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ABSTRACT 

In this paper, we use the combined dynamic linear model of unequally 

spaced intervals, to find the statistical distributions for the inspection policy 

by terms of time, in the case of unequally spaced intervals. The researcher's 

work focus on the statement of theorem (1) and its proof. In addition to the 

statement of theorem (2), its proof, with find the prediction distribution. The 

results of this paper will be very useful in practical applications. 

Keywords: Dynamic linear Model, Modeling, Production Process, and 

Inspection Policy 

 

1. Introduction 

The application of statistical methods as a scientific basis on the study of the production 

processes was first used in the first quarter of the twentieth century as a result of the development of 

Statistical Theory. It was proposed by the statistician Shewhart who was working in the laboratories 

of telephone bells in America. He tried to make use of his statistical information in finding a way to 

detect defects and changes in the production process. Shewhart was mainly concerned with two 

issues. The first was to detect any lack of control occurring in the production process as quickly as 

possible. The second was to maintain the production process under control (i.e. producing a high 

percentage of acceptable quality materials). To achieve this aim, he introduced an assisting visual 

means called the quality control chart in three research articles. They were published in the Journal 

of the American Statistical Society in 1926 and 1927. The main goal of using this chart was to discover 

the actual abnormal changes in the parameters of the production process. 
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2. Modeling of Production Process 

Two types of changes often take place in the quality of the produced material in any production 

process. The first type is known as sudden changes that cause a change in the level of quality to 

another worse level suddenly. In quality control, it is called jump, and these changes are usually 

significant, resulting from assignable causes in the production process such as a break-in machine part, 

unskilled workers, poor raw material quality, etc. The second type is gradual changes, i.e. slope 

change. These changes are usually minor at the beginning, but over time they turn into significant 

changes such as corrosion of machine parts, useful life factor, gradual change in temperature and 

humidity, etc. In economics, these changes are called trends, and in quality control, they are called 

drift. This methodology can be used in conjunction with the dynamic linear model proposed by 

Harrison and Stevens (1976) and in particular the combined dynamic linear model of unequal time 

intervals where the observation is in unequally spaced intervals with the dynamic linear model 

proposed by Smith (1982). Dropping the restriction of equal periods in the model increases the 

flexibility of its use in the areas of practical life. Assuming that the slope in the level is consistent, the 

growth in the level is proportional with the size of the time intervals between observations, see the 

figure below. 

(Note:  𝑡𝑖 − 𝑡𝑖−1 ≠ 𝑡𝑖+1 − 𝑡𝑖  ,    𝑖=1,2,….) 

 

And that the level slope at time t is expressed as follows: 

𝛽𝑡 =
𝑁𝑡

𝑁𝑡−1
𝛽𝑡−1 

For keeping the linear formula and getting acceptable and accurate results, it is preferable that the 

differences between (𝑁𝑡−1 and 𝑁𝑡) are not large. Because the slope change is possible at any 

moment, the random error 𝛿𝑡  should be added to the above slope equation, so we get: 

𝛽𝑡 =
𝑁𝑡

𝑁𝑡−1
𝛽𝑡−1 + 𝛿𝑡 ,                                      𝛿𝑡~𝑁(0, 𝜎2𝑟𝛽) 

Consequently, the combined dynamic linear model of unequally time intervals can be written 

mathematically as follows: 

𝑥𝑡 = 𝜇𝑡 + 𝑣𝑡                        , 𝑣𝑡~  𝑁(0, 𝜎2)                                                            (1) 

𝜇𝑡 = 𝜇𝑡−1 + 𝛽𝑡 + 𝛿𝑡         ,   𝛿𝑡  ~𝑁(0, 𝜎2𝑟𝜇)

𝛽𝑡 =
𝑁𝑡

𝑁𝑡−1
𝛽𝑡−1 + ∆𝑡          ,    ∆𝑡  ~𝑁(0, 𝜎2𝑟𝛽)

                                                   (2) 
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Where 

𝑡: Time index (𝑡 = 1,2,3,… ). 

𝜇𝑡: Represents the level or the real rate for the quality of produced material and inspected at time t, 

and is usually unknown exactly. 

𝛽𝑡: Represents the real slope for the quality of produced material and inspected at time 𝑡. 

All random errors are  𝑣𝑡   , 𝛿𝑡   , ∆𝑡 assumed to be independent events, where: 

𝑣𝑡 : It is the result of random error in the observations or metrics used or in both. 

𝛿𝑡   , ∆t: They are the result of random errors (disturbances) in the same production process. 

In equation (1), we note that the value of the quality observation of the material produced is equal to 

the quality rate of the material produced, as well as the random error in the observation itself. It is 

not possible to be equal to the real quality observation and quality rate if there is no error in 

observation (free–error–observation). Equation(2) expresses the correlation or linear relationships of 

the process parameters 𝜇𝑡   , 𝛽𝑡 and their evolution over time. 

