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ABSTRACT 

In this research article, Advection-diffusion equation (ADE) in one-dimension 

is proposed with coefficient of variables for the three kinds of dispersion 

problems: dispersion through heterogeneous medium, momentary reliant 

on continuous flow and dispersal along continuous flow through 

heterogeneous medium. The analytical solution is achieved by applying the 

Laplace Transformation Techniques (LTT). Three boundary conditions 

Dirichlet, Neumann, Cauchy are used in semi-infinite medium. Furthermore, 

two new transformations of time t  and space x  variables are presented. 

The coefficients of variable in equation of advection-diffusion are compact 

in coefficients of constant. Effect of inhomogeneity parameters and all the 

possible combination of dispersion dependency are presented with the help 

of graphs. 

Keywords: Advection, Diffusion, Error Function, Laplace transformation 

techniques 

 

1. Introduction: 

Advection-diffusion equation (ADE) is mixture of the advection and dispersal equations define 

natural phenomena where physical quantities are moved within a physical structure due to two 

process of advection and diffusion. Because of the increasing superficial and sub-surface hydro 

environs humiliation and smog, the equation of advection-diffusion has been equally important in soil 
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science, chemical engineering, groundwatehydrology, environmental sciences, petroleum 

engineering, civil engineering & mathematical modelers for the explanation of comparable processes. 

It has been essential to first understand the physical, chemical, and biological procedures for 

controlling the movement of solutes in ground water in order to better ground water resource 

management. [1] has scientifically estimated the longitudinal dispersion coefficient for one-

dimensional flow within a given range of perameters, and developed the  mathematical models for 

understanding and prediction of solute transport phenomenon in an aquifer. [2] Have presented 

detailed analysis of the testing of the diffusion coefficient's dependence on dimensionless number. 

[3] has provided the corporal foundation for estimating soil-water flow in hydro-logical simulations, 

primarily that via the unsaturated soil constituency that acts as a boundary between the surrounding 

and the groundwater region. [4] Have used mothed of Green function to solve analytically for solutes 

in a two sheet semi-infinite medium with constant boundary and initial conditions. [5] Have applied 

the Laplace transformation power series techniques (LTPST) to describe advection–diffusion equation 

in cylinder-shaped coordinates in an outward convergent flow field. [6] Has examined restrictions of 

analytical result for parabolic type PDE’s with variables coefficients being the function of the space

( )x  parameter. [7] Have solved linear fractional ADE by applying finite element method. [8] Have 

used integral Laplace transformation methods to find an exact solution to equation of advection-

diffusion for one-dimension. [9] Have presnted linear advection-diffusion equatin for three dispersion 

prolems along uniform and plus type input sources solve analytically applying  Laplace techniques. 

[10] Have introduced the two advection-diffusion models (one-dimensional) despersion cofficient and 

flow velocity. In present work, the methodical solutions of one-dimensional advection-diffusion 

equation (ADE) are presented in semi-infinite medium. The permeable medium is assumed semi-

infinite along transversal direction. One-dimensional ADE are found for three cases: (i) Dispersion 

through heterogeneous media, (ii) Time dependent along steady and uniform flow and (iii) Dispersal 

along unvarying flow through inhomogeneous standard. New variables of time and space are 

established to reduce the coefficients of variables of the ADE into constant coefficients. The analytical 

solutions are obtaining for Dirichlet ,Cauchy and Neumann    boundary conditions with the help of The 

Laplace Transformation Techniques (LTT). The Laplace transformation techniques are wieldy used 

because of being easier than other techniques and analytical solutions achieved by applying Laplace 

techniques are more accurate in validating the numerical results in terms of the precision and stability. 

2. Mathematical formulation of analytical solutions 

 The one-dimensional advection-diffusion equation is derive in the basis of Law of conservation 

of mass  by applying  Law of Fick’s and is written as: 

( , ) ( , )
C C

D x t U x t C
t x x

   
  

   
,       (1) 

where C , D , U , x  and t  respectively solute concentration, dispersion coefficient, uniform  

velocity, position and time.  

