) = p(x, θ(η)). Since ∂il(x, η) =
∑

m
∂θm

∂ηi

∂l(x,θ)
∂θm

we can compute that

g̃ij(η) =< ∂i, ∂j > =

∫
∂il(x, θ)∂jl(x, θ)p̄(x, θ)dx

=

[∑
m

∑
n

∂θm

∂ηi

∂θn

∂ηj

]∫
∂ml(x, θ(η))∂nl(x, θ(η))p(x, θ(η))dx

=

[∑
m

∑
n

∂θm

∂ηi

∂θn

∂ηj
gmn(θ)

]
θ=θ(η)

2.4.2 Invariance under the transformation of the random variable

We de�ne the invariance of Riemannian metric on a statistical manifold under a trans-
formation of the random variable as follows. Let S = {q̄(x; ξ) | ξ ∈ E ⊆ Rn} be a
statistical manifold de�ned on a sample space X. Let x, y be random variables de�ned
on sample spaces X, Y respectively and φ be a transformation of x to y. Assume that
this transformation induces a model S ′ = {q(y; ξ) | ξ ∈ E ⊆ Rn} on Y . Then the
density function q(y; ξ) of the induced model S ′ takes the form [4],

q(y, ξ) = q̄(ω(y), ξ)ω′(y) (2.7)

where ω is a function such that x = ω(y) (i.e.,y = φ(x)) and φ′(x) = 1
ω′(φ(x))

.

Proposition 2.5. The Fisher information metric is invariant under smooth one-to-

one transformations of the random variable.
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Proof. Let us denote log q(x, ξ) by l(qy) and log p(x, ξ) by l(px). From the equation
(2.7) , we can write,

q̄(x, ξ) = q(φ(x), ξ)φ′(x),

∂il(qy) = ∂il(q̄ω(y)),

∂il(qφ(x)) = ∂il(q̄x).

The Fisher information metric g′ on the induced manifold S ′ is given by

g′ij(qξ) =

∫
Y

∂il(qy)∂jl(qy)q(y, ξ)dy

=

∫
X

∂il(qφ(x))∂jl(qφ(x))q(φ(x), ξ)φ′(x)dx

=

∫
X

∂il(q̄x)∂jl(q̄x)q̄(x, ξ)dx

= gij(q̄ξ)

3 Geometry of statistical manifold

Let S be an n-dimensional statistical manifold. The tangent space to S at a point pξ
is given by

Tξ(S) = {
n∑
i=1

αi∂i | αi ∈ R}.

Let de�ne l(x, ξ) = log p(x; ξ) and consider the random variable A(x) given by the
partial derivatives A(x) = ∂l(x,ξ)

∂ξi
=: ∂il(x, ξ), i = 1, . . . , n. For the statistical manifold

S, ∂il(x, ξ)'s are linearly independent functions in x for a �xed ξ. Let T 1
ξ (S) be the

n-dimensional vector space spanned by n functions {∂il(x, ξ), i = 1, . . . , n} in x. So

T 1
ξ (S) = {Ai∂il(x, ξ) | Ai ∈ R}.

There is a natural isomorphism [4] between these two vector spaces Tξ(S) and T 1
ξ (S)

given by
∂i ∈ Tξ(S)←→ ∂il(x, ξ) ∈ T 1

ξ (S).

Obviously, a tangent vector A =
∑n

i=1 A
i∂i ∈ Tξ(S) corresponds to a random

variable A(x) =
∑n

i=1 A
i∂il(x, ξ) ∈ T 1

ξ (S) having the same components Ai. Note that
Tξ(S) is the di�erentiation operator representation of the tangent space, while T 1

ξ (S) is
the random variable representation of the same tangent space.The space T 1

ξ (S) is called
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[4] the 1-representation of the tangent space. Let A and B be two tangent vectors in
Tξ(S) and A(x) and B(x) be the 1-representations of A and B respectively.