Now, equations (1) and (2) can be written on the formula of the combined dynamic linear model of 

unequal time intervals as follows: 

𝑥𝑡 = 𝐹𝜃𝑡 + 𝑣𝑡       , 𝑣𝑡  ~𝑁(0, 𝜎2)                                             (3) 

𝜃𝑡 = 𝐺𝑡𝜃𝑡−1 + 𝜔𝑡        , 𝜔𝑡 ~𝑁(0, 𝜎2𝑟)                                     (4) 

Where  𝑣𝑡   , 𝜔𝑡 are two independent random natural vectors. And 

𝑟 = 𝐸 (𝜔𝑡 . 𝜔𝑡
/
) = [

𝑟𝛽 + 𝑟𝜇 𝑟𝛽
𝑟𝛽 𝑟𝛽

] 

Note that:  

𝐹 = (1 0),𝐺𝑡 = [
1

𝑁𝑡

𝑁𝑡−1

0
𝑁𝑡

𝑁𝑡−1

],          𝜃𝑡 = (
𝜇𝑡

𝛽𝑡
)   and    𝜔𝑡 = (

∆𝑡 + 𝛿𝑡

∆𝑡
) 

3. Inspection Policies 

Usually, several inspection policies take place on the quality of the material produced in the 

practical life, including: 

a. Inspection in terms of the produced units: In this case, there are several inspection policies, for 

example: 

1. Inspecting the first or the last unit of the produced units n 

2. Inspecting n units for every N of the produced units  

3. Inspecting all produced units (comprehensive inspection) 

b. Inspection in terms of time: In this case, the units produced are examined during equal or unequal 

periods, for example: 

1) Inspecting one unit or a sample of n units in fixed and equal periods (fixed interval inspection). 

2) Inspecting one unit or n units in unequal, short-term periods (unequally spaced inspection). 
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We will use the sequential inspection method when finding the posterior distribution. 

In this paper, we will review a comprehensive mathematical study of the state of inspection by time 

in unequal time intervals. In this case, the quality is inspected during intervals of time. For example, a 

single unit is inspected in short and unequal time intervals. This policy is represented by equations (1), 

(2). When modeling the production processes (according to the quality of the material produced) for 

the unit j (where 𝑗 = 1,2, … , 𝑛, at inspection time t), these two equations become as follows: 

𝑥𝑗,𝑡 = 𝜇𝑗,𝑡 + 𝑣𝑗,𝑡                           , 𝑣𝑗,𝑡~𝑁(0, 𝜎2)                   (5) 

𝜇𝑗,𝑡 = 𝜇𝑗−1,𝑡 + 𝛽𝑗,𝑡 + 𝛿𝑗,𝑡              , 𝛿𝑗,𝑡 ~𝑁(0, 𝜎2𝑟𝜇)            (6)          

𝛽𝑗,𝑡 =
𝑁𝑡

𝑁𝑡−1
𝛽𝑗−1,𝑡 + ∆𝑗,𝑡                   , ∆𝑗,𝑡 ~𝑁(0, 𝜎2𝑟𝛽)            (7)        

Where  𝑣𝑗,𝑡 ,𝛿𝑗,𝑡 and  ∆𝑗,𝑡 are independent random errors. 

Note that : 

𝑡: Represents the time of the inspected unit. 

𝑛: Represents the number of produced units. 

 𝑗: Represents the directory of the produced unit. 

𝑥𝑗,𝑡: Represents the value of the produced material quality 𝑗 after the time 𝑡. 

𝜇𝑗,𝑡: Represents the real slope of the produced material quality 𝑗 after the time 𝑡. 

𝛽𝑗,𝑡: Represents the slope factor of the produced material quality j after the time 𝑡. 

𝜎2: Represents the observed variance. 

Suppose that  𝑦 be a comprehensive code, we will use the following convention: 

            𝑦𝑛,𝑡−1 = 𝑦0,𝑡 = 𝑦𝑡                                                    (8) 

For more information on dynamic models and Bayesian inference and their field of application, see 

the recent literature (Migon et al, 2005), (Mubwandarikwa et al, 2005), (Aguilar and West, 2000), 

(Gerlach and Kohn, 2000), (Awe et al, 2015), (Aktekin et al, 2018), (Debeko and Goshu, 2018), (Petris 

et al, 2009), (Roberto, 2016), (Laine, 2019), (Berry and West, 2019), (Chen et al, 2019), (Nobuhiko et 

al, 2014), (Gonçalves et al, 2020) and (Petridis et al, 2001). 

From the above discussion, we can use the combined dynamic linear model of unequal time intervals 

at the real inspection time in practical applications through the use of the theorems below. The 

formulation of theorems and the confirmation of their validity is the researcher's contribution to Jalil 

(1988). 