Let us considered the dispersion coefficient and uniform velocity in Eq. (1) as: 

0( , ) ( , )D x t D x t  and 
0( , ) ( , )U x t U x t .     

Let us established the new space variable by applying the transformation  
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( , )

dx
X

x t
    and 

1

( , )

dX

dx x t
         (2) 

The above transformation is applied in Eq. (1), then 

2

0 02
( , ) ( ( , ) )

C C
x t D U x t C

t X X
 

  
 

  
.       (3) 

Now the Eq.(1) is analytically resolved for three dispersion problems, respectively [8]. 

2.1. Dispersion Through Inhomogeneous Medium 

 The velocity of flow along a medium varies according to its inhomogeneity. It is considered 

about a change of increasing nature. 

Let us considered the expression for velocity at the origin 0x   of the domains be 
0U , which increases 

to 
0(1 )U b  at x L , where 1b   implies that the velocity change is of a small order, which is a 

essential condition for the parameter of velocity in the ADE (Kumar et al, 2012).  

Thus, the formulation for the velocity at any point x , 
0( ) (1 )U x U ax  , where /a b L   and a   is 

parameter of inhomogeneity and the dimension of a  is less than 1.0 .  

2( , ) (1 )x t ax    and ( , ) (1 )x t ax   ,     (4) 

using the (2) and the partial differential equation (3) become as 

2
2 2

0 0 02

C C C
a X D aXU aU C

t X X

  
  

  
.       (5) 

The medium is assumed the solute free at initially, so ( ,0) 0C x  .    (6) 

2.1.1 Uniform Input Nature  

Boundary conditions are 

0(0, )C t C  
 
          (7) 

And 
( , )

0
C t

x

 



.          (8) 

Using a transformation  

 ln ln (1 )Z X a ax    .         (9) 

PDE (5) reduced to the ADE as: 

2
2

0 0 02

C C C
a D aU C

t Z Z


  
  

  
,       (10) 

where 2

0 0 0aU a D   . 

Now, convert all conditions in the term of Z  

( ,0) 0C Z  ,                    (11) 
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(ln , ) 0C a t           (12) 

And 
( , )

0
C t

Z

 



.          (13) 

So, the analytical solution of ADE (10) is modified from Bear (1972, p. 630) and written as: 

10
1 2( , ) ( ) ( ) ( ) ( )

2

C
C x t erfc erfc       ,     (14) 

where 

(1 ),ax   1

0

ln( )
,

2
t

a D t


   2

0

ln( )
,

2
t

a D t


    

2

0 0 0au a D    , 
2

0
02

04
aU

a D


    and 0

0

U

aD
  . 

2.1.2 Input Increasing Nature 

 The input point source may not remain constant as human activities increase, but it may 

increase with time. A mixed type nonhomogeneous condition expresses this premise as: 

0 0

(0, )
( , ) ( , ) (0, )

C t
D x t U x t C t U C

x



  


,     (15) 

where α is a real constant. For (4) the above expression is written in the term of Z  as 

0 0 0 0

(ln , )
(ln , )

C a t
aD U C a t U C

Z



  


.      (16) 

Now, the ADE (17), initial condition (18), 2nd type of boundary condition (20) and input condition (23) 

in ( , )Z t  region compare with  the Laplace transformation techniques is written, for  1  , as 

10 0
1 2

0

1 1
( , ) ( ) ( ) ( ) ( )

2

C U
C x t erfc erfc

D

   
   


 

 
 

 1 2 2

32 2

2
( ) exp ( ) ( )t erfc


   

 
    


,    (17) 

where   

0 0

0 02

U

D a D

 
    , 0

1 2

00
2a Da D


     and 3

0

ln( )

2
t

a D t


   .  

