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ABSTRACT 

In this paper, we study to solve the Hyers - Ulam - Rassias stability of 

homomorphisms in quasi - Banach algebras, associated to additive functional 

equation with 2k-variables. First are investigated results the Hyers-Ulam-Rassias 

stability of homomorphisms in quasi - Banach algebras, and last are investigated 

isomorphisms between quasi - Banach algebras. Then I will show that the solutions 

of equation are additive mapping. These are the main results of this paper. 
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1.INTRODUCTION 

Let X and Y be a normed spaces on the same field 𝕂, and 𝑓: 𝑋 →  𝑌 be a mapping. We use the notation 

‖. ‖𝒙 (‖. ‖𝒚) for corresponding the norms on X and Y. In this paper, we investigate the stability of 

homomorphisms when X is a quasi-normed algebras with quasi-norm ‖. ‖ and that Y is a p- Banach algebras with 

p-norm ‖. ‖𝒚. In fact, when X is a quasi-normed algebras with quasi-norm ‖. ‖𝒙  and that Y is a p-Banach algebras 

with p-norm ‖. ‖𝒚 we solve and prove the Hyers-Ulam-Rassias type stability of Homomorphisms-Isomorphisms 

in quasi-Banach algebras, associated to the Cauchy type additive functional equation and Jensen type functional 

equation 

𝑓 (∑ 𝑥𝑗
𝑘
𝑗=1 +

1

𝑘
∑ 𝑥𝑘+𝑗

𝑘
𝑗=1 ) = ∑ 𝑓(𝑥𝑗) + ∑ 𝑓(

 𝑥𝑘+𝑗

𝑘

𝑘
𝑗=1

𝑘
𝑗=1 )    (1.1) 

2𝑘𝑓 (
1

2𝑘
∑ 𝑥𝑗

𝑘
𝑗=1 +

1

2𝑘2
∑ 𝑥𝑘+𝑗

𝑘
𝑗=1 ) = ∑ 𝑓(𝑥𝑗) + ∑ 𝑓(

 𝑥𝑘+𝑗

𝑘

𝑘
𝑗=1

𝑘
𝑗=1 )    (1.2) 

The study the stabilityof homomorphisms in quasi-Banach algebras originated from a question of S.M. Ulam [22], 

concerning the stability of group homomorphisms.  

Let (𝑮,∗) be a group and let (𝑮′, 𝑜, 𝑑) be a metric group with metric 𝑑(. , . ). Geven 𝜖 >  0, does there exist a 𝛿 >

0 such that if 𝒇: 𝑮 →  𝑮′ satisfies 

𝑑(𝑓(𝑥 ∗ 𝑦), 𝑓(𝑧)𝑜𝑓 (𝑦)) <  𝛿, ∀𝑥 ∈ 𝑮 
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then there is a homomorphism h : G → G′ with

d

(
f
(
x
)
, h
(
x
))

< ε,∀x ∈ G

Hyers gave a first affirmative answes the question of Ulam as follows:
D. H. Hyers [10] Let ε ≥ 0 and let f : E1 → E2 be a mapping between Banach space and
f satisfty Hyers inequality

∥∥∥f
(
x + y

)
− f

(
x
)
− f
(
y
)∥∥∥ ≤ ε,

for all x, y ∈ E1 and some ε ≥ 0. It was shown that the limit

T
(
x
)

= lim
n→∞

f
(
2nx
)

2n

exists for all x ∈ E1 and that T : E1 → E2 is that unique additive mapping satisfying
∥∥∥f
(
x
)
− T

(
x
)∥∥∥ ≤ ε,∀x ∈ E1.

If f
(
tx
)

is continuous in the real variable t for each fixed x ∈ E1, then T is linear, and
if f is continuous at a single point of E1 then T : E1 → E2 is also continuous.
Next
Result was proved by J.M. Rassias [18]. J.M. Rassias assumed the following weaker
inequality

∥∥∥∥∥f
(
x + y

)
− f

(
x
)
− f

(
y
)∥∥∥∥∥ ≤

∥∥∥x
∥∥∥

p∥∥∥y
∥∥∥

p

,∀x, y ∈ E1

where θ > 0 and real p, q such that r = p + q 6= 1, and retained the condition of

continuity f
(
tx
)

in t for fixed x.

And J.M. Rassias [19] investigated that it is possible to replace in the above Hyers in-
equality by a non-negative real-valued function such that the pertinent series converges
and other conditions hold and still obtain stability results. The stability phenomenon that
was introduced and proved by J.M. Rassias is called the Hyers-Ulam-Rassias stability.