Theorem (1): If 𝜃𝑡 = (
𝜇𝑡

𝛽𝑡
) and if the two equations are  

𝜇𝑗,𝑡 = 𝜇𝑗−1,𝑡 + 𝛽𝑗,𝑡 + 𝛿𝑗,𝑡       , 𝛿𝑗,𝑡  ~𝑁(0, 𝜎2𝑟𝜇)                             (9) 

𝛽𝑗,𝑡 =
𝑁𝑡

𝑁𝑡−1
𝛽𝑗−1,𝑡 + ∆𝑗,𝑡       , ∆𝑗,𝑡  ~𝑁(0, 𝜎2𝑟𝛽)                                 (10) 

Then, we get: 

𝜃𝑡 = 𝐻𝑡𝜃𝑡−1 + 𝛾𝑡 
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Where 

𝐻𝑡 = 𝐺𝑡
𝑛 =

(

 
 1 ∑ (

ℎ

𝑧
)
𝑑𝑛

𝑑=1

0 (
ℎ

𝑧
)
𝑛

)

 
 

 

By putting      ℎ = 𝑁𝑡   , 𝑧 = 𝑁𝑡−1  ,  and 

𝛾𝑡 = 𝐺𝑡
𝑛−1𝜔1,𝑡−1 + 𝐺𝑡

𝑛−2𝜔2,𝑡−1 + ⋯+ 𝐺𝑡𝜔𝑛−1,𝑡−1 + 𝜔𝑛,𝑡−1 

Where 

𝜔𝑗,𝑡−1 = (
∆𝑗,𝑡−1 + 𝛿𝑗,𝑡−1

∆𝑗,𝑡−1
) ,      𝑗 = 1,2, … , 𝑛, 

Proof: For the produced units  𝑛 during unequal and short-term time intervals, by using the  

relationship (7), we  get: 

𝛽1,𝑡−1 =
ℎ

𝑧
𝛽0,𝑡−1 + ∆1,𝑡−1 

𝛽2,𝑡−1 =
ℎ

𝑧
𝛽1,𝑡−1 + ∆2,𝑡−1 

           = (
ℎ

𝑧
)
2
𝛽0,𝑡−1 +

ℎ

𝑧
∆1,𝑡−1 + ∆2,𝑡−1 

𝛽3,𝑡−1 =
ℎ

𝑧
𝛽2,𝑡−1 + ∆3,𝑡−1 

           = (
ℎ

𝑧
)
3
𝛽0,𝑡−1 + (

ℎ

𝑧
)
2
∆1,𝑡−1 +

ℎ

𝑧
∆2,𝑡−1 + ∆3,𝑡−1 

⋮ 

𝛽𝑗,𝑡−1 = (
ℎ

𝑧
)

𝑗

𝛽0,𝑡−1 + (
ℎ

𝑧
)

𝑗−1

∆1,𝑡−1 + (
ℎ

𝑧
)

𝑗−2

∆2,𝑡−1 + ⋯+
ℎ

𝑧
∆𝑗−1,𝑡−1 + ∆𝑗,𝑡−1 

⋮ 

𝛽𝑛,𝑡−1 = (
ℎ

𝑧
)
𝑛

𝛽0,𝑡−1 + (
ℎ

𝑧
)
𝑛−1

∆1,𝑡−1 + (
ℎ

𝑧
)
𝑛−2

∆2,𝑡−1 + ⋯+
ℎ

𝑧
∆𝑛−1,𝑡−1 + ∆𝑛,𝑡−1 

            = (
ℎ

𝑧
)
𝑛
𝛽0,𝑡−1 + ∑ (

ℎ

𝑧
)
𝑛−𝑗

∆𝑗,𝑡−1
𝑛
𝑗=1  

By using the convention  𝑦𝑛,𝑡−1 = 𝑦0,𝑡 = 𝑦𝑡 , we get:   

𝛽
𝑡
= (

ℎ

𝑧
)
𝑛
𝛽𝑡−1 + ∑ (

ℎ

𝑧
)
𝑛−𝑗

∆𝑗,𝑡−1
𝑛
𝑗=1                                                                                            (11)             

Now by using equation (9) and equation (11) that we obtained from the above results, we get: 

𝜇1,𝑡−1 = 𝜇0,𝑡−1 + 𝛽1,𝑡−1 + 𝛿1,𝑡−1 

           = 𝜇0,𝑡−1 +
ℎ

𝑧
𝛽0,𝑡−1 + ∆1,𝑡−1 + 𝛿1,𝑡−1 

𝜇2,𝑡−1 = 𝜇1,𝑡−1 + 𝛽2,𝑡−1 + 𝛿2,𝑡−1 

           = 𝜇0,𝑡−1 + [
ℎ

𝑧
+ (

ℎ

𝑧
)
2
] 𝛽0,𝑡−1 + [1 +

ℎ

𝑧
] ∆1,𝑡−1 + ∆2,𝑡−1 + 𝛿1,𝑡−1 + 𝛿2,𝑡−1 
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𝜇3,𝑡−1 = 𝜇2,𝑡−1 + 𝛽3,𝑡−1 + 𝛿3,𝑡−1 