If 1  , then preceding solution is not find if     

1 20 0
1

0 0

1 1 2
( , ) ( ) ( ) ( ) 1 ln( ) 4

4 4

C U
C x t erfc t

D a D

 
    

 


   

     
   

  

    
2 20

2 2 2

0 0

1
( ) exp ln( ) ln( )

2 4

t
erfc t

a D a D t


   



 
     

 

.  (18) 
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2.2. Time Dependent Dispersion Along Uniform Flow 

 Time-dependent solute dispersion along uniform flow with uniform and increasing nature is 

considered in partially-infinite homogeneous and initially solute-free medium. 

( , ) ( )x t mt   and ( , ) 1x t  ,      (19) 

where m  is a coefficient with the inverse dimension of t  [11]. 

From Eq. (4)  

( )

x
X

mt
  .          (20) 

[12] introduce a new Time-scale T  such that     

0 ( )

t dt
T

mt
            (21)  

2

0 02

C C C
D U

T X X

  
 

  
.                      (22) 

2.2.1 Uniform Input Nature  

Now, using transformation   

( , )

x
Z X

x t
   . 

The partial differential equation (22) reduced to the advection-diffusion equation 

2

0 02

C C C
D U

T Z Z

  
 

  
.        (23) 

Now, convert  conditions (6)-(8) in the term of Z  

 ( ,0) 0C Z  ,                    (24) 

 
0(0, )C T C           (25) 

And 
( , )

0
C T

Z

 



.         (26) 

By applying Laplace transformation techniques and the analytical solution is modified form [13] 

written as: 

 0
1 2

0

( , ) ( ) exp( ) ( )
2 ( )

oC U x
C x t erfc erfc

D mt
 



 
   

 
,     (27) 

where  

 1

0

( )

2

o
x U T

mt

D T





 ,  2

0

( )

2

o
x U T

mt

D T





  

and T  is expressed in the expression of ( )mt  using (21). 
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2.2.2 Input Increasing Nature 

 The condition can  be specify the input increasing nature at 0x   

 0 0

(0, )
( , ) ( , ) (0, )

C t
D x t U x t C t U C

x


  


,      (28) 

 now, for (4) the above equation convert in the term of variable Z  
 

 0 0 0 0

(0, )
(0, )

C T
D U C T U C

Z


  


.       (29)  

Thus, the desired analytical solution is modified by applying the Laplace transformation techniques 

from [13] and is written as: 

 

2

22

0 0
0

0 0 0 0

( )
( , ) 2 exp

2 4 4 2 ( )

o

x
C U T U xT mt

C x t U
D D T D D mt



 

  
  

    
 
 

      

2

0
1 2

0 0 0

( ) 1 exp( ) ( )
( ) 4 ( )

o oU x U T U x
erfc erfc

D mt D D mt
 

 

  
      

  
.              (30) 

2.3. Dispersion Along Unvarying Flow from Non-homogeneous Medium  

 To suppose the concentional distribution behavior along uniform flow through non-

homogeneous medium of unvarying input nature and that input accumulative nature along uniform 

flow, we consider following expressions 

2( , ) ( )(1 )x t mt ax    and ( , ) (1 )x t ax   ,      (31) 

where m  is the coefficient of variable time and its dimension is inverse of t .  

From (2) becomes as 

( ) (1 )

1
X

mt a ax 
          (32) 

[12] Established a new variable of time T  

 ( )T mt dt  ,         (33) 

 
2

2 2

0 0 02

C C C
a X D aX C

T X X
 

  
  

  
,       (34) 

where 

 0
0

( )

U

mt



 .                 

It may note that the Eq.(34) similar as the Eq.(5) with the similar conditions, so the solution for uniform 

input nature and input increasing nature is same as the (14) and (17), respectively.  
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3. Results and discussion 

 The concentration values 
0( )C C of dispersion problems are discussed in an limited 

longitudinal area 0 (km) 1x   of the semi-infinite media, respectively. In initial problem the 

analytical solutions of (14) and (17) are find  for the input data 
0 1.0,C  0 0.71D   and 

0 0.60U  at 

(years) 0.1,0.3,0.5,0.7 and 1.0t  . It may be noted that the dimensions of dispersion 

coefficient 
0( )D  and uniform flow 

0( )U  are (km year)  and  2(km year)  respectively. The different 

parameters of inhomogeneity are used to find the solutions of (14) and (17). It is denoted by " "a  and  

is less then 1.0 , where a b L . Its various values represent media with varying degrees of 

heterogeneity. The inhomogeneity parameter assigned 11.0 kma  in (4) then the value  of  

uniform velocity varies from 
0U  to 

02U  and dispersion coefficient  varies from 
0D  to 

04D .  