The stability problems for several functional equations have been extensively investi-
gated by a number of authors and and there are many interesting results concerning this
probem. Such as in 2002, Rassias in [17] considered and invetigated quadratic equation
involving a product of powers of norms in which an approximate quadratic mapping de-
generates to genuine quadratic mapping
next in 2008 Choonkil Park [12] have established the and investigateed the Hyers−Ulam−
Rassias stability of homomorphisms in quasi-Banach algebras the following Cauchy func-
tional equation and Jensen functional equation

f
(
x + y

)
= f

(
x
)

+ f
(
y
)

2f
(x + y

2

)
= f

(
x
)

+ f
(
y
)
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. Recently, in [3-6,12] the authors studied the on Hyers-Ulam-Rassias type stability of
homomorphisms-isomorphisms in quasi-Banach algebras, associated to the Cauchy type
following additive functional equation and Jensen type additive functional equation.

f

(
k∑

j=1

xj +
1

k

k∑

j=1

xk+j

)
=

k∑

j=1

f
(
xj

)
+

k∑

j=1

f

(
xk+j

k

)

and

2kf

(
1

2k

k∑

j=1

xj +
1

2k2

k∑

j=1

xk+j

)
=

k∑

j=1

f
(
xj

)
+

k∑

j=1

f

(
xk+j

k

)

,

ie the functional equation with 2k-variables. Under suitable assumptions on spaces X
and Y, we will prove that the mappings satisfying the functional (1.1) and (1.2). Thus,
the results in this paper are generalization of those in [ 12] for functional equation with
2k-variables.
The paper is organized as followns:

In section preliminarie we remind some basic notations in [2,13,14,15,17,18,22] such as
quasi-Banach algebras, p-Banach algebras, some theorems real normed linear space, real
complete normed linear space and solutions of the Cauchy function equation.

Section 3 is devoted to prove the Hyers-Ulam-Rassias type stabilityof homomorphims
in quasi-Banach algebras of the Cauchy type additive functional equation (1.1) when X
is a quasi-normed algebras with quasi-norm

∥∥ ·
∥∥
X

and that Y is a p − Banach algebras

with p-norm
∥∥ ·
∥∥

Y
.

Section 4 is devoted to prove the Hyers−Ulam−Rassias type stability of isomorphims
between quasi-Banach algebras of the Cauchy type additive functional equation (1.1) and
Jensen type additive functional equation (1.2) and when X is a quasi-normed algebras
with quasi-norm

∥∥ ·
∥∥
X

and that Y is a p − Banach algebras with p-norm
∥∥ ·
∥∥

Y
.

2. preliminaries

2.1. Banach spaces-Quasi-normed space-Quasi-Banach algebras.

Definition 2.1. Let
{
xn

}
be a sequence in a normed space X.

(1) A sequence
{
xn

}∞

n=1
in a space X is a Cauchy sequence iff the sequence

{
xn+1 −

xn

}∞

n=1
converges to zero.

(2) The sequence
{
xn

}∞

n=1
is said to be convergent if, for any ε > 0, there are a

positive integer N and x ∈ X such that
∥∥∥xn − x

∥∥∥ ≤ ε.∀n ≥ N,

for all n,m ≥ N. Then the point x∈ X is called the limit of sequence xn and
denote limn→∞ xn = x.
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(3) If every sequence Cauchy in X converger, then the normed space X is called a
Bnanch space.

Definition 2.2. Let X be a real linear space. A quasi-norm is a real-valued function on
X satisfying the following :

(1)
∥∥∥x
∥∥∥ ≥ 0 for all x ∈ X and

∥∥∥x
∥∥∥ = 0 if and only if x = 0.

(2)
∥∥λx

∥∥ =
∣∣∣λ
∣∣∣
∥∥∥x
∥∥∥ for all λ ∈ R and all x ∈ X.

(3) There is a constant K ≥ 1 such that∥∥∥x + y
∥∥∥ ≤ K

(∥∥∥x
∥∥∥+

∥∥∥y
∥∥∥
)
,∀x, y ∈ X.

The pair

(
X,
∥∥∥ ·
∥∥∥
)

is called a quasi-normed space if
∥∥∥ ·
∥∥∥ is a quasi-norm on X.

The smallest possible K is called the modulus of concavity of
∥∥∥·
∥∥∥. A quasi-Banach

space is a complete quasi-normed space.

A quasi-norm
∥∥∥ ·
∥∥∥ is called a p − norm

(
0 < p ≤ 1

)
if

∥∥∥x + y
∥∥∥

p

≤
∥∥∥x
∥∥∥

p

+
∥∥∥y
∥∥∥

p

∀x, y ∈ X.

In this case, a quasi-Banach space is called is called a p − Banach space

Definition 2.3. Let

(
X,
∥∥∥ ·
∥∥∥
)

be a quasi-normed space. The quasi-normed space
(

X,
∥∥∥ ·
∥∥∥
)

is called a quasi-normed algebras if X is an algebras and there is a constan

C > 0 such that ∥∥∥x.y
∥∥∥ ≤

∥∥∥x
∥∥∥
∥∥∥y
∥∥∥

A quasi-Banach algebras is a complete quasi-normed algebras. If the quasi-norm
∥∥∥ ·
∥∥∥ is

a p-norm then quasi-Banach is called p-Banach algebras.