          =  𝜇0,𝑡−1 + [
ℎ

𝑧
+ (

ℎ

𝑧
)
2
+ (

ℎ

𝑧
)
3
] 𝛽0,𝑡−1 + [1 +

ℎ

𝑧
+ (

ℎ

𝑧
)
2
] ∆1,𝑡−1 + 

 + (1 +
ℎ

𝑧
)∆2,𝑡−1 + ∆3,𝑡−1 + 𝛿1,𝑡−1 + 𝛿2,𝑡−1 + 𝛿3,𝑡−1 

⋮ 

𝜇𝑗,𝑡−1 = 𝜇0,𝑡−1 + [∑ (
ℎ

𝑧
)
𝑑𝑛

𝑑=1

] 𝛽0,𝑡−1 + [∑ (
ℎ

𝑧
)
𝑑−1𝑛

𝑑=1

] ∆1,𝑡−1 + 

     + [∑ (
ℎ

𝑧
)
𝑑−2𝑛

𝑑=2

] ∆2,𝑡−1 + ⋯+ ∆𝑗,𝑡−1+𝛿1,𝑡−1 + 𝛿2,𝑡−2 + ⋯+ 𝛿𝑗,𝑡−1 

By using the geometric sequence laws, we get: 

∑ (
ℎ

𝑧
)
𝑑

=
ℎ𝑛+1 − 𝑧𝑛

ℎ𝑧𝑛 − 𝑧𝑛+1

𝑛

𝑑=1

 

∑ (
ℎ

𝑧
)
𝑑−1

=
ℎ𝑛 − 𝑧𝑛

ℎ𝑧𝑛−1 − 𝑧𝑛

𝑛

𝑑=1

 

∑ (
ℎ

𝑧
)
𝑑−2

=
ℎ𝑛−1 − 𝑧𝑛−1

ℎ𝑧𝑛−2 − 𝑧𝑛−1

𝑛

𝑑=2

 

Therefore, 

𝜇𝑗,𝑡−1 = 𝜇0,𝑡−1 + [
ℎ𝑛+1 − ℎ𝑧𝑛

ℎ𝑧𝑛 − 𝑧𝑛+1
] 𝛽0,𝑡−1 + [

ℎ𝑛 − 𝑧𝑛

ℎ𝑧𝑛−1 − 𝑧𝑛] ∆1,𝑡−1 + 

     + [
ℎ𝑛−1 − 𝑧𝑛−1

ℎ𝑧𝑛−2 − 𝑧𝑛−1
] ∆2,𝑡−1 + ⋯+ ∆𝑗,𝑡−1 + 𝛿1,𝑡−1 + 𝛿2,𝑡−1 + ⋯+ 𝛿𝑗,𝑡−1 

⋮ 

𝜇𝑛,𝑡−1 = 𝜇0,𝑡−1 + [
ℎ𝑛+1 − ℎ𝑧𝑛

ℎ𝑧𝑛 − 𝑧𝑛+1
] 𝛽0,𝑡−1 + ∑

ℎ𝑛−𝑗+1 − 𝑧𝑛−𝑗+1

ℎ𝑧𝑛−𝑗 − 𝑧𝑛−𝑗+1
∆𝑗,𝑡−1 + ∑𝛿𝑗,𝑡−1

𝑛

𝑗=1

𝑛

𝑗=1

 

By using the convention 𝑦𝑛,𝑡−1 = 𝑦0,𝑡 = 𝑦𝑡  , we get:   

𝜇𝑡 = 𝜇𝑡−1 + [
ℎ𝑛+1−ℎ𝑧𝑛

ℎ𝑧𝑛−𝑧𝑛+1] 𝛽𝑡−1 + ∑
ℎ𝑛−𝑗+1−𝑧𝑛−𝑗+1

ℎ𝑧𝑛−𝑗−𝑧𝑛−𝑗+1 . ∆𝑗,𝑡−1 + ∑ 𝛿𝑗,𝑡−1                        (12)   𝑛
𝑗=1

𝑛
𝑗=1                                                                

Thus, from equations (11) and (12), the required final formula can be reached as follows: 

            𝜃𝑡 = (
𝜇𝑡

𝛽𝑡
) 

=

[
 
 
 
 
 𝜇𝑡−1 + [

ℎ𝑛+1 − ℎ𝑧𝑛

ℎ𝑧𝑛 − 𝑧𝑛+1
] 𝛽𝑡−1 + ∑

ℎ𝑛−𝑗+1 − 𝑧𝑛−𝑗+1

ℎ𝑧𝑛−𝑗 − 𝑧𝑛−𝑗+1
∆𝑗,𝑡−1 + ∑𝛿𝑗,𝑡−1

𝑛

𝑗=1

𝑛

𝑗=1

(
ℎ

𝑧
)
𝑛

𝛽𝑡−1 + ∑(
ℎ

𝑧
)
𝑛−𝑗

∆𝑗,𝑡−1

𝑛

𝑗=1 ]
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                   = [
𝜇𝑡−1 + [