 In figure 1 & 2, the concentration behaviour for inhomogeneity parameter 11.0 kma   

described the analytical solution of (14) and (17)  through the heterogeneous medium. These figures 

shows the concentration values  
0( )C C  decreases with different values of times ( )t against increasing 

the position ( )x . In figure 3 & 4, the effects of different parameters of inhomogeneity for the 

analytical solutions of (21) and (24). For a small change in inhomogeneity parameter, a significant 

variation in concentration pattern can be observed. Concentration remains smaller for higher 

inhomogeneity parameters values and concentrations values higher for smaller inhomogeneity 

parameters values.  

 

 

Figure 1:  Dispersion through inhomogeneous medium with uniform input nature described by (14), 

for 11.0 kma  . 
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Figure 2:  Dispersion through inhomogeneous medium with increasing nature described by (17), for 
11.0 kma  . 

 

Figure 3:  Compression of solutions (14) at 0.5 (yr)t   for three values of a  . 

 

Figure 4:  Compression of two inhomogeneity parameters 11.0 (km)a  and 10.1 (km)a  for (17) at 

0.5t  . 

 In second problem three form of ( )mt  are considered exponentially increasing flow, exponentially 

decreasing flow and uniform flow to solve the (27) and (30) along with uniform point source and 

increasing nature. The concentration values 
0( )C C  are analyzed in slimier for various input data 
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10.1 (year)  m  0 1.71D   and 
0 1.60 U  except 

0 1.0 C  at different

(year) 0.05,0.20,0.35 and 0.5t  . The expression ( )mt  and variable T  are achieved from 

(27a), assumed in both solutions for exponentially decelerating flow are 

 ( ) exp( )mt mt     

and 
0

1

exp( )

t

T dt
mt


 , 

  
1

exp( ) 1T mt
m

  , respectively. 

Similarly, find the values for exponentially accelerating flow and uniform flow. 

In figure 5 & 6, the exponentially increasing flow for the analytical solutions of (27) and (30). These 

figures  shows that the concentration values 
0( )C C  decreases with different times against increasing 

the position ( )x . In figure 7 & 8, the comparison between three different functions of ( )mt  

(exponentially increasing, exponentially decreasing and uniform flow) for the analytical solutions of 

(27) and (30). These figures illustrates that the concentration values 
0( )C C  decreases with different 

functions of ( )mt  against increasing the position ( )x . 

 

Figure 5: Exponentially accelerating flow for uniform input nature described by (27). 

 

Figure 6: exponentially accelerating flow for increasing nature described by (30). 
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Figure 7: comparison the solution of (27), at 0.05 (year)t   for: (1) exponentially accelerating 

flow (2) uniform flow and (3) exponentially decelerating flow. 

 

 

 

Figure 8: Comparison the solution of (30), at 0.5 (year)t   for: (1) exponentially accelerating flow 

(2) uniform flow and (3) exponentially decelerating flow. 

Conclusion 

Analytically solutions of one-dimensional equations of advection-diffusion in one-dimensional 

have been presented in semi-infinite medium. The permeable medium has been considered semi-

infinite along longitudinal direction. we have discussed the numerous graphical representation for the 

results of three dispersal problems. In first case the analytical solution of uniform point source has 

been associated with analytically results increasing nature. Also different parameters of 

inhomogeneity have been compared with each other. In second case three different forms of ( )mt  

(exponentially accelerating, exponentially decelerating and uniform) have been considered. The 

analytical solutions for all forms of ( )mt  have been compared.  
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