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ABSTRACT 

Magic Squares is one of the richest and fabulous topic of research in 

recreational mathematics. Great Indian Mathematician Srinivasa Ramanujan 

produced a wonderful formula for summing divergent series which today is 

known in the name Ramanujan Summation. In this paper, I will prove a new 

result regarding determining Ramanujan Summation for positive integral 

powers of magic constants in an n × n magic square constructed using first 

n2 natural numbers.  
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1. Introduction  

Srinivasa Ramanujan used to note down his findings in his notebooks which are considered as 

mathematical treasures today. Among several chapters that he wrote, in first chapter, he began with 

the concept of constructing Magic Squares. In this paper, I will consider magic squares of order n × n 

constructed using first n2 natural numbers. The term magic constant refers to the same sum obtained 

upon adding any row, column or two leading diagonals of the given magic square. In this paper, I will 

derive a new result regarding determining Ramanujan summation for positive integral powers of 

magic constants for n × n magic squares for 3n  .  
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2. Theorem 1  

For 3n  , the magic constant for any n × n magic square constructed with first n2 natural numbers is 
2( 1)

(2.1)
2

n n 
 

Proof:  First, we note that there is only one magic square of order 1 × 1 which consists of just the 

number 1. In this trivial case since, we cannot distinguish between row, column and diagonals we 

neglect the trivial magic square of order 1 × 1. It is well known that there is no magic square of order 

2 × 2. Hence we can consider non – trivial magic squares of order n × n for 3n   constructed with first 

n2 natural numbers.  

Since we use first n2 natural numbers with no repetition in constructing the magic square, the sum of 

all numbers making up the whole magic square would be the sum given by 
2 2

2 ( 1)
1 2 3

2

n n
n


     .  Since the magic constant is the identical sum of numbers in any row 

or column in the n × n magic square, it is obtained by dividing 
2 2( 1)

2

n n 
 upon n. Thus the magic 

constant for a n × n magic square is given by 
2( 1)

2

n n 
 .  

This completes the proof.  

3. Bernoulli Numbers  

The numbers which occur as coefficients of 
!

nx

n
 in the Maclaurin’s series expansion of 

1x

x

e 
 are 

called Bernoulli numbers. The nth Bernoulli number is given by 
0

(3.1)
1 !

n

nx
n

x x
B

e n








  

The first few values of Bernoulli Numbers are given by  

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16

1 1 1 1 1
1, , , 0, , 0, , 0, , 0

2 6 30 42 30

5 691 7 3617
, 0, , 0, , 0, ,... (3.2)

66 2730 6 510

B B B B B B B B B B

B B B B B B B

           

        

 

From the above values we observe that except for B1, Bn = 0 for all odd values of n.  

4. Ramanujan Summation  

While trying to assign particular values of summing divergent series in connection with 

Riemann Zeta function, Srinivasa Ramanujan provided a formula known as Ramanujan Summation 

formula. In particular, Ramanujan mentioned that if r is a positive integer and if  is the Riemann zeta 

function, then the Ramanujan summation of rth powers of positive integers is given by 

  1

1

( )(1 2 3 ) ( ) (4.1)
1

r r r r r

k

B
RS RS k r

r







 
         

 
  where 

1rB 
 is the 

(r+1)th Bernoulli number as defined in (3.1).  
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5. Theorem 2 

The Ramanujan Summation of rth powers of magic constants obtained from magic squares of order 

n n  constructed using first n2 natural numbers were 3n   is given by  

 

3 1

2
2 2 3 2 1

0 0

3 21 5
( ) 15 34 65 111 2 (5.1)

2 22 3 2 1 2

r

rr
r r r r m s r m

r
m s

r s r B
RS

m s s r m



  

 

    
          

     
 

          if r is odd 

 

3 2

2
2 2 1 3 2

0 0

3 21 5
( ) 15 34 65 111 2 (5.2)

2 2 12 3 2 2

r

rr
r r r r m s r m

r
m s

r s r B
RS

m s s r m



  

 

    
          

     
 

        

if r is even  

Proof: In view of (2.1), notice that the expression 
  22 ( 2) 1

2

k k  
 generates the magic 

constants 15, 34, 65, 111, 175, 260, . . .  for k = 1, 2, 3, 4, 5, 6, . . .   respectively.  