ℎ𝑛+1−ℎ𝑧𝑛

ℎ𝑧𝑛−𝑧𝑛+1] 𝛽𝑡−1

(
ℎ

𝑧
)
𝑛
𝛽𝑡−1

] + [
∑

ℎ𝑛−𝑗+1−𝑧𝑛−𝑗+1

ℎ𝑧𝑛−𝑗−𝑧𝑛−𝑗+1
𝑛
𝑗=1 ∆𝑗,𝑡−1 + ∑ 𝛿𝑗,𝑡−1

𝑛
𝑗=1

∑ (
ℎ

𝑧
)
𝑛−𝑗

∆𝑗,𝑡−1
𝑛
𝑗=1

] 

                 = [
1

ℎ𝑛+1−ℎ𝑧𝑛

ℎ𝑧𝑛−𝑧𝑛+1

0 (
ℎ

𝑧
)
𝑛 ] [

𝜇𝑡−1

𝛽𝑡−1
] + [

1
ℎ𝑛−ℎ𝑧𝑛−1

ℎ𝑧𝑛−1−𝑧𝑛

0 (
ℎ

𝑧
)
𝑛−1 ] [

∆1,𝑡−1 + 𝛿1,𝑡−1

∆1,𝑡−1
] + [

1
ℎ𝑛−1−ℎ𝑧𝑛−2

ℎ𝑧𝑛−2−𝑧𝑛−1

0 (
ℎ

𝑧
)
𝑛−2 ]. 

               . [
∆2,𝑡−1 + 𝛿2,𝑡−1

∆2,𝑡−1
] + ⋯+ +[

1
ℎ

𝑧

0
ℎ

𝑧

] [
∆𝑛−1,𝑡−1 + 𝛿𝑛−1,𝑡−1

∆𝑛−1,𝑡−1
] + [

∆𝑛,𝑡−1 + 𝛿𝑛,𝑡−1

∆𝑛,𝑡−1
] 

                 = 𝐺𝑡
𝑛𝜃𝑡−1 + 𝐺𝑡

𝑛−1𝜔1,𝑡−1 + 𝐺𝑡
𝑛−2𝜔2,𝑡−1 + ⋯+ 𝐺𝑡𝜔𝑛−1,𝑡−1 + 𝜔𝑛,𝑡−1 

By putting  both 𝐻𝑡 = 𝐺𝑡
𝑛,     and  

𝛾𝑡 = 𝐺𝑡
𝑛−1𝜔1,𝑡−1 + 𝐺𝑡

𝑛−2𝜔2,𝑡−1 + ⋯+ 𝐺𝑡𝜔𝑛−1,𝑡−1 + 𝜔𝑛,𝑡−1 

We get: 

𝜃𝑡 = 𝐻𝑡𝜃𝑡−1 + 𝛾𝑡 

Thus, the proof was achieved. 

From Theorem (1) above, we can get the variance-covariance matrix of 𝜔𝑗,𝑡−1 as follows: 

Since                  𝜔𝑗,𝑡−1 = (
∆𝑗,𝑡−1 + 𝛿𝑗,𝑡−1

∆𝑗,𝑡−1
),  Then 

   𝐶𝑜𝑣(𝜔𝑗,𝑡−1) = 𝐸 (
∆𝑗,𝑡−1 + 𝛿𝑗,𝑡−1

∆𝑗,𝑡−1
) (∆𝑗,𝑡−1 + 𝛿𝑗,𝑡−1   ∆𝑗,𝑡−1) 

                        = 𝐸 [
(∆𝑗,𝑡−1 + 𝛿𝑗,𝑡−1)

2
(∆𝑗,𝑡−1 + 𝛿𝑗,𝑡−1)∆𝑗,𝑡−1

∆𝑗,𝑡−1(∆𝑗,𝑡−1 + 𝛿𝑗,𝑡−1) (∆𝑗,𝑡−1)
2 ] 

                        = 𝜎2 [
𝑟𝛽 + 𝑟𝜇 𝑟𝛽

𝑟𝛽 𝑟𝛽
] 

= 𝜎2𝑟 

Therefore, put   𝑟 = [
𝑟𝛽 + 𝑟𝜇 𝑟𝛽

𝑟𝛽 𝑟𝛽
] 

And also, from Theorem (1) above, we can get the variance-covariance matrix of 𝛾𝑡  as follows: 

𝐶𝑜𝑣(𝛾𝑡) = [𝐺𝑡
𝑛−1𝑟(𝐺𝑡

𝑛−1)/ + 𝐺𝑡
𝑛−2𝑟(𝐺𝑡

𝑛−2)/ + ⋯+ 𝐺𝑡𝑟𝐺𝑡
/ + 𝑟]𝜎2 

By using the properties of multiplying and adding matrices, we can come up with the following: 

𝐶𝑜𝑣(𝛾𝑡) = 𝜎2𝑊 

Where 

𝑊 =

[
 
 
 
 
 
 