We de�ne the inner product by

gξ(A,B) =< A,B >ξ= Eξ[A(x)B(x)] =

∫
A(x)B(x)p(x; ξ)dx. (3.1)

Especially the inner product of the basis vectors ∂i and ∂j is given by

gij(ξ) =< ∂i, ∂j >= Eξ[∂il(x, ξ)∂jl(x, ξ)] =

∫
∂il(x; ξ)∂jl(x; ξ)p(x; ξ)dx. (3.2)

Note that g =< ., . > de�nes a Riemannian metric on S called the Fisher information
metric. On the Riemannian manifold (S, g =< ., . >), we de�ne n3 functions Γijk by

Γijk(ξ) = Eξ[(∂i∂jl(x; ξ))(∂kl(x; ξ))]. (3.3)

and the tensor T given by

Tijk = E[∂il(x, ξ)∂jl(x, ξ)∂kl(x, ξ)]. (3.4)

The functions Γijk uniquely determine an a�ne connection ∇ on S by

Γijk(ξ) =< ∇∂i∂j, ∂k >ξ . (3.5)

Now, in order to compute the geometry on the statistical manifold of Gaussian
distributions of probabilities

M = {p(x, µ, σ) :=
1√
2πσ

exp(−(x− µ)2

2σ2
),−∞ < µ < +∞, 0 < σ < +∞},

let give the following lemma.

Lemma 3.1. If Γ(x) =
∫ +∞

0
tx−1e−tdt,∀x ∈ R+

0 and µ ∈ R, then

E[(x− µ)k] =

{
(2k)

1
2

Γ( k+1
2

)

Γ( 1
2

)
σk, if k is even

0 if k is odd.
(3.6)

Proof. The proof of the lemma consists in computing the formula

E[(x− µ)k] =

∫ +∞

−∞
(x− µ)k

1√
2πσ

e−
(x−µ)2

2σ2 dx.
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By setting t = x−µ√
2σ

and dx =
√

2σdt, we obtain

E[(x− µ)k] = 2

√
2kσk√
π

∫ +∞

0

tke−t
2

dt.

If k is odd, then the factor
∫ +∞

0
tke−t

2
dt is zero whereas if k is even and if we set u = t2,

this implies that u
k
2 = tk and the computation shows that∫ +∞

0

tke−t
2

dt =
1

2
Γ(
k + 1

2
).

By replacing
√
π by Γ(1

2
) we get the result of the lemma 3.1.

Proposition 3.2. Let M be the statistical manifold of the normal distributions.

1. The Fisher metric is given by the matrix

G =

(
1
σ2 0
0 2

σ2

)
. (3.7)

2. The tensors Tijk are given by

T111 = T122 = T212 = T221 = 0;

and

T112 = T121 = T211 =
2

σ3
, whereas T222 =

8

σ3
.

Proof. To prove the �rst part of the proposition, we set

l(x, ξ) = log p(x, ξ) = − log
√

2π − log σ − (x− µ)2

2σ2
.

We must compute the tensor gij by using the formulas g11 = E[(∂µl(x, ξ)∂µl(x, ξ))] and
g22 = E[(∂σl(x, ξ)∂σl(x, ξ))] and g12 = E[(∂µl(x, ξ)∂σl(x, ξ))] and g21 = E[(∂σl(x, ξ)∂µl(x, ξ))].
The lemma 3.1 leads us to get the results. To prove the second part, we use the for-
mula Tijk = E[∂σil(x, ξ)∂σj l(x, ξ)∂σk l(x, ξ)]. Applying the lemma 3.1 we obtain the
results.

Using the previous results, we compute the geometry of statistical manifold of
the normal distributions. We consider the metric induced by the Kullback-Leibler
divergence DKL(p, q) and we prove the invariance of the geometry.

8
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Proposition 3.3. The Kullback-Leibler divergence from the density p of a normal

random variable with mean µ1 and variance σ2
1 and the density q of a normal random

variable with mean µ2 and variance σ2
2 is given by

DKL(p, q) = log(
σ2

σ1

) +
σ2

1 + (µ1 − µ2)2

2σ2
2

− 1

2
.

Proof. We must compute the integral

DKL(p, q) :=

∫
p(x) log

(
p(x)

q(x)

)
dx.

It is obvious that this formula gives

DKL(p, q) =

∫
(log p(x)− log q(x)) p(x)dx.

Replacing the expression of p(x) and q(x) and computing, we obtain

DKL(p, q) =

∫ (
log(

σ2

σ1

) +
1

2

(
(x− µ2)2

σ2
2

− (x− µ1)2

σ2
1

))
1√

2πσ1

exp

(
−1

2

(
(x− µ1)2

σ2
1

))
dx.

This expression equals to the following

E1

(
log(

σ2

σ1

) +
1

2

((
x− µ2

σ2

)2

−
(
x− µ1

σ1

)2
)
.

Using the fact that E1[(x− µ1)2] = σ2
1, this expression can be written as follow

DKL(p, q) = log(
σ2

σ1

) +
1

2σ2
2

E1[(x− µ2)2]− 1

2
. (3.8)

Now, note that (X − µ2)2 = (x− µ1 + µ1 − µ2)2 and so

(X − µ2)2 = (X − µ1)2 + 2(X − µ1)(µ1 − µ2) + (µ1 − µ2)2.