Hence, we have  

 
   2

1

2 ( 2) 1
( ) 15 34 65 111 ( ) (5.3)

2

rr

r r r r

r
k

k k
RS RS





    
       
  

  


 

Now using binomial expansion for positive integral powers we have  

       

 

2 3 3 3 2 3 4

33 3 1 3 2 2

3 2 3 3

2 ( 2) 1 ( 2) ( 2) ( 2) ( 2) ( 2) 2
1 2

3 3 3
(2) (2) 2

1 2 3

3 2 3 2
(2)

1 1 2

r rr rr r r

rr r r

r r

r r r
k k k k k k k k

r

r r r
k k k

r

r r r
k k k

 

 

 

     
                    

     

      
           

      

      
      

     
 

 

 

3 23 4 2

3 43 4 3 5 3 6 2

1 2 2

3 2
(2) 2

3 2

3 4 3 4 3 4
(2) (2) 2

2 1 2 3 4

(2) (2) 2
1 2

rr

rr r r

rr r r

r

r

r r r r
k k k

r

r r r r
k k k

r r



  

 

   
    

  

           
             

        

        
           

        

Collecting like powers of k and simplifying we get 
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   2 3 1 3 1 2 3 2 3 1 3 3

4 2 3 4 5 3

3 3 3 3 2
2 ( 2) 1 2 2 2 2

1 2 1 3 1 1

3 3 2 3 3 2
2 2 2 2

4 2 1 2 5 3 1

rr r r r r

r

r r r r r r
k k k k k k

r r r r r r r
k

  



              
                      

             

              
                

            

1 3 5

2

3 3 2 3 4 3 6

3 4
2

1 2

2 2 2 2 2
1 2 3

r

r r r r r

r r
k

r r r r

r



  

    
    

   

        
            

         

 

Now substituting this expression in (5.3) and using (4.1), and the fact that 
1

(0)
2

    we have  

 
   2

1

3 1 3 1 2 3 2

1 1 1

3 1

2 ( 2) 1
( ) 15 34 65 111 ( )

2

3 3
( ) 2 ( ) 2 ( )

1 2 1

3 3 2
2 2

3 1 1
1

2

rr

r r r r

r
k

r r r

k k k

r

k k
RS RS

r r r
RS k RS k RS k

r r r





  
 

  

    
       
  

  

             
               

             

   
    

   




  

3 3 4 2 3 4

1 1

5 3 1 3 5

1

3

3 3 2
( ) 2 2 ( )

4 2 1 2

3 3 2 3 4
2 2 2 ( )

5 3 1 1 2

2
1

r r

k k

r

k

r

r r r r
RS k RS k

r r r r r
RS k

r

 
 

 






               
                

              

            
              

         

 
   

 

 



2

3 2 3 4 3 6 0

1

1 2 3 13 1 3 3 1

2 2 2 2 ( )
2 3

3 3 3 3 2
2 2 2 2

1 2 1 3 13 1 3 3 1

1

2

r r r r

k

r r r

r

r r r
RS k

r

r r r r rB B B

r r r


  



 

 
 
 
 
 
 
 
 
 
 
 
         
            
          

            
               

            

 



3 2

4 2 5 3 13 3 3 4

3 3 2 3 4

1 3 2

3 3 2 3 3 2 3 4
2 2 2 2 2

4 2 1 2 5 3 1 1 23 3 3 4

2 2 2
1 2 3

r

r r

r r r

r B

r

r r r r r r r r rB B

r r

r r r



 

 

  
  

  

                    
                      

                  

     
          

     

2

3 6 1
2 2

2

r r
r

r



 
 
 
 
 
 
 
 

   
      

    

 

Now the last term in the above expression can be simplified as  

   

2

3 3 2 3 4 3 6 2 2 2 2 4 2 6

2 2

0

2 2 2 2 2 2 2 2 2 2
1 2 3 1 2 3

2 2 (1) 2 2 1 2 5

r r r r r r r r r r

r
r u r

r u r r r

u

r r r r r r r r

r r

r

u
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Substituting this in the last expression we get  

 

1 2 3 13 1 3 3 1 3 2

4 2 3 3

( ) 15 34 65 111

3 3 3 3 2
2 2 2 2

1 2 1 3 1 13 1 3 3 1 3 21

2 3 3 2
2 2

4 2 1 2

r r r r

r r r r

r

r

RS

r r r r r rB B B B

r r r r

r r r r B

  