𝑛𝑟𝛽 [1 + ∑(
ℎ

𝑧
)

𝑗𝑛

𝑗=1

]

2

+ 𝑛𝑟𝜇 𝑟𝛽 [1 + ∑(
ℎ

𝑧
)

𝑗𝑛

𝑗=1

]∑(
ℎ

𝑧
)
𝑛−𝑗𝑛

𝑗=1

𝑟𝛽 [1 + ∑(
ℎ

𝑧
)

𝑗𝑛

𝑗=1

]∑(
ℎ

𝑧
)
𝑛−𝑗𝑛

𝑗=1

𝑟𝛽 ∑(
ℎ

𝑧
)
2(𝑛−𝑗)𝑛

𝑗=1 ]
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For simplification, we put 

   𝑤1 = 1 + ∑(
ℎ

𝑧
)

𝑗

=
ℎ𝑛+1 − 𝑧𝑛+1

ℎ𝑧𝑛 − 𝑧𝑛+1

𝑛

𝑗=1

 

𝑤2 = ∑(
ℎ

𝑧
)
𝑛−𝑗

=
ℎ𝑛 − 𝑧𝑛

ℎ𝑧𝑛−1 − 𝑧𝑛

𝑛

𝑗=1

 

    𝑤3 = ∑ (
ℎ

𝑧
)
2(𝑛−𝑗)

=
ℎ2𝑛−𝑧2𝑛

ℎ2𝑧2𝑛−2−𝑧2𝑛
𝑛
𝑗=1  

Thus, the matrix W becomes as follows: 

          𝑊 = [
𝑛𝑟𝛽𝑤1

2 + 𝑛𝑟𝜇 𝑟𝛽𝑤1𝑤2

𝑟𝛽𝑤1𝑤2 𝑟𝛽𝑤3
]                                   (13) 

According to this, we can reformulate the combined dynamic linear model of unequal time intervals, 

at the inspection time t  as follows: 

Observation equation    𝑥𝑡 = 𝐹𝜃𝑡 + 𝑣𝑡     ,    𝑣𝑡  ~𝑁(0, 𝜎2)                             (14) 

System equation          𝜃𝑡 = 𝐻𝑡𝜃𝑡−1 + 𝛾𝑡    ,   𝛾𝑡  ~𝑁(0, 𝜎2𝑊)                          (15) 

Thus, after obtaining equations (14) and (15), using the Bayesian theorem, taking advantage of the 

Markov process, using sequential analysis, and referring to West and Harrison (1997), we can get the 

posterior probability distributions of process parameters from the repeated procedures. Considering 

that both 𝜎2,𝑟𝜇 and 𝑟𝛽 are known, we can formulate the following theorem: 

Theorem (2): According to the combined dynamic linear model of unequal time intervals, at the 

inspection time t, in equations(14) and (15) If the prior distribution of 𝜃0before any observation is 

normal distribution, 

𝑖. 𝑒               (𝜃0\𝐷0) ~𝑁(𝑚0 , 𝜎
2𝐶0) 

Then the posterior distribution of 𝜃t at time t, is also normal distribution 

𝑖. 𝑒                 (𝜃𝑡\𝐷𝑡) ~𝑁(𝑚𝑡 , 𝜎
2𝐶𝑡) 

Where the available information Dt is  𝐷𝑡 = (𝑥𝑡 , 𝑥𝑡−1, … , 𝑥1, 𝑟𝜇 , 𝑟𝛽 , 𝜎2). It is about previous 

information and other known constants. 

Proof: 

By using mathematical induction, we conclude that at time 𝑡 − 1 is 

(𝜃𝑡−1\𝐷𝑡−1) ~𝑁(𝑚𝑡−1, 𝜎
2𝐶𝑡−1) 

Where the available information is 

𝐷𝑡−1 = (𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥1, 𝑟𝜇 , 𝑟𝛽 , 𝜎2). 

From this we can get the following distributions: 

1) The prior distribution of parameter 𝜃𝑡 at time 𝑡:  From equation (15), we get 

    𝐸(𝜃𝑡\𝐷𝑡−1)  = 𝐸[(𝐻𝑡𝜃𝑡−1 + 𝛾𝑡)\𝐷𝑡−1] 

                         = 𝐻𝑡𝑚𝑡−1 
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𝑣𝑎𝑟(𝜃𝑡\𝐷𝑡−1)  = 𝑣𝑎𝑟[(𝐻𝑡𝜃𝑡−1 + 𝛾𝑡)\𝐷𝑡−1] 

                         = 𝐻𝑡𝑣𝑎𝑟(𝜃𝑡−1\𝐷𝑡−1)𝐻𝑡
/
+ 𝑣𝑎𝑟(𝛾𝑡\𝐷𝑡−1) 

                         = 𝐻𝑡𝜎
2𝐶𝑡−1𝐻𝑡

/
+ 𝜎2𝑊 

                         = 𝜎2 (𝐻𝑡𝐶𝑡−1𝐻𝑡
/
+ 𝑊) 