Putting this expression in the (3.8), we obtain

DKL(p, q) = log

(
σ2

σ1

)
+
σ2

1 + (µ1 − µ2)2

2σ2
2

− 1

2
.

Remark 3.4. It is obvious that DKL(p, q) = 0 if and only if p = q. In another words,

when µ1 = µ2 and σ1 = σ2.
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De�nition 3.5. When the local coordinates x = (x1, . . . , xn) are de�ned for p and

y = (y1, . . . , yn) for q on the n-dimensional statistical manifold, the following quantities

are de�ned by derivating the divergence D(x : y):

D(∂i∂j : ∂k, x) =
∂3

∂xi∂xj∂yk
D(x : y)|y=x.

The following properties follow.

(i) D(∂i : ·, x) = ∂
∂xi
D(x : y)|y=x = 0;

(ii) D(· : ∂j, x) = ∂
∂yj
D(x : y)|y=x = 0;

(iii) gD = (gDij ) where g
D
ij = D(∂i∂j : ·, x) = D(· : ∂i∂j, x) = −D(∂i : ∂j, x).

To prove these properties, we consider that y − x is smallest and considering that
D(x : x+ dx) =

∑
gij(x)dxidxj + O(|dx|3), we have

D(x : y) =
∑

gij(x)(xi − yi)(xj − yj) + O(|x− y|3) (3.9)

Derivating the equation (3.9) with respect to xi and (or) yj and evaluating the result
at y = x, we obtain the formulas.

Proposition 3.6. The induced metric gD =<,>D on the statistical manifold of normal

distribution of probabilities S is the Fisher information metric g =<,>.

Proof. The computation of the metric gDij induced by the Kullback-Leibler divergence
refers to the proposition 3.3 and the properties of the de�nition 3.5. We obtain

gD11 =
∂2

∂σ1∂σ1

(
log

(
σ2

σ1

)
+
σ2

1 + (µ1 − µ2)2

2σ2
2

− 1

2

)
=

1

σ2
1

and

gD22 =
∂2

∂σ2∂σ2

(
log

(
σ2

σ1

)
+
σ2

1 + (µ1 − µ2)2

2σ2
2

− 1

2

)
=

2

σ2
1

whereas gD12 and gD21 are zero. It is clear that these results are the same as in the �rst
part of the proposition 3.2.
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De�nition 3.7. When one divergence D takes the form Df (p : q) =
∫
pif( qi

pi
)dx where

f is a di�erentiable convex function which satis�es the condition f(1) = 0 then the

divergence is called an f -divergence.

It follows that the Kullback-Leibler divergence is an f -divergence because it is
obvious that f = − log.

4 α-geometry of statistical manifold

When a divergence D is de�ned in the statistical manifold, then two tensors gDij and
TDijk are automatically induced from it.

4.1 Dual connections

Let us de�ne the quantities Tijk = Γ∗ijk − Γijk. Then the dual connections on the
statistical manifold are written as

Γijk = Γ0
ijk −

1

2
Tijk, Γ∗ijk = Γ0

ijk +
1

2
Tijk.

We can so de�ne a parametric family of torsion-free connections 5(α) indexed by α
(α ∈ R) by

5(α) =
1 + α

2
5+

1− α
2
5∗,

where 5(0) denoting the Levi-Civita connection associated with g.
The α-connection is de�ned by

Γ
(α)
ijk = E

[(
∂i∂jl +

1− α
2

∂il∂jl

)
∂kl

]
. (4.1)

This formula implies that Γ
(1)
ijk = E[∂i∂j∂kl] and that

Γ
(α)
ijk = Γ

(1)
ijk +

1− α
2

Tijk. (4.2)

Let Γ(α)k = gkmΓ
(α)
ijm. The α-curvature tensor is de�ned by

R(α)(∂i, ∂j)∂k =
∑
l

R
(α)
ijk∂l

where

R
(α)l
ijk = ∂iΓ

(α)l
jk − ∂jΓ

(α)l
ik +

n∑
m=1

Γ
(α)l
im Γ

(α)m
jk −

n∑
m=1

Γ
(α)l
jm Γ

(α)m
ik . (4.3)
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We de�ne also that

R
(α)
ijkl =

n∑
t=1

R
(α)t
ijk gtl.

De�nition 4.1. A statistical manifold is said to be α-�at if its α-curvature vanishes.