2.2. Some theorems real normed linear space-Real complete normed linear
space.

Theorem 2.4. Let E be real normed linear space and E′ a real complete normed linear
space. Assume that f : E → E′ is an appproximately additive mapping for which there

existis constans θ ≥ 0 and p ∈ R − {1} such that f
(
x
)

satistify inequality
∥∥∥∥∥f
(
x + y

)
− f

(
x
)
− f

(
y
)∥∥∥∥∥ ≤ θ

∥∥∥x
∥∥∥

p
2
∥∥∥y
∥∥∥

p
2
,∀x, y ∈ E.

then there exists a unique additive mapping linear T : E → E′ satifies∥∥∥∥∥f
(
x
)
− L

(
x
)∥∥∥∥∥ ≤ θ

2p − 2
‖x‖p, x ∈ E.

If , in addition f : E → E′ is a transformation t → f
(
tx
)

is continous in t ∈ R for each
fixed x ∈ E, then T is an R-linear mapping.
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Theorem 2.5. Let E be real normed linear space and E′ a real complete normed linear
space. Assume that f : E → E′ is an appproximately additive mapping for which there

existis constans θ ≥ 0 such that f
(
x
)

satistify inequality
∥∥∥∥∥f
(

n∑

i=1

xi

)
−

n∑

i=1

f
(
xi

)∥∥∥∥∥ ≤ θK
(
x1, x2, ..., xn

)
.

(
x1, x2, ..., xn

)
∈ E and K : En → R+ − {0} is a non-negative real -valued function such

that

Rn

(
x
)

=
n∑

i=1

1

nj
K
(
njx1, n

jx2, ..., n
jxn

)
< ∞

is a non-negative function of x, and the condition

lim
m→∞

1

nm
K
(
nmx1, n

mx2, ..., n
mxn

)
= 0

holds then there exists a unique additive mapping Tn : E → E′ satifies∥∥∥∥∥f
(
x
)
− Tn

(
x
)∥∥∥∥∥ ≤ θ

n
Rn

(
x
)
, x ∈ E.

If , in addition f : E → E′ is a transformation t → f
(
tx
)

is continous in t ∈ R for each
fixed x ∈ E, then T is an R-linear mapping.

Theorem 2.6. Let E be real normed linear space and E′ a real complete normed linear
space. Assume that f : E → E′ is an appproximately additive mapping for which there
existis constans θ ≥ 0 and p, q ∈ R such that p + q 6= 1 and f satistify inequality

∥∥∥f
(
x + y

)
− f

(
x
)
− f
(
y
)∥∥∥ ≤ θ

∥∥∥x
∥∥∥

p∥∥∥y
∥∥∥

q

,∀x, y ∈ E.

then there exists a unique additive mapping linear T : E → E′ satifies
∥∥∥f
(
x
)
− L

(
x
)∥∥∥ ≤ θ

2p − 2
‖x‖p, x ∈ E.

If , in addition f : E → E′ is a transformation t → f
(
tx
)

is continous in t ∈ R for each
fixed x ∈ E, then T is an R-linear mapping.

2.3. Solutions of the equation. The functional equation

f
(
x + y

)
= f

(
x
)

+ f
(
y
)

is called the Cauchuy equation. In particular, every solution of the cauchuy equation is
said to be an additive mapping.

3. Stability of equation

Now, we first study the solutions of (1.1). Note that for (1.1), when X is a quasi-normed
algebras with quasi-norm

∥∥ ·
∥∥

X
and that Y is a p−Banach algebras with p-norm

∥∥ ·
∥∥

Y
.

Under this setting, we can show that the mapping satisfying (1.1) is additive. These
results are give in the following.
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Theorem 3.1. Let r > 1 and θ be positive real numbers,and f : X → Y be a mapping
such that∥∥∥∥∥f

(
k∑

j=1

xj +
1

k

k∑

j=1

xk+j

)
−

k∑

j=1

f
(
xj

)
−

k∑

j=1

f

(
xk+j

k

)∥∥∥∥∥
Y

≤ θ

(
k∏

j=1

∥∥∥xj

∥∥∥
r

X
+

k∏

j=1

∥∥∥xk+j

∥∥∥
r

X

)
(3.1)

∥∥∥∥∥f
(
xy
)
− f
(
x
)
f
(
y
)∥∥∥∥∥

Y

≤ θ
∥∥∥x
∥∥∥

r

X

∥∥∥y
∥∥∥

r

X
(3.2)

for all x, y, xj, xk+j ∈ X for all j = 1 → k. If f
(
tx
)

is continuous in t ∈ R each fixed
x ∈ X, then there exists a unique homomorphism H : X → Y such that