                         = 𝜎2𝑅𝑡 

Thus, we put,  𝑅𝑡 = 𝐻𝑡𝐶𝑡−1𝐻𝑡
/
+ 𝑊 

Where 𝑅𝑡 is a positive, definite, and symmetric matrix. We can formulate this probability distribution 

mathematically as follows: 

(𝜃𝑡\𝐷𝑡−1) ~𝑁(𝐻𝑡𝑚𝑡−1 , 𝜎
2𝑅𝑡) 

2) Posterior distribution: We can obtain the posterior distribution by using the Bayes' theorem 

which has the following formula: 

𝑃(𝜃𝑡\𝐷𝑡) ∝ 𝑃(𝜃𝑡\𝐷𝑡−1) . 𝑃(𝑥𝑡\𝐷𝑡) 

Where 𝑃(𝑥𝑡\𝐷𝑡)is the likelihood function. We get the expectation and variance of this function from 

equation (14) as follows: 

         𝐸(𝑥𝑡\𝜃𝑡)  = 𝐸[(𝐹𝜃𝑡 + 𝑣𝑡)\𝐷𝑡]  = 𝐹𝜃𝑡 

       𝑣𝑎𝑟(𝑥𝑡\𝜃𝑡)   = 𝑣𝑎𝑟[(𝐹𝜃𝑡 + 𝑣𝑡)\𝐷𝑡] = 𝜎2 

We can formulate this probability distribution, mathematically as follows 

(𝑥𝑡\𝜃𝑡) ~𝑁(𝐹𝜃𝑡 , 𝜎
2) 

Thus, the posterior probability distribution is given as follows:  

𝑃(𝜃𝑡\𝐷𝑡) ∝ 𝐸𝑥𝑝 [
−1

2𝜎2
(𝜃𝑡 − 𝐻𝑡𝑚𝑡−1)

/𝑅𝑡
−1(𝜃𝑡 − 𝐻𝑡𝑚𝑡−1)]. 

. 𝐸𝑥𝑝 [
−1

2𝜎2
(𝑥𝑡 − 𝐹𝜃𝑡)

/(𝑥𝑡 − 𝐹𝜃𝑡)] 

 

By using multiplying, merging the similar quantities together, and merging  the constant quantities 

with a constant of proportionality, we can conclude that: 

𝑃(𝜃𝑡\𝐷𝑡) ∝ 𝐸𝑥𝑝 [
−1

2𝜎2
(𝜃𝑡 − 𝑚𝑡)

/𝐶𝑡
−1(𝜃𝑡 − 𝑚𝑡)] 

By putting: 

              𝑚𝑡 = 𝐻𝑡𝑚𝑡−1 + 𝐴𝑡(𝑥𝑡 − 𝑓𝑡)                                                    (16) 

Where  𝑚𝑡  represents the expectation of the posterior probability distribution at time 𝑡 , and it is 

called Kalman Filter, and (𝑥𝑡 − 𝑓𝑡) is called prediction error, where 𝑓𝑡 = 𝐹𝐻𝑡𝑚𝑡−1 and  

             𝐶𝑡
/
= 𝑅𝑡 − 𝐴𝑡𝐹𝑅𝑡                                                                       (17) 

Where 𝐶𝑡
/
 represents the variance-covariance matrix of the posterior probability distribution at time 

t, and that 
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        𝐴𝑡 = 𝑅𝑡𝐹
/(1 + 𝐹𝑅𝑡𝐹

/)
−1

                                                       (18) 

Where 𝐴𝑡  is called Kalman Factor. Thus, we can formulate the posterior probability distribution 

mathematically as follows: 

(𝜃𝑡\𝐷𝑡) ~𝑁(𝑚𝑡  , 𝜎
2𝐶𝑡) 

4. Prediction Distribution 

Finding prediction distribution is very important because it provides us with future information. We 

can at least know what will be the rate of the quality of the material produced. If the variance of this 

distribution is large, this increases the uncertainty about the production process.  Hence, we prepare 

to make the right decision. To get the prediction distribution one step ahead, we should formulate the 

combined dynamic linear model for unequal time intervals, defined by equations (14) and (15) in the 

future format as follows: 

𝑥𝑡+1 = 𝐹𝜃𝑡+1 + 𝑣𝑡+1       ,   𝑣𝑡+1 ~𝑁(0, 𝜎2)(                                         (19)          

𝜃𝑡+1 = 𝐻𝑡𝜃𝑡 + 𝛾𝑡+1     ,       𝛾𝑡+1 ~𝑁(0, 𝜎2𝑊)                                      (20) 

Where 𝑣t+1 and 𝛾𝑡+1 are disjoint and independent events. Accordingly, we can reach the following 

results: 

From the equation (20), we get: 

   (𝜃𝑡+1\𝐷𝑡) ~𝑁(𝐻𝑡𝑚𝑡 , 𝜎2𝑅𝑡+1)                                                         (21) 