Note also that the 0-geometry corresponds to the geometry of the Riemannian
metric. The Levi-Civita connection is

Γ
(0)
ijk =

1

2
(∂igjk + ∂jgik − ∂kgij) . (4.4)

4.2 Dual connections derived from KL-divergence

The following is a key result connecting a divergence and dual geometry. In order to
compute the a�ne dual connections induced by the Kullback-Leibler divergence on
the statistical manifold of normal distributions of probabilities, let us begin with the
following description.

De�nition 4.2. On statistical manifold, the two quantities ΓDijk = −D(∂i∂j : ∂k) and

ΓD∗ijk = −D(∂k : ∂i∂j) are called dual a�ne connections with respect to the metric gD

induced by the Kullback-Leibler divergence.

We de�ne also [2] the tensor TDijk and g
D
ij induced by the divergence DKL by

TDijk = −D(∂k : ∂i∂j, x) +D(∂i∂j : ∂k, x). (4.5)

and
gDij = D(∂i : ∂j, x) (4.6)

respectively. On the statistical manifold of the normal distributions of probabilities it
is clear that to di�erentiate gDij with respect σ and µ, we get the duality condition

∂kg
D
ij = ΓDijk + ΓD∗ijk.

We prove in following that the two tensors GD and TD derived from the KL-
divergence are therefore invariant.

Theorem 4.3. The invariant tensors derived from the Kullback-Leibler divergence in

the manifold of normal distributions are given by

gDij = gij and TDijk = −Tijk.

Proof. The proof of the �srt part of the theorem 4.3 consists in comparing the propo-
sition 3.6 and the proposition 3.2. At the second part of the proof, we compute the
tensors TDijk by using the formula 4.5 of the dual a�ne connections with respect to the
metric gD and we obtain that
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• TD111 = TD122 = TD212 = TD221 = 0;

• TD112 = TD121 = TD211 = − 2
σ3 ;

• TD222 = − 8
σ3 .

We conlude by comparing these results with the second part of the proposition 3.2.

Remark 4.4. Considering the results in theorem 4.3, we see that the α-geometry of

the statistical manifold of normal distributions of probabilities is indexed by α = −1.

The remark 4.4 leads to the following result.

Proposition 4.5. The statistical manifold of normal distributions of probabilities is

−1-�at and its −1-Gaussian curvature vanishes.

Proof. We have to compute the formula (4.3) of the α-curvature tensor and the formula
of the α-Gaussian curvature de�ned by

K(α) =
R

(α)
1212

det(gij)
.

The formulas (4.1) and (4.2) imply that Γ
(−1)
ijk = Γ

(1)
ijk + Tijk. The computation of the

Levi-Civita coe�cients Γ
(0)
ijk are easy and we obtain:

• Γ
(0)
111 = Γ

(0)
212 = Γ

(0)
221 = 0;

• Γ
(0)
112 = 1

σ3 ;

• Γ
(0)
121 = Γ

(0)
211 = − 1

σ3 ;

• Γ
(0)
122 = Γ

(0)
222 = − 2

σ3 .

The computation of Γ
(−1)
ijk coe�cients are so obtained and we have

• Γ
(−1)
111 = Γ

(−1)
112 = Γ

(−1)
212 = Γ

(−1)
221 = 0;

• Γ
(−1)
121 = Γ

(−1)
211 = Γ

(−1)
122 = − 2

σ3 ;

• Γ
(−1)
222 = − 6

σ3 .
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The −1-curvature R
(−1)l
ijk is equal to zero and so the numerator of the formula

K(−1) =
R

(−1)
1212

det(gij)

can be computed and it is equal to zero. This induces that the statistical manifold of
normal distributions of probabilities is −1-�at and the −1-Gaussian curvature vanishes.

5 Isometries on the statistical manifold

We investigate that the component functions of a Killing vector �eld for the Fisher
information metric on the statistical manifold of normal distributions of probabilities
are harmonic conjugate. In particular, they are both harmonic functions.

Our goal is to describe the form of Killing vector �elds in the manifold of normal
distributions of probabilities and then to integrate them to obtain local isometries.

De�nition 5.1. Let (M, g) be a Riemann manifold. A Killing vector �eld is a vector

�eld X on M satisfying the condition that the Lie derivative of g with respect to X

vanishes, i.e.,

LXg = 0. (5.1)

For a Killing vector �eld X, for each openset U ⊂ M and p ∈ M , the �ow
φt : Up → φt(Up) generated by X, satisfying φ0(p) = p and d

dt
(φt(p)) = X(φt(p)), is a

familly of isometries, i.e,
φ∗tg = g, (5.2)

for all t such that φt is de�ned. The Killing vector �elds [5] are also known as in�nites-
imal isometries, a terminology that arises from the idea of integrating vectors �elds to
obtain isometries.