    

                
                   

                 
 

        
         

       

5 3 1 3 4

5
(5.4)

23 3 2 3 4
2 2 2

5 3 1 1 23 3 3 4

r

r
r r r r r B

r r



 
 
 

 
           

                       

 

If r is odd then 3r, 3r – 2, 3r – 4, . . .  are all odd. Since except 
1B  all Bernoulli numbers of odd subscripts 

are zero, from (5.4) we get  

 

2 4 23 1 3 1 3 3

3

2 2

0 0

( ) 15 34 65 111

3 3 3 21 5
2 2 2

2 1 4 2 1 22 3 1 3 1 3 3 2

3 21
2

2 22

r r r r

r

r r r

r

r
m s

r
m s

RS

r r r r r rB B B

r r r

r s r

m s s

  



 

    

                
                       

                 

    
     

   


1

2
3 2 1 5

3 2 1 2

r

r

r mB

r m



  
 



 

This proves (5.1) 

If r is even, then 3r + 1, 3r – 1, 3r – 3, . . .  are all odd. Since except 
1B  all Bernoulli numbers of odd 

subscripts are zero, from (5.4) we get  

 

1 3 13 3 2

5 3 1 3 4

2

( ) 15 34 65 111

3 3 3 2
2 2 2

1 3 1 13 3 21 5

2 23 3 2 3 4
2 2 2

5 3 1 1 2 3 4

1
2

2

r r r r

r r

r

r

r

r

RS

r r r rB B

r r

r r r r r B

r





    

           
            

          
   

           
                     

 

3 2

2
2 1 3 2

0 0

3 2 5

2 2 1 3 2 2

r

rr
m s r m

m s

r s r B

m s s r m



  

 

    
   

     
 

 

This proves (5.2) and completes the proof.  

5.1 Corollary  

 
243

( ) 15 34 65 111 175 (5.5)
80

RS          

 2 2 2 2 2 1844
( ) 15 34 65 111 175 (5.6)

105
RS          
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Proof: Taking r = 1 in (5.1), we have  

1 1
2 2 4 2

0 0

3 2 11 5
( )(15 34 65 111 175 ) 2

2 22 4 2 2

m s m

m s

s B
RS

m s s m

 

 

    
           

    
   

1
2 2 2 4 2

0

0 2 04 2

3 1 1 11 5
2 2

2 0 2 2 12 4 2 2

3 3 11 5 1 13 5 243
2 2 2

0 2 02 4 2 2 240 24 2 80

m m m

m

B

m m m

B B

 



      
         

       

          
                  

          



 

Hence 
243

( )(15 34 65 111 175 )
80

RS          

Taking r = 2 in (5.2), we have 

22 2
2 2 2 2 2 2 2 1 6 2

2
0 0

2
2 1 2 1 2 3 6 2

0

6 2 21 5
( )(15 34 65 111 175 ) 2

2 2 12 6 2 2

6 2 4 2 2 21 25
2 2 2

2 1 0 2 1 1 2 3 24 6 2 2

m s m

m s

m m m m

m

s B
RS

m s s m

B

m m m m

  

 

   



    
           

     

         
             

            

 



1 3 1 5 3 16 4 2
6 6 4 2 6 4 2 21 25

2 2 2 2 2 2
1 3 1 1 5 3 1 14 6 4 2 2

1 11 65 25 1844

84 30 12 2 105

B B B                    
                          

                    

      

 

This completes the proof.  

6. Conclusion 

By considering the magic constants obtained through magic squares of order n × n for 3n  , 

I have determined the Ramanujan summation for rth powers of such constants. This is achieved by 

proving two new formulas derived in theorem 2. In particular if r is odd, then the Ramanujan 

summation value is given by (5.1) and if r is even then it is given by (5.2). The computations when r = 

1 and 2 are provided in corollary through (5.5) and (5.6). In this sense, the result obtained in this paper 

connects the concept of magic square constants with that of Ramanujan summation values. By 

considering various values of r, we can compute Ramanujan summation for several divergent series 

representing powers of magic constants using equations (5.1) and (5.2). The results obtained in this 

paper can be considered as possible extensions to the original formulas provided by Srinivasa 

Ramanujan in his famous notebooks.  
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