∥∥∥f
(
x
)
−H

(
x
)∥∥∥

Y
≤ θ
((

2k
)pr

−
(
2k
)p
) 1

p

∥∥∥x
∥∥∥

kr

,∀x ∈ X. (3.3)

Proof. Letting xj = x, xk+j = kx for all j = 1 → k by the hypothesis (3.1), we have
∥∥∥∥∥f
(
2kx

)
− 2kf

(
x
)∥∥∥∥∥

Y

≤
(
1 + kkr

)
θ
∥∥∥x
∥∥∥

kr

X
. (3.4)

for all x ∈ X. So

∥∥∥∥∥f
(
x
)
− 2kf

(
x

2k

)∥∥∥∥∥
Y

≤
(
1 + kkr

) θ
(
2k
)kr

∥∥∥x
∥∥∥

kr

X
.

for all x ∈ X. Sence Y is a p − Banach algebra,∥∥∥∥∥
(
2k
)l

f

(
x

(
2k
)l

)
−
(
2k
)m

f

(
x(

2k
)m

)∥∥∥∥∥

p

Y

≤
m−1∑

j=l

∥∥∥∥∥
(
2k
)j

f

(
x

(
2k
)j

)
−
(
2k
)j+1

f

(
x

(
2k
)j+1

)∥∥∥∥∥

p

Y

≤
(
1 + kkr

)p θp

(
2k
)kpr

k∑

m=1

(
2k
)pj

(
2k
)pkrj

∥∥∥x
∥∥∥

pkr

. (3.5)

for all x ∈ X. Sence Y is a p − Banach algebras

for all nonnegative integers m and l with m > l and ∀x ∈ X. It follows from (3.5)

that the sequence

{(
2k
)n

f

(
x(

2k

)n

)}
is a cauchy sequence for all x ∈ X. Since Y is

Vol.9.Issue.3.2021 (July-Sept)                                                                                           Bull.Math.&Stat.Res (ISSN:2348-0580)

LY VAN AN                                                                                                                                                    34



complete, the sequence

{(
2k
)n

f

(
x(

2k

)n

)}
coverges.

So one can define the mapping H : X → Y by

H
(
x
)

:= lim
n→∞

(
2k
)n

f

(
x(

2k
)n
)

for all x ∈ X. It follows from (3.1) that
∥∥∥∥∥H
(

k∑

j=1

xj +
1

k

k∑

j=1

xk+j

)
−

k∑

j=1

H
(
xj

)
−

k∑

j=1

H

(
xk+j

k

)∥∥∥∥∥
Y

= lim
n→∞

(
2k
)n

∥∥∥∥∥f
[

1(
2k
)n

(
n∑

j=1

xj +
1

k

n∑

j=1

xk+j

)]
−

k∑

j=1

f

(
1(

2k
)n xj

)

−
k∑

j=1

f

(
1(

2k
)n

xk+j

k

)∥∥∥∥∥
Y

≤ lim
n→∞

θ
(
2k
)n

(
2k
)nr

(
k∏

j=1

∥∥∥xj

∥∥∥
r

X
+

k∏

j=1

∥∥∥xk+j

∥∥∥
r

X

)

= 0,

and so for all xj, xk+j ∈ X for all j = 1 → k.

H

(
k∑

j=1

xj +
1

k

k∑

j=1

xk+j

)
=

k∑

j=1

H
(
xj

)
+

k∑

j=1

H

(
xk+j

k

)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (3.5), we get (3.3).
By the same reasoing as in the proof of Theorem of [16], the mapping H1 : X → Y is
R − linear
It follows from (3.2) that
∥∥∥∥∥H
(
xy
)
− H

(
x
)
H
(
y
)
∥∥∥∥∥

Y

= lim
n→∞

(
2k
)2n

∥∥∥∥∥f
(

x + y(
2k
)n(

2k
)n

)
− f

(
x(

2k
)n

)
· f
(

y(
2k
)n

)∥∥∥∥∥
Y

≤ lim
n→∞

(
2k
)2n

θ
(
2n
)2nr

∥∥∥x
∥∥∥

r

X

∥∥∥y
∥∥∥

r

X
= 0

∀x, y ∈ X.

So

H
(
xy
)

= H
(
x
)
H
(
y
)

∀x, y ∈ X.
Now we prove the uniqueness of H. Assume that H1 : X → Y is an additive mapping
satisfing (3.3). Then we have
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∥∥∥∥∥H
(
x
)
−H1

(
x
)∥∥∥∥∥

Y

=
(
2k
)n

∥∥∥∥∥H
(

1(
2k
)n x

)
+ H1

(
1(

2k
)n x

)∥∥∥∥∥
Y

≤
(
2k
)n

K

(∥∥∥∥∥H
(

1(
2k
)n x

)
− f

(
1(

2k
)n x

)∥∥∥∥∥
Y

+

∥∥∥∥∥f
(

1(
2k
)n x

)
+ H1

(
1(

2k
)n x

)∥∥∥∥∥
Y

)

≤
2
(
2k
)n(

1 + kk
)
θ

((
2k
)pr

−
(
2k
)p
) 1

p

1(
2k
)nr

∥∥∥x
∥∥∥

kr

X

. which tends to zero asn → ∞ for all x ∈ X. So we can conclude that H
(
x
)

= H1

(
x
)

for
all x ∈ X. This proves the uniqueness of H. Thus the mapping H1 : X → Y is a unique
homomorphism satisfying (3.3). �

Theorem 3.2. Let r < 1
2

and θ be positive real numbers,and f : X → Y be a mapping
such that

∥∥∥∥∥f
(

k∑

j=1

xj +
1

k

k∑

j=1

xk+j

)
−

k∑

j=1

f
(
xj

)
−

k∑

j=1

f

(
xk+j

k

)∥∥∥∥∥
Y

≤ θ

(
k∏

j=1

∥∥∥xj

∥∥∥
r

X
+

k∏

j=1

∥∥∥xk+j

∥∥∥
r

X

)
(3.6)

∥∥∥∥∥f
(
xy
)
− f
(
x
)
f
(
y
)∥∥∥∥∥

Y

≤ θ
∥∥∥x
∥∥∥

r

X

∥∥∥y
∥∥∥

r

X
(3.7)

for all x, y, xj, xk+j ∈ X for all j = 1 → k. If f
(
tx
)

is continuous in t ∈ R each fixed
x ∈ X, then there exists a unique homomorphism H : X → Y such that

∥∥∥f
(
x
)
−H

(
x
)∥∥∥

Y
≤ θ
((

2k
)p

−
(
2k
)pr
) 1

p

∥∥∥x
∥∥∥

kr

,∀x ∈ X. (3.8)

The rest of the proof is similar to the proof of theorem 3.1.

We prove the Hyers − Ulam − Rassias stability of homomorphisms in quasi-Banach
algebras, associated to the Jensen functional equation type.
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Theorem 3.3. Let r < 1
2

and θ be positive real numbers,and f : X → Y be a mapping

with f
(
0
)

= 0 such that

∥∥∥∥∥2kf

(
1

2k

k∑

j=1

xj +
1

2k2

k∑

j=1

xk+j

)
−

k∑

j=1

f
(
xj

)
−

k∑

j=1

f

(
xk+j

k

)∥∥∥∥∥
Y

≤ θ

(
k∏

j=1

∥∥∥xj

∥∥∥
r

X
+

k∏

j=1

∥∥∥xk+j

∥∥∥
r

X

)
(3.9)

∥∥∥∥∥f
(
xy
)
− f
(
x
)
f
(
y
)∥∥∥∥∥

Y

≤ θ
∥∥∥x
∥∥∥

r

X

∥∥∥y
∥∥∥

r

X
(3.10)

for all x, y, xj, xk+j ∈ X for all j = 1 → k. If f
(
tx
)

is continuous in t ∈ R each fixed
x ∈ X, then there exists a unique homomorphism H : X → Y such that

∥∥∥f
(
x
)
− H

(
x
)∥∥∥

Y
≤

Kθ
(
3kr + 1

)
(
3p − 3pkr

) 1
p

∥∥∥x
∥∥∥

kr

X
,∀x ∈ X. (3.11)

Proof. Letting xj = −x, xk+j = kx for all j = 1 → k by the hypothesis (3.9), we have

∥∥∥∥∥−kf
(
− x
)
− kf

(
x
)∥∥∥∥∥

Y

≤
(
1 + kkr

)
θ
∥∥∥x
∥∥∥

rk

.

for all x ∈ X. So Letting xk+j = 3kx and replacing xj by −x for all j = 1 → k in the
hypothesis (3.9), we have

∥∥∥∥∥2kf
(
x
)
−kf

(
− x
)
− kf

(
3x
)∥∥∥∥∥

Y

≤
(

1 +
(
3k
)rk
)

θ
∥∥∥x
∥∥∥

kr

.

for all x ∈ X. So

∥∥∥∥∥3kf
(
x
)
− kf

(
3x
)∥∥∥∥∥

Y

≤ K

(
krk
(
3rk + 1

)
+ 2

)
θ
∥∥∥x
∥∥∥

kr

. (3.12)

for all x ∈ X. So

∥∥∥∥∥f
(
x
)
− 1

3
f
(
3x
)∥∥∥∥∥

Y

≤ K

3k

(
krk
(
3rk + 1

)
+ 2

)
θ
∥∥∥x
∥∥∥

kr

.

for all x ∈ X. So
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So ∥∥∥∥∥
1

3l
f

(
3lx

)
− 1

3m
f

(
3mx

)∥∥∥∥∥

p

Y

≤
m−l∑

j=l

∥∥∥∥∥
1

3j
f

(
3jx

)
− 1

3j+1
f

(
3j+1x

)∥∥∥∥∥

p

Y

≤ Kpθp

(
3k
)p

(
1 +

(
3k
)kr

)p m−1∑

j=l

3kjprθ

3pj

∥∥∥x
∥∥∥

kpr

. (3.13)

for all nonnegative integers m and l with m > l and ∀x ∈ X. It follows from (3.13)

that the sequence

{
1
3n f
(
3nx
)}

is a cauchy sequence for all x ∈ X. Since Y is complete

space, the sequence

{
1
3n f
(
3nx
)}

coverges.

So one can define the mapping H : X → Y by

H
(
x
)

:= lim
n→∞

1

3n
f
(
3nx
)
.

for all x ∈ X. By (3.9)
∥∥∥∥∥2kH

(
1

2k

k∑

j=1

xj +
1

2k2

n∑

j=1

xk+j

)
−

k∑

j=1

H
(
xj

)
−

k∑

j=1

H

(
xk+j

k

)∥∥∥∥∥
Y

= lim
p→∞

1

3n

∥∥∥∥∥2kf

(
3n

(
1

2k

k∑

j=1

xj +
1

2k2

k∑

j=1

xk+j

)
−

n∑

j=1

f
(
3nxj

)
−

k∑

j=1

f

(
3n xk+j

k

)∥∥∥∥∥
Y

≤ lim
n→∞

θ
3knr

3n

(
k∏

j=1

∥∥∥xj

∥∥∥
r

+

k∏

j=1

∥∥∥xk+j

∥∥∥
r
)

= 0,

and so for all xj, xj+n ∈ X for all j = 1 → k.

H

(
1

2k

k∑

j=1

xj +
1

2k2

n∑

j=1

xk+j

)
=

1

2k

k∑

j=1

H
(
xj

)
+

1

2k

k∑

j=1

H

(
xk+j

k

)

for all xj, xj+n ∈ X for all j = 1 → k.

Moreover, letting l = 0 and passing the limit m → ∞ in (3.13), we get (3.11).

It follows from (3.2) that
∥∥∥∥∥H
(
xy
)
− H

(
x
)
H
(
y
)
∥∥∥∥∥

Y

= lim
n→∞

1

32n

∥∥∥∥∥f
(
32nx · y

)
− f

(
3nx
)
· f
(
3ny
)∥∥∥∥∥

Y

≤ lim
n→∞

32nθ

3n

∥∥∥x
∥∥∥

r

X

∥∥∥y
∥∥∥

r

X
= 0

∀x, y ∈ X.
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So

H
(
xy
)

= H
(
x
)
H
(
y
)

∀x, y ∈ X.
Now we prove the uniqueness of H. Assume that H1 : X → Y is an additive mapping
satisfing (3.11). Then we have

∥∥∥∥∥H
(
x
)
− H1

(
x
)∥∥∥∥∥

p

Y

=
1

3np

∥∥∥∥∥H
(
3nx
)
− H1

(
3ny
)∥∥∥∥∥

p

Y

≤ 1

3np

(∥∥∥∥∥H
(
3nx
)
− f

(
3nx
)∥∥∥∥∥

p

Y

+

∥∥∥∥∥f
(
3nx
)

+ H1

(
3nx
)∥∥∥∥∥

p

Y

)

≤ 2
3pnrk

3pn

(
1 + 3kr

)p

θp

(
3p − 3pkr

) 1
p

∥∥∥x
∥∥∥

pkr

X

. which tends to zero as n → ∞ for all x ∈ X. So we can conclude that H
(
x
)

= H1

(
x
)

for all x ∈ X. This proves the uniqueness of H.

�

Theorem 3.4. Let r > 1 and θ be positive real numbers,and f : X → Y be a mapping
with f

(
0
)

= 0 such that
∥∥∥∥∥2kf

(
1

2k

k∑

j=1

xj +
1

2k2

k∑

j=1

xk+j

)
−

k∑

j=1

f
(
xj

)
−

k∑

j=1

f

(
xk+j

k

)∥∥∥∥∥
Y

≤ θ

(
k∏

j=1

∥∥∥xj

∥∥∥
r

X
+

k∏

j=1

∥∥∥xk+j

∥∥∥
r

X

)
(3.14)

∥∥∥∥∥f
(
xy
)
− f
(
x
)
f
(
y
)∥∥∥∥∥

Y

≤ θ
∥∥∥x
∥∥∥

r

X

∥∥∥y
∥∥∥

r

X
(3.15)

for all x, y, xj, xk+j ∈ X for all j = 1 → k. If f
(
tx
)

is continuous in t ∈ R each fixed
x ∈ X, then there exists a unique homomorphism H : X → Y such that

∥∥∥f
(
x
)
− H

(
x
)∥∥∥

Y
≤

Kθ
(
3kr + 1

)
(
3pkr − 3p

) 1
p

∥∥∥x
∥∥∥

kr

X
,∀x ∈ X. (3.16)

The rest of the proof is similar to the proof of theorem 3.3.
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4. Isomorphisms between quasi-Banach algebras.

Now, we first study the solutions of (1.1) and (1.2). Note that for (1.1), (1.2) when X is
a quasi-normed algebras with quasi-norm

∥∥ ·
∥∥

X
and that Y is a p- Banach algebras with

p-norm
∥∥ ·
∥∥
Y

. Under this setting, we can show that the mapping satisfying (1.1),(1.2).
These results are give in the following.

Theorem 4.1. Let r > 1 and θ be positive real numbers,and f : X → Y be a mapping
satisfying

∥∥∥∥∥f
(

k∑

j=1

xj +
1

k

k∑

j=1

xk+j

)
−

k∑

j=1

f
(
xj

)
−

k∑

j=1

f

(
xk+j

k

)∥∥∥∥∥
Y

≤ θ

(
k∏

j=1

∥∥∥xj

∥∥∥
r

X
+

k∏

j=1

∥∥∥xk+j

∥∥∥
r

X

)
(4.1)

such that

f
(
xy
)

= f
(
x
)
f
(
y
)

(4.2)

for all x, y, xj, xk+j ∈ X for all j = 1 → k. If f
(
tx
)

is continuous in t ∈ R each fixed
x ∈ X, and

lim
n→∞

(
2k
)n

f
( e(

2k
)n
)

= e′ (4.3)

then the mapping f : X → Y is an Isomorphism

Proof. Sence f
(
xy
)
− f

(
x
)
f
(
y
)

= 0 for all x, y ∈ X, the mapping f : X → Y satisfies

(3.2). By Theorem 3.1, there exists a homomorphism H : X → Y defined by

H
(
x
)

= lim
n→∞

(
2k
)n

f
( x(

2k
)n
)
,∀x ∈ X

It follows from (4.2) that

H
(
x
)

= H
(
ex
)

= lim
n→∞

(
2k
)n

f
( ex(

2k
)n

)
= lim

n→∞

(
2k
)n

f
( e(

2k
)n · x

)

= lim
n→∞

(
2k
)n

f
( e(

2k
)n

)
· f
(
x
)

= e′ · f
(
x
)

= f
(
x
)
,∀x ∈ X

∀x ∈ X. So the bijective mapping f : X →
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Theorem 4.2. Let r < 1 and θ be positive real numbers,and f : X → Y be a mapping
satisfying

∥∥∥∥∥f
(

k∑

j=1

xj +
1

k

k∑

j=1

xk+j

)
−

k∑

j=1

f
(
xj

)
−

k∑

j=1

f

(
xk+j

k

)∥∥∥∥∥
Y

≤ θ

(
k∏

j=1

∥∥∥xj

∥∥∥
r

X
+

k∏

j=1

∥∥∥xk+j

∥∥∥
r

X

)
(4.4)

such that

f
(
xy
)

= f
(
x
)
f
(
y
)

(4.5)

for all x, y, xj, xk+j ∈ X for all j = 1 → k. If f
(
tx
)

is continuous in t ∈ R each fixed
x ∈ X, and

lim
n→∞

1(
2k
)n f

((
2k
)n

e
)

= e′ (4.6)

then the mapping f : X → Y is an Isomorphism.

The rest of the proof is similar to the proof of theorem 4.1.

Theorem 4.3. Let r < 1 and θ be positive real numbers,and let f : X → Y be a bijective
mapping with f

(
0
)

= 0 satisfying

∥∥∥∥∥2kf

(
1

2k

k∑

j=1

xj +
1

2k2

k∑

j=1

xk+j

)
−

k∑

j=1

f
(
xj

)
−

k∑

j=1

f

(
xk+j

k

)∥∥∥∥∥
Y

≤ θ

(
k∏

j=1

∥∥∥xj

∥∥∥
r

X
+

k∏

j=1

∥∥∥xk+j

∥∥∥
r

X

)
(4.7)

and

f
(
xy
)

= f
(
x
)
f
(
y
)

(4.8)

for all x, y, xj, xk+j ∈ X for all j = 1 → k. If f
(
tx
)

is continuous in t ∈ R each fixed
x ∈ X, and

lim
n→∞

1

3n
f
(
3ne
)

= e′ (4.9)

then the mapping f : X → Y is an Isomorphism
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Proof. Sence f
(
xy
)
− f

(
x
)
f
(
y
)

= 0 for all x, y ∈ X, the mapping f : X → Y satisfies

(3.2). By Theorem 3.3, there exists a homomorphism H : X → Y satisfying (3.11). The
mapping H : X → Y is defined by

H
(
x
)

= lim
n→∞

1

3n
f
(
3nx
)
,∀x ∈ X

It follows from (4.2) that

H
(
x
)

= H
(
ex
)

= lim
n→∞

1

3n
f
(
3nex

)
= lim

n→∞

1

3n
f
(
3ne · x

)

= lim
n→∞

1

3n
f
(
3ne
)
· f
(
x
)

= e′ · f
(
x
)

= f
(
x
)
,∀x ∈ X

∀x ∈ X. So the bijective mapping f : X → Y is an isomorphism. �

Theorem 4.4. Let r > 2 and θ be positive real numbers,and let f : X → Y be a bijective
mapping with f

(
0
)

= 0 satisfying
∥∥∥∥∥2kf

(
1

2k

k∑

j=1

xj +
1

2k2

k∑

j=1

xk+j

)
−

k∑

j=1

f
(
xj

)
−

k∑

j=1

f

(
xk+j

k

)∥∥∥∥∥
Y

≤ θ

(
k∏

j=1

∥∥∥xj

∥∥∥
r

X
+

k∏

j=1

∥∥∥xk+j

∥∥∥
r

X

)
(4.10)

and

f
(
xy
)

= f
(
x
)
f
(
y
)

(4.11)

for all x, y, xj, xk+j ∈ X for all j = 1 → k. If f
(
tx
)

is continuous in t ∈ R each fixed
x ∈ X, and

lim
n→∞

3nf
( 1

3n
e
)

= e′ (4.12)

then the mapping f : X → Y is an Isomorphism

The rest of the proof is similar to the proof of theorem 4.1.
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[9] Pascus. Găvruta, A generalization of the Hyers-Ulam -Rassias stability of approximately ad-
ditive mappings, Journal of mathematical Analysis and Aequations 184 (3) (1994), 431-436.
https://doi.org/10.1006/jmaa.1994.1211 .

[10] Donald H. Hyers, On the stability of the functional equation, Proceedings of the National Academy
of the United States of America, 27 (4) (1941), 222.https://doi.org/10.1073/pnas.27.4.222,

[11] Choonkil.Park∗. Additive β-functional inequalities, Journal of Nonlinear Science and Appl. 7(2014),
296-310.

[12] Choonkil.Park1. Hyers -Ulam-Rassias stability of homomorphisms in quasi-Banach algebras Bull.
Sci.math.132(2008 87-96).

[13] C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl. 275 (2002)
711-720. States of America, J. Math. Anal. Appl. 275 (2002) 711-720. States of America,,

[14] J.M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct.
Anal. 46 (1982) 126-130. , [15] J.M. Rassias, On approximation of approximately linear mappings
by linear mappings, Bull. Sci. Math. 108 (1984) 445-46.

[15] J.M. Rassias. J.M. Rassias, On approximation of approximately linear mappings by linear mappings,
Bull. Sci. Math. 108 (1984) 445-446..

[16] Themistocles M. Rassias, On the stability of the linear mapping in Banach space, proceedings of the
American Mathematical Society, 27 (1978), 297-300. https: //doi.org/10.2307 /s00010-003-2684-8.

[17] J.M. Rassias, M.J. Rassias, On some approximately quadratic mappings being exactly quadratic, J.
Indian Math. Soc. 69 (2002) 155-160.

[18] J. M. Rassias. Solution of a problem of Ulam, J. Approx. Theory 57 (1989) 268273.
[17] J.M. Rassias, Solution of a stability problem of Ulam, Discuss. Math. 12 (1992) 95103.

[19] J. M. Rassias, Solution of a stability problem of Ulam, Discuss. Math. 12 (1992) 95103.
[22] S. Rolewicz, Metric Linear Spaces, PWN-Polish Sci. Publ., Warszawa, Reidel, Dordrecht, 1984.

[20] S. Rolewicz, Metric Linear Spaces, PWN-Polish Sci. Publ., Warszawa, Reidel, Dordrecht, 1984.
[21] J.M. Rassias,Complete solution of the multi-dimensional problem of Ulam, Discuss. Math. 14 (1994)

101107.
[22] S M. ULam. A collection of Mathematical problems, volume 8, Interscience Publishers. New

York,1960. .

Vol.9.Issue.3.2021 (July-Sept)                                                                                        Bull.Math.&Stat.Res (ISSN:2348-0580)

LY VAN AN                                                                                                                                                            43