The following proposition [5] illustrates the Killing vector �eld condition in local
coordinates, expressing it as a system of �srt-order linear partial di�erential equations.

Proposition 5.2. Let (x1, . . . , xn) be a system of coordiantes on a domain U with

corresponding basis {(∂i)p := ∂
∂xi
|p} of Tp(Rn). Let g be a Riemannian metric tensor

with components [gij]. Then X =
∑
X i∂i is a Killing vector �eld if and only if the

components X i satisfy the
n(n+1)

2
partial di�erential equations

n∑
k=1

(
Xk ∂gij

∂xk
+ gjk

∂Xk

∂xi
+ gik

∂Xk

∂xj

)
= 0, i, j = 1, . . . , n, i ≤ j.
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Proof. Let X =
∑n

j=1X
j∂j be smooth vector �eld on Rn. For all i = 1, . . . , n, by using

the de�nition of the Lie derivative and by calculating the e�et of the operator LX∂i on
an arbitrary smooth function f : Rn → R at a point x ∈ Rn , we can show that

LX(
∂

∂i
) = −

n∑
j=1

∂Xj

∂xi

∂

∂j
.

So, in the same way, we can show that

LX(dxi) =
n∑
j=1

∂X i

∂xj
dxj = dX i. (5.3)

The formula (5.3) and the formula of the Lie derivative [5] of a k-form α with respect
to a vector �eld X lead us to show that for every j, k = 1, . . . , n,

LX(dxj ⊗ dxk) =
n∑
r=1

(
∂Xj

∂xr
dxr ⊗ dxk +

∂Xk

∂xr
dxj ⊗ dxr

)
. (5.4)

In particular, if we compute the formula of the Lie derivative of (0, 2)-tensor g =∑
i,j gijdxi ⊗ dxj with respect to a vector �eld X, then we obtain that

LXg =
∑
i,j

hijdxi ⊗ dxj,

where

hij =
n∑
k=1

(
Xk ∂gij

∂xk
+ gkj

∂Xk

∂xi
+ gik

∂Xk

∂xj

)
.

It is obvious that LXg = 0 if the expression hij = 0.

We have now su�cient ingredients to describe the form of Killing vector �elds in
the manifold of normal distributions of probabilities.

Proposition 5.3. The Killing vector �eld for the Fisher information metric on the

statistical manifold of normal distributions of probabilities is given by

X(µ, σ) = (µ2 − σ2)
∂

∂µ
+ µσ

∂

∂σ
.

Proof. Let X = X1 ∂
∂µ

+X2 ∂
∂σ

be a vector �eld on the statistical manifold of Gaussian

distributions of probabilities S. We must compute the components X1 and X2 of X.
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If we apply the result in the proposition 5.2 for the Fisher information metric

(gij) =

(
1
σ2 0
0 2

σ2

)
and after computations, we obtain

1

σ2

(
∂X1

∂σ
+ 2

∂X2

∂µ

)
− 3

σ3

(
X2 − 2

3
σ
∂X1

∂µ

)
− 3

σ3

(
X2 − 4

3
σ
∂X2

∂σ

)
= 0.

Noting that σ 6= 0, this relation implies the following system{
∂X1

∂σ
+ 2∂X

2

∂µ
= 0

∂X1

∂µ
− 2∂X

2

∂σ
= 0.

(5.5)

If we set X ′2 = 2X2 then the system 5.5 can be written as follow{
∂X1

∂σ
+ ∂X′2

∂µ
= 0

∂X1

∂µ
− ∂X′2

∂σ
= 0.

(5.6)

This means that the components X1 and X ′2 of the Killing vector �eld of the Fisher in-
formation metric are harmonic conjugates. In particular, they are harmonic functions,
i.e., they satisfy Laplace's equation{

∂2X1

∂µ2
+ ∂2X1

∂σ2 = 0
∂2X′2

∂µ2
+ ∂2X′2

∂σ2 = 0.
(5.7)

Then, the announced form of the Killing vector �eld follows.

Integrating such vector �elds to come up with a local isometry in closed form is
impratical. However, one of a wide variety of computer software, for example Mathe-
matica or MathLab can illustrate �ow lines in these cases.
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