Where 

    𝑅𝑡+1 = 𝐻𝑡𝐶𝑡𝐻
/ + 𝑊(                                                                    (22) 

and from the equations (19),  (20), and (21), we can get: 

(𝑥𝑡+1\𝐷𝑡) ~𝑁(𝑥𝑡+1  , 𝜎
2 ×̂𝑡+1) 

Where 

𝑥𝑡+1 = 𝐹𝐻𝑡𝑚𝑡 

         �̂�𝑡+1 = 𝐹𝑅𝑡+1𝐹
/ + 1 

In the case of practical applications using this model, we can put: 

          𝐶𝑡 = [
𝑐1,𝑡 𝑐2,𝑡

𝑐2,𝑡 𝑐3,𝑡
]                                                                    (23) 

           𝐴𝑡 = [
𝑎1,𝑡

𝑎2,𝑡
]                                                                              (24) 

𝑚𝑡 = 𝐸(𝜃𝑡\𝐷𝑡) = 𝐸 (
𝜇𝑡

𝛽𝑡
\ 𝐷𝑡) = (

𝑢𝑡

𝑏𝑡
) 

             𝑅t = [
r1,t r2,t

r2,t r3,t
]                                                                              (25) 

Under the laws of the geometric series: 

𝐻𝑡 =

[
 
 
 1

ℎ𝑛+1 − ℎ𝑧𝑛

ℎ𝑧𝑛 − 𝑧𝑛+1

0 (
ℎ

𝑧
)
𝑛

]
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Now from the equations (16), (17), (18), and (25), we can access the recursive equations as follows: 

𝑎1,𝑡 =
𝑟1,𝑡

1+𝑟1,𝑡
          and          𝑎2,𝑡 =

𝑟2,𝑡

1+𝑟1,𝑡
 

For ease, we put         𝑍 =
ℎ𝑛+1−ℎ𝑧𝑛

ℎ𝑧𝑛−𝑧𝑛+1 .   Therefore, 

    𝑓𝑡 = 𝑢𝑡−1𝑍𝑏𝑡−1 

   𝑢𝑡 = 𝑢𝑡−1 + 𝑍𝑏𝑡−1 + 𝑎1,𝑡(𝑥𝑡 − 𝑓𝑡) 

   𝑏𝑡 = (
ℎ

𝑧
)
𝑛
𝑏𝑡−1 + 𝑎2,𝑡(𝑥𝑡 − 𝑓𝑡) 

 𝑟1,𝑡 = 𝑐1,𝑡−1 + 2𝑍𝑐2,𝑡−1 + 𝑍2𝑐3,𝑡−1 + 𝑛𝑟𝛽𝑤1
2 + 𝑛𝑟𝜇 

 𝑟2,𝑡 = (
ℎ

𝑧
)
𝑛
𝑐2,𝑡−1 + (

ℎ

𝑧
)
𝑛
𝑍𝑐3,𝑡−1 + 𝑟𝛽𝑤1𝑤2 

 𝑟3,𝑡 = (
ℎ

𝑧
)
2𝑛

𝑐3,𝑡−1 + 𝑟𝛽𝑤3 

𝑐1,𝑡 = 𝑟1,𝑡 −
(𝑟1,𝑡)

2

1+𝑟1,𝑡
  ,    𝑐2,𝑡 = 𝑟2,𝑡 −

(𝑟1,𝑡)(𝑟2,𝑡)

1+𝑟1,𝑡
   and   𝑐3,𝑡 = 𝑟3,𝑡 −

(𝑟2,𝑡)
2

1+𝑟1,𝑡
 

Also   𝑥𝑡+1 = 𝑢𝑡 + 𝑍𝑏𝑡     and       �̂�𝑡+1 = 𝑟1,𝑡+1 + 1 

Where  𝑟1,𝑡+1, we get it from equation (22) and will be in the following formula: 

𝑟1,𝑡+1 = 𝑐1,𝑡 + 2 𝑍𝑐2,𝑡 + 𝑍2𝑐3,𝑡 + 𝑛𝑟𝛽𝑤1
2 + 𝑛𝑟𝜇 

We point out that we need all the above-mentioned recurring relationships  to find the value of 

𝑢𝑡. It is possible to program these relationships by using a software program in the case of practical 

applications. 

5. Conclusion  

In this study, we have explained how to find the recurring relationships of the combined 

dynamic linear model of unequal time intervals to study the inspection policies by time in the case 

that 𝑟𝜇 ,𝑟𝛽 and 𝜎2 are known. From the above discussion, we can use the combined dynamic linear 

model of unequal time intervals at the real inspection time in practical applications through the use 

of the above theorems. the researcher's work focus on the statement of the theory of theorem (1) 

and its prove. In addition to the statement of theorem (2) and its prove, with find the prediction 

distribution, The results of this paper will be very useful in practical applications. In the end, we 

recommend finding the above statistical distributions in case 𝑟μ ,𝑟β and 𝜎2 are unknown. 